Supporting Information for:

(π-Allyl)palladium Complexes Bearing Diphosphinidenecyclobutene Ligands (DPCB): Highly Active Catalysts for Direct Conversion of Allylic Alcohols

Fumiyuki Ozawa,* Hideyuki Okamoto, Seiji Kawagishi, Shogo Yamamoto, Tatsuya Minami, and Masaaki Yoshifuji
Department of Applied Chemistry, Graduate School of Engineering, Osaka City University,
Osaka 558-8585, Japan and Department of Chemistry, Graduate School of Science,
Tohoku University, Sendai 980-8578, Japan
(ozawa@a-chem.eng.osaka-cu.ac.jp)

Experimental Section

Materials and Instrumentation. Complexes 1a-c, 6, and 7 were prepared as previously reported. ${ }^{1,2}(R)-1$-Phenyl-3-hydroxybutene ($\mathbf{2 g}, 98.5 \%$ ee) was provided by Dr. Kunihiko Murata at Kanto Chemicals. All other chemicals were obtained from commercial suppliers and used without purification.

NMR spectra were recorded on a Varian Mercury 300 spectrometer. Chemical shifts are reported in $\delta(\mathrm{ppm})$, referred to ${ }^{1} \mathrm{H}$ (of residual protons) and ${ }^{13} \mathrm{C}$ signals of the deuterated solvents or to the ${ }^{31} \mathrm{P}$ signal of an external $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ standard. GLC analysis was performed on a Shimadzu GC-14B instrument equipped with a FID detector and a capillary column (Shimadzu CBP-1, $25 \mathrm{~m} \times 0.25 \mathrm{~mm}$). Mass spectra were measured with a Shimadzu QP-5000 GC-mass spectrometer (EI, 70 eV). Preparative MPLC was performed with a prepacked silica gel column (Kusano CGI Si-10, $22 \mathrm{~mm} \times 30 \mathrm{~cm}$, hexane $/ \mathrm{AcOEt}=10 / 1$). Enantiomeric purity of optically active compounds was determined by HPLC (Shimadzu LC-10, UV 254 nm) using a chiral column (Daicel CHIRALCEL OJ, $i-\mathrm{PrOH} /$ hexane $=5 / 95,1.0 \mathrm{~mL} / \mathrm{min}$). Optical rotations were measured on a JASCO DIP-370 polarimeter.

Catalytic Allylation of Aniline (Table 1). A typical procedure (run 1) is as follows. To a Schlenk tube containing $\mathbf{1 a}(1.2 \mathrm{mg}, 1.1 \mu \mathrm{~mol})$ were added toluene (1 mL), 2-propenyl alcohol ($70 \mu \mathrm{~L}, 1.03 \mathrm{mmol}$), $\mathrm{MgSO}_{4}(0.25 \mathrm{~g})$, and aniline ($180 \mu \mathrm{~L}, 1.98 \mathrm{mmol}$) successively at room temperature. The mixture was stirred at room temperature for 2 h . GLC analysis revealed disappearance of the starting alcohol. The white solid of MgSO_{4} was removed by filtration and washed with $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{~mL} \times 2)$. The combined filtrate was concentrated to dryness and purified
by MPLC to give N-(2-propenyl)aniline (131 mg, 96\%) and $N, N-$ di(2-propenyl)aniline (2.7 mg , $3 \%)$.
N-(2-Propenyl)aniline. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 3.79\left(\mathrm{dt}, J=5.4\right.$ and $\left.1.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right)$, 4.07 (br, $1 \mathrm{H}, \mathrm{NH}), 5.18(\mathrm{dq}, J=10.2$ and $1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CHH}), 5.30(\mathrm{dq}, J=17.1$ and 1.5 Hz , $1 \mathrm{H}, \mathrm{CH}=\mathrm{CHH}$), $5.97\left(\mathrm{ddt}, J=17.1,10.2\right.$ and $\left.5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\right), 6.66(\mathrm{~m}, J=8.7$ and 0.9 Hz , $2 \mathrm{H}, o-\mathrm{Ph}), 6.74(\mathrm{~m}, J=7.4$ and $0.9 \mathrm{~Hz}, 1 \mathrm{H}, p-\mathrm{Ph}), 7.19(\mathrm{~m}, J=8.7$ and $7.4 \mathrm{~Hz}, 2 \mathrm{H}, m-\mathrm{Ph})$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 47.6\left(\mathrm{NCH}_{2}\right), 113.2(o-\mathrm{Ph}), 116.4\left(\mathrm{CH}=\mathrm{CH}_{2}\right), 117.8(p-\mathrm{Ph}), 129.2$ ($m-\mathrm{Ph}$), $135.2\left(\mathrm{CH}=\mathrm{CH}_{2}\right), 147.7$ (ipso- Ph). MS, m / z (relative intensity): $133\left(\mathrm{M}^{+}, 89\right), 117(25)$, 106 (100), 91 (12), 77 (63), 65 (15).
$\boldsymbol{N}, \boldsymbol{N}$-Di(2-propenyl)aniline. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 3.93\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{NCH}_{2}\right), 5.15-5.22(\mathrm{~m}$, $\left.4 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.81-5.94\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\right), 6.60-6.85(\mathrm{~m}, 3 \mathrm{H}, o-$ and $p-\mathrm{Ph}), 7.21(\mathrm{~m}, 2 \mathrm{H}, m-$ Ph). MS, m/z (relative intensity): 173 ($\mathrm{M}^{+}, 53$), 158 (12), 146 (60), 130 (35), 117 (18), 104 (54), 91 (11), 77 (84), 65 (12).

Runs 2-9 in Table 1 were similarly examined. Monoallylation products in runs $4-7$ were obtained as a mixture of stereo- and/or regio-isomers; the product yields and the $(E) /(Z)$ ratios listed in the table were based on GLC analysis of the products separated from the reaction solutions by MPLC.

A mixture of (E) - and (Z)-N-(2-butenyl)aniline (A, B) and \boldsymbol{N}-(1-methyl-2propenyl)aniline (\mathbf{C}) $(\mathbf{A} / \mathbf{B} / \mathbf{C}=\mathbf{7 8} / \mathbf{1 1} / \mathbf{1 1}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 1.32(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 0.33 \mathrm{H}$, $\mathrm{NCHCH}_{3}(\mathbf{C})$), $1.71\left(\mathrm{dd}, J=6.2\right.$ and $\left.1.3 \mathrm{~Hz}, 2.67 \mathrm{H}, \mathrm{CH}=\mathrm{CHCH}_{3}(\mathbf{A})\right),{ }^{3} 3.69(\mathrm{dd}, J=5.7$ and 1.3 $\left.\mathrm{Hz}, 1.56 \mathrm{H}, \mathrm{NCH}_{2}(\mathbf{A})\right), 3.78\left(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 0.22 \mathrm{H}, \mathrm{NCH}_{2}(\mathbf{B})\right), 3.90(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}(\mathbf{A}-\mathbf{C})$), $3.99\left(\mathrm{qdt}, J=6.9,5.7\right.$ and $1.3 \mathrm{~Hz}, 0.11 \mathrm{H}, \mathrm{NCHCH}_{3}(\mathbf{C})$), $5.09(\mathrm{dt}, J=10.2$ and $1.3,0.11 \mathrm{H}$, $\mathrm{CH}=\mathrm{CHH}(\mathbf{C})), 5.22(\mathrm{dt}, J=17.4$ and $1.3 \mathrm{~Hz}, 0.11 \mathrm{H}, \mathrm{CH}=\mathrm{CH} H(\mathbf{C})), 5.60(\mathrm{dtq}, J=15.6,5.7$ and $\left.1.3 \mathrm{~Hz}, 0.89 \mathrm{H}, \mathrm{CH}=\mathrm{CHNCH}_{2}(\mathbf{A})\right),{ }^{3} 5.73\left(\mathrm{dqt}, J=15.6,6.2\right.$ and $1.3 \mathrm{~Hz}, 0.89 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}$ (A)), ${ }^{3} 5.84$ (ddd, $J=17.4,10.2$ and $5.7 \mathrm{~Hz}, 0.11 \mathrm{H}, \mathrm{CHCH}=\mathrm{CH}_{2}(\mathbf{C})$), $6.64(\mathrm{~m}, 2 \mathrm{H}, o-\mathrm{Ph}(\mathbf{A}-\mathbf{C})$), $6.72(\mathrm{~m}, 1 \mathrm{H}, p-\mathrm{Ph}(\mathbf{A}-\mathbf{C})), 7.18(\mathrm{~m}, 2 \mathrm{H}, m-\mathrm{Ph}(\mathbf{A}-\mathbf{C})) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right):(\mathbf{A}) \delta 17.8$ $\left(\mathrm{CH}_{3}\right), 46.0\left(\mathrm{NCH}_{2}\right), 113.0(o-\mathrm{Ph}), 117.4(p-\mathrm{Ph}), 123.0(\mathrm{CH}=\mathrm{CH}), 127.9(\mathrm{CH}=\mathrm{CH}), 129.1(m-\mathrm{Ph})$, 148.1 (ipso- Ph); (B) $\delta 21.6\left(\mathrm{CH}_{3}\right), 40.9\left(\mathrm{NCH}_{2}\right), 113.4(o-\mathrm{Ph}), 117.5(p-\mathrm{Ph}), 127.2(\mathrm{CH}=\mathrm{CH})$, 127.5 ($\mathrm{CH}=\mathrm{CH}$), 129.1 ($\mathrm{m}-\mathrm{Ph}$), 148.1 (ipso- Ph); (C) $\delta 13.1\left(\mathrm{CH}_{3}\right)$, 51.1 (NCH), 113.3 (o- Ph), $114.1\left(\mathrm{CH}=\mathrm{CH}_{2}\right), 117.3(p-\mathrm{Ph}), 129.1(m-\mathrm{Ph}), 141.1\left(\mathrm{CH}=\mathrm{CH}_{2}\right), 147.2$ (ipso-Ph). MS, m/z (relative intensity): (A) 147 ($\mathrm{M}^{+}, 69$), 132 (63), 117 (22), 106 (44), 93 (100), 77 (54), 55 (65); (B) 147 ($\mathrm{M}^{+}, 58$), 132 (51), 117 (18), 106 (42), 93 (100), 77 (45), 55 (40); (C) $147\left(\mathrm{M}^{+}, 38\right), 132$ (100), 117 (28), 93 (25), 77 (29), 65 (38), 51 (25).
$\boldsymbol{N}, \boldsymbol{N}$-Di(2-butenyl)aniline. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 1.68(\mathrm{dd}, J=6.3$ and 1.3 Hz 6 H $\left.\mathrm{CH}=\mathrm{CHCH}_{3}\right), 3.82\left(\right.$ brd, $\left.J=5.1 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{NCH}_{2}\right), 5.46(\mathrm{dt}, J=15.6$ and $5.1 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{CH}=\mathrm{CHNCH}_{2}\right), 5.56\left(\mathrm{dq}, J=15.6\right.$ and $\left.6.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}\right), 6.65(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, p-\mathrm{Ph})$,
$6.70(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}, o-\mathrm{Ph}), 7.19(\mathrm{dd}, J=8.1$ and $7.2 \mathrm{~Hz}, m-\mathrm{Ph}) . \quad \mathrm{MS}, \mathrm{m} / \mathrm{z}$ (relative intensity): $201\left(\mathrm{M}^{+}, 31\right), 186(7), 158(11), 147$ (17), 132 (20), 118 (9), 106 (53), 93 (11), 77 (48), 55 (100).

A mixture of (\boldsymbol{E}) - and $(\boldsymbol{Z})-\mathrm{N}$-(2-hexenyl)aniline $(\mathbf{D} / \mathbf{E}=\mathbf{9 0} / \mathbf{1 0})$. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$: $\delta 0.91\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2.7 \mathrm{H}, \mathrm{CH}_{3}(\mathrm{D})\right), 0.94\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 0.3 \mathrm{H}, \mathrm{CH}_{3}(\mathbf{E})\right), 1.41$ (sextet, $J=7.5 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}(\mathbf{D}, \mathbf{E})$), $2.03\left(\mathrm{~m}, 1.8 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}(\mathbf{D})\right), 2.11\left(\mathrm{~m}, 0.2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}(\mathbf{E})\right.$), $3.71\left(\mathrm{dd}, J=5.7\right.$ and $\left.0.9 \mathrm{~Hz}, 1.8 \mathrm{H}, \mathrm{NCH}_{2}(\mathrm{D})\right), 3.72(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}), 3.77(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 0.2 \mathrm{H}$, $\left.\mathrm{NCH}_{2}(\mathbf{E})\right), 5.58\left(\mathrm{dtt}, J=15.6,5.7\right.$ and $\left.1.2 \mathrm{~Hz}, 0.9 \mathrm{H}, \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{~N}(\mathbf{D})\right),{ }^{3} 5.71(\mathrm{dtt}, J=15.6,6.6$ and $\left.1.2 \mathrm{~Hz}, 0.9 \mathrm{H}, \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{~N}(\mathrm{D})\right),{ }^{3} 6.64(\mathrm{~m}, 2 \mathrm{H}, o-\mathrm{Ph}), 6.72(\mathrm{~m}, 1 \mathrm{H}, p-\mathrm{Ph}), 7.19(\mathrm{~m}, 2 \mathrm{H}, m-$ Ph). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right):(\mathrm{D}) \delta 13.7\left(\mathrm{CH}_{3}\right), 22.4\left(\mathrm{CH}_{2}\right), 34.4\left(\mathrm{CH}_{2}\right), 46.1\left(\mathrm{NCH}_{2}\right), 113.0$ ($o-\mathrm{Ph}$), 117.4 ($p-\mathrm{Ph}$), $126.8(\mathrm{CH}=\mathrm{CH})$, 129.1 ($m-\mathrm{Ph}$), $133.3(\mathrm{CH}=\mathrm{CH})$, 148.1 (ipso- Ph$)$; ($\mathbf{E}) \delta$ $13.8\left(\mathrm{CH}_{3}\right), 22.7\left(\mathrm{CH}_{2}\right), 29.6\left(\mathrm{CH}_{2}\right), 41.2\left(\mathrm{NCH}_{2}\right), 113.3(o-\mathrm{Ph}), 117.5(p-\mathrm{Ph}), 126.7(\mathrm{CH}=\mathrm{CH})$, $129.2(m-\mathrm{Ph}), 133.1(\mathrm{CH}=\mathrm{CH}), 148.1$ (ipso- Ph). $\quad \mathrm{MS}, \mathrm{m} / \mathrm{z}$ (relative intensity): major isomer, 175 ($\mathrm{M}^{+}, 23$), 146 (5), 132 (56), 106 (18), 93 (100), 77 (24), 55 (34).
$\boldsymbol{N}, \boldsymbol{N}$-Di(2-hexenyl)aniline. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 0.88\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 1.37$ (sextet, $J=7.5 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}$), $2.00\left(\mathrm{q}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.84(\mathrm{~d}, J=5.1 \mathrm{~Hz}$, $\left.4 \mathrm{H}, \mathrm{NCH}_{2}\right), 5.45\left(\mathrm{dt}, J=15.6\right.$ and $\left.5.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{~N}\right), 5.57(\mathrm{dt}, J=15.6$ and $6.6 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{~N}\right), 6.65(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, o-\mathrm{Ph}), 6.71(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, p-\mathrm{Ph}), 7.18(\mathrm{~m}, 2 \mathrm{H}, m-\mathrm{Ph})$. MS, m/z (relative intensity): 257 (${ }^{+}$, 22), 228 (7), 214 (19), 175 (24), 144 (17), 132 (41), 106 (38), 93 (84), 77 (36), 55 (93), 41 (100).
N-(3-Phenyl-2-propenyl)aniline. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 3.96$ (dd, $J=5.7$ and $1.5 \mathrm{~Hz}, 2 \mathrm{H}$, NCH_{2}), 3.95 (br, $1 \mathrm{H}, \mathrm{NH}$), 6.35 (dt, $J=15.9$ and $\left.5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}=\mathrm{C} H\right), 6.65(\mathrm{~d}, J=15.9 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{PhCH}=\mathrm{CH}), 6.68-6.78(\mathrm{~m}, 3 \mathrm{H}, o-\mathrm{PhN}), 7.18-7.41(\mathrm{~m}, 7 \mathrm{H}, \mathrm{Ph}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta$ $46.2\left(\mathrm{NCH}_{2}\right), 113.1(o-\mathrm{PhN}), 117.7(p-\mathrm{PhN}), 126.3(o-\mathrm{Ph}), 126,9(\mathrm{PhCH}=\mathrm{CH}), 127.5(\mathrm{~m}-\mathrm{PhN})$ 128.5 ($p-\mathrm{Ph}$), 129.3 ($m-\mathrm{Ph}$), $131.5(\mathrm{PhCH}=\mathrm{CH}), 136.8$ (ipso- Ph), 147.9 (ipso- PhN). MS, m/z (relative intensity): $209\left(\mathrm{M}^{+}, 32\right), 192(3), 132(7), 117$ (100), 104 (7), 91 (25), 77 (23), 65 (11).
$\boldsymbol{N}, \mathbf{N}$-Bis(3-phenyl-2-propenyl)aniline. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 4.15(\mathrm{dd}, J=5.1$ and 1.5 Hz , $\left.4 \mathrm{H}, \mathrm{NCH}_{2}\right), 6.29(\mathrm{dt}, J=16.2$ and $5.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{PhCH}=\mathrm{CH}), 6.55(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{PhCH}=\mathrm{CH})$, 6.73 (t, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H} p-\mathrm{Ph}), 6.83(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}, o-\mathrm{PhN}), 7.20-7.39(\mathrm{~m}, 12 \mathrm{H}, \mathrm{Ph})$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 52.2\left(\mathrm{NCH}_{2}\right), 112.5(o-\mathrm{PhN}), 116.5(p-\mathrm{PhN}), 125.8(\mathrm{PhCH}=C \mathrm{H})$, 126.3 ($o-\mathrm{Ph}$), 127.4 ($m-\mathrm{PhN}$), 128.5 ($p-\mathrm{Ph}$), 129.3 ($m-\mathrm{Ph}$), 131.1 ($\mathrm{PhCH}=\mathrm{CH}$), 136.8 (ipso- Ph), 148.8 (ipso-PhN). MS, m/z (relative intensity): 325 ($\mathrm{M}^{+}, 32$), 220 (14), 144 (15), 117 (100), 104 (40), 91 (51), 77 (31), 65 (11).
(R)-(+)- N -(1-Methyl-3-phenyl-2-propenyl)aniline ($\mathbf{9 8 . 5 \%}$ ee). ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $\delta 1.42\left(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.94(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}), 4.16(\mathrm{qd}, J=6.6$ and $5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}), 6.24$ (dd, $J=15.9,5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}=\mathrm{CH}), 6.59(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}=\mathrm{CH}), 6.67-6.75$ (m, 3H,
$o, p-\mathrm{PhN}), 7.15-7.39(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ph}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 22.0\left(\mathrm{CH}_{3}\right), 51.0(\mathrm{NCH}), 113.6$ (o-PhN), $117.5(p-\mathrm{PhN}), 126.3(\mathrm{Ph}), 127.3(\mathrm{Ph}) 128.5(\mathrm{Ph}), 129.2(m-\mathrm{PhN}), 129.4(\mathrm{PhCH}=C \mathrm{H})$, $133.0(\mathrm{PhCH}=\mathrm{CH})$, 136.9 (ipso- Ph), 147.1 (ipso- PhN). MS, m/z (relative intensity): $223\left(\mathrm{M}^{+}\right.$, 25), 208 (13), 131 (100), 115 (16), 91 (53), 77 (23), 65 (12), 51 (19). $[\alpha]_{\mathrm{D}}{ }^{20}+4.4^{\circ}(c 1.0$, CHCl_{3}). HPLC (retention time, min): $S(11.0), R(12.8)$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}: \mathrm{C}, 86.05$; H, 7.67; N, 6.27. Found: C, 85.96; H, 7.61; N, 6.32.

Determination of Absolute Configuration. The absolute configuration of the reaction product in run 9 in Table 1 was determined by chemical correlation, outlined in Scheme 4.

Step a. A hexane solution of $n-\mathrm{BuLi}(1.6 \mathrm{M}, 0.15 \mathrm{~mL}, 0.24 \mathrm{mmol})$ was added to a solution of (+)- N-(1-methyl-3-phenyl-2-propenyl)aniline (98.5% ee, $45 \mathrm{mg}, 0.20 \mathrm{mmol}$) in THF $(2.0 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$. After 30 min , benzylbromide ($30 \mu \mathrm{~L}, 0.25 \mathrm{mmol}$) was added. The mixture was gradually warmed to room temperature, and stirred for 30 min . Water was added, and the reaction mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL} \times 2)$. The combined extract was washed with brine and dried over MgSO_{4}. After concentration, column chromatography $\left(\mathrm{SiO}_{2}\right.$,
hexane/AcOEt $=100 / 1$ to 50/1) was performed to give a colorless solid of $(R)-(+)-N$-benzyl $-N-$ (1-methyl-3-phenyl-2-propenyl)aniline (97.5% ee) ($62 \mathrm{mg}, 98 \%$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 1.41(\mathrm{~d}$, $\left.J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.48\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.80-4.87(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 6.33(\mathrm{dd}, J=16.0$ and 4.6 $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{PhCH}=\mathrm{CH}), 6.49(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}=\mathrm{CH}), 6.71(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}, p-\mathrm{Ph}), 6.78(\mathrm{~d}$, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}, o-\mathrm{Ph}), 7.16-7.30(\mathrm{~m}, 12 \mathrm{H}, \mathrm{Ph}) .[\alpha]_{\mathrm{D}}{ }^{20}+1.5\left(c 1.0, \mathrm{CHCl}_{3}\right) . \quad$ HPLC (retention time, min): $S(9.1), R(10.1)$. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{~N}: \mathrm{C}, 88.14 ; \mathrm{H}, 7.40 ; \mathrm{N}, 4.47$. Found: C, 88.12; H, 7.22; N, 4.32.

Step b. This step was based on Ref 4. Copper (I) iodide ($100 \mathrm{mg}, 0.50 \mathrm{mmol}$) and potassium phosphate $(4.25 \mathrm{~g}, 20.0 \mathrm{mmol})$ were placed in a Schlenk tube, and the system was replaced with N_{2} gas. 2-Propanol (10 mL), ethylene glycol ($1.10 \mathrm{~mL}, 20.0 \mathrm{mmol}$), (S)-alaninol ($>99 \%$ ee) $(750 \mathrm{mg}, 10.0 \mathrm{mmol})$, and $\mathrm{PhI}(1.10 \mathrm{~mL}, 10.0 \mathrm{mmol})$ were successively added at room temperature. The mixture was heated at $80^{\circ} \mathrm{C}$ for 24 h to give a pale yellow suspension. After cooling the solution at room temperature, water was added, and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL} \times 3)$. The combined organic extract was washed with brine and dried over MgSO_{4}. The solvent was removed by evaporation, and the residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/AcOEt $\left.=4 / 1\right)$, to give a colorless oil of $(S)-(+)-N-(1-$ methyl-2hydroxyethyl)aniline ($1.41 \mathrm{~g}, 93 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.21\left(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.53$ (dd, $J=10.5$ and $6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHH}$), $3.60-3.70(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 3.74(\mathrm{dd}, J=10.5$ and 4.1 Hz , $\mathrm{CHH}), 6.72(\mathrm{dd}, J=7.5$ and $1.1 \mathrm{~Hz}, 2 \mathrm{H}, o-\mathrm{Ph}), 6.76(\mathrm{td}, J=7.3$ and $1.0 \mathrm{~Hz}, 1 \mathrm{H}, p-\mathrm{Ph}), 7.20(\mathrm{td}, J$ $=7.3$ and $1.2 \mathrm{~Hz}, 2 \mathrm{H}, m-\mathrm{Ph}) .[\alpha]_{\mathrm{D}}{ }^{20}+13.6\left(c 1.0, \mathrm{CHCl}_{3}\right)$.

Step c. The $(S)-(+)-N-(1-m e t h y l-2-h y d r o x y e t h y l) a n i l i n e ~(1.50 \mathrm{~g}, 10.0 \mathrm{mmol})$ thus obtained was dissolved in DMF (5.0 mL), and imidazole ($750 \mathrm{mg}, 11.0 \mathrm{mmol}$) and t butyldimethylsilyl chloride $(1.65 \mathrm{~g}, 11.0 \mathrm{mmol})$ were added at room temperature. The mixture was stirred for 6 h at $50^{\circ} \mathrm{C}$, and then poured into water and extracted with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL} \times 2)$. The combined extract was washed with brine and dried over MgSO_{4}. Evaporation of the solvent followed by bulb-to-bulb distillation of the residue $\left(150-160^{\circ} \mathrm{C}\right.$ at 0.1 mmHg$)$ gave (S) -N-(1-methyl-2-t-butyldimethylsiloxyethyl)aniline $(2.41 \mathrm{~g}, 91 \%)$ as a colorless oily material. ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $\delta-0.04(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiMe}),-0.53(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiMe}), 0.91(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}), 1.21(\mathrm{~d}, J=6.2 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3}\right), 3.50-3.67\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}\right), 6.65(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, o-\mathrm{Ph}), 6.71(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}, p-\mathrm{Ph})$, $7.14(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}, m-\mathrm{Ph})$.
n-Butyllithium ($1.6 \mathrm{M}, 6.5 \mathrm{~mL}, 10.4 \mathrm{mmol}$) was added to a solution of (S)- N -(1-methyl-2- t butyldimethylsiloxyethyl) aniline ($2.38 \mathrm{~g}, 9.00 \mathrm{mmol}$) in THF $(20 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. After 30 min , benzylbromide $(1.50 \mathrm{~mL}, 12.7 \mathrm{mmol})$ was added. The system was then gradually warmed to room temperature, and stirred for 30 min . Water was added, and the resulting mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL} \times 2)$. The combined extract was washed with brine and dried over MgSO_{4}. The solvent was removed under reduced pressure, and the residue was dissolved in

THF (20 mL). Tetrabutylammonium fluoride ($2.50 \mathrm{~g}, 9.60 \mathrm{mmol}$) was added at room temperature, and the system was stirred for 2 h . The reaction mixture was poured into water, and extracted with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL} \times 2)$. The combined extract was washed with brine and dried over MgSO_{4}. The resulting product was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/AcOEt $=10 / 1$ to $5 / 1$) to afford a colorless solid of (S) - N-benzyl- N-(1 -methyl- 2 hydroxyethyl)aniline $(1.83 \mathrm{~g}, 84 \%) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.16\left(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.83$ (br, 1H, OH), 3.54-3.70 (m, 2H, CH2), 4.13-4.22 (m, 1H, CH), $4.43\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 6.77(\mathrm{t}, J=$ $7.3 \mathrm{~Hz}, 1 \mathrm{H}, p-\mathrm{Ph}), 6.86(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}, o-\mathrm{Ph}), 7.17-7.34(\mathrm{~m}, 8 \mathrm{H})$.

Step d. This step was based on Ref 5. To a $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ solution of oxalyl chloride $(0.31 \mathrm{~g}, 2.41 \mathrm{mmol})$ was added dimethyl sulfoxide $(0.32 \mathrm{~g}, 4.00 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$. After 5 min , (S)- N -benzyl- N -(1-methyl-2-hydroxyethyl)aniline ($480 \mathrm{mg}, 2.00 \mathrm{mmol}$) was added in one portion. The reaction system was gradually warmed to $0{ }^{\circ} \mathrm{C}$ over 30 min , and then cooled to $-78{ }^{\circ} \mathrm{C}$. Triethylamine ($2.50 \mathrm{~mL}, 8.00 \mathrm{mmol}$) was added, and the mixture was warmed to room temperature. Water was added, and the organic phase was separated. The aqueous phase was extracted repeatedly with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phase was washed successively with dilute hydrochloric acid (ca. HCl), water, an aqueous NaHCO_{3} solution, and brine. The organic layer was dried over MgSO_{4}, and the solvent was removed under reduced pressure, to provide a crude product of (S)- N -benzyl- N -(1-formylethyl)aniline, which was subjected to the next reaction (step e) without purification.

Step e. To a solution of $\mathrm{PhCH}_{2} \mathrm{P}(\mathrm{O})(\mathrm{OEt})_{2}(550 \mathrm{mg}, 2.41 \mathrm{mmol})$ in THF $(15 \mathrm{~mL})$ was added n - $\mathrm{BuLi}(1.60 \mathrm{M}$ solution in hexane, $1.50 \mathrm{~mL}, 2.40 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$. The mixture was warmed to $0{ }^{\circ} \mathrm{C}$ over 30 min , and then cooled to $-78{ }^{\circ} \mathrm{C}$. A THF solution (5.0 mL) of the aldehyde prepared by step d was added dropwise, and the mixture was stirred for 15 min at $-78{ }^{\circ} \mathrm{C}$ and then at room temperature for 12 h . The reaction was quenched with water and extracted with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL} \times 2)$. The combined extract was washed with brine and dried over MgSO_{4}. The resulting product was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/ AcOEt $=100 / 1$ to $50 / 1$) to give $(S)-(-)-N$-benzyl- N-(1-methyl-3-phenyl-2-propenyl) aniline (89.8% ee) ($426 \mathrm{mg}, 68 \%$). $[\alpha]_{\mathrm{D}}{ }^{20}-1.2$ (c 1.0, CHCl_{3}). The product exhibited the same ${ }^{1} \mathrm{H}$ NMR spectrum as $(R)-(+)-N$-benzyl- N-(1-methyl-3-phenyl-2-propenyl)aniline, prepared by step a.

Catalytic Allylation of Active Methylene Compounds (Table 2). A typical procedure (run 1) is as follows. The complex $\mathbf{1 a}(22.5 \mathrm{mg}, 20 \mu \mathrm{~mol})$ was placed in a Schlenk tube, and 2propenyl alcohol ($70 \mu \mathrm{~L}, 1.0 \mathrm{mmol}$), ethyl acetoacetate ($255 \mu \mathrm{~L}, 2.0 \mathrm{mmol}$), $\mathrm{MgSO}_{4}(0.25 \mathrm{~g})$, and pyridine $(8 \mu \mathrm{~L}, 0.1 \mathrm{mmol})$ were added successively at room temperature. The mixture was stirred at $50{ }^{\circ} \mathrm{C}$ for 4 h . GLC analysis revealed complete conversion of 2-propenyl alcohol.

After removal of MgSO_{4} by filtration, the reaction mixture was subjected to MPLC, giving the monoallylation product in 92% yield (156 mg) and the diallylation product in 7% yield $(7.6 \mathrm{mg})$.

Ethyl 2-Acethyl-4-pentenoate. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.26\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, $2.22\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 2.58\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.51(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 4.18(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$), $5.03(\mathrm{ddt}, J=10.2,1.5$ and $1.1 \mathrm{~Hz}, 1 \mathrm{H}$, cis $-\mathrm{CH}=\mathrm{CHH}), 5.08(\mathrm{dq}, J=17.1$ and 1.5 Hz , 1 H , trans $-\mathrm{CH}=\mathrm{CHH}$), 5.73 (ddt, $J=17.1,10.2$ and $6.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}$). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 14.1\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 29.1\left(\mathrm{CH}_{3} \mathrm{CO}\right), 32.1\left(\mathrm{CH}_{2}\right), 59.2(\mathrm{CH}), 61.4\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 117.4$ $\left(\mathrm{CH}=\mathrm{CH}_{2}\right), 134.2\left(\mathrm{CH}=\mathrm{CH}_{2}\right), 169.2\left(\mathrm{CO}_{2} \mathrm{Et}\right), 202.5(\mathrm{CO}) . \quad \mathrm{MS}, \mathrm{m} / \mathrm{z}$ (relative intensity): 170 $\left(\mathrm{M}^{+}, 0.4\right), 152$ (0.5), 127 (20), 112 (0.2), 99 (11), 81 (13), 55 (21), 43 (100).

Ethyl 2-Acetyl-2-(2-propenyl)-4-pentenoate. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.26(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$), $2.13\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 2.57(\mathrm{ddt}, J=14.4,7.2$ and $1.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CHH}$), 2.64 (ddt, $J=14.4,7.2$ and $1.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CHH}), 4.20\left(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 5.06-5.14(\mathrm{~m}, 4 \mathrm{H}$, $\left.\mathrm{CH}=\mathrm{CH}_{2}\right), 5.52-5.66\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 14.1\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 26.9$ $\left(\mathrm{CH}_{3} \mathrm{CO}\right), 35.9\left(\mathrm{CH}_{2}\right), 61.4\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 63.2(\mathrm{COCCO}), 119.2\left(\mathrm{CH}=\mathrm{CH}_{2}\right), 132.1\left(\mathrm{CH}=\mathrm{CH}_{2}\right)$, $171.5\left(\mathrm{CO}_{2} \mathrm{Et}\right) . \quad \mathrm{MS}, \mathrm{m} / \mathrm{z}$ (relative intensity): $210\left(\mathrm{M}^{+}, 0.1\right), 181(0.5), 168(6), 137(2), 123(14)$, 95 (14), 79(13), 67(8), 43(100).

Ethyl 2-Acetyl-4-octenoate. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 0.84\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.25(\mathrm{t}$, $\left.J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.33$ (sextet, $\left.J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.92\left(\mathrm{brq}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $2.21\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 2.52\left(\mathrm{~m}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.45(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 4.17(\mathrm{q}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$), $5.31(\mathrm{dtt}, J=15.3,6.9$ and $1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}$), 5.49 (ddt, $J=15.3,6.6$ and $1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH})$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 13.5\left(\mathrm{CH}_{3}\right), 14.1\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 22.4$ $\left(\mathrm{CH}_{2}\right), 29.1\left(\mathrm{CH}_{3} \mathrm{CO}\right), 31.3\left(\mathrm{CH}_{2}\right), 34.5\left(\mathrm{CH}_{2}\right), 59.9(\mathrm{CH}), 61.3\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 125.4(\mathrm{CH}=\mathrm{CH})$, $133.7(\mathrm{CH}=\mathrm{CH}), 169.4\left(\mathrm{CO}_{2} \mathrm{Et}\right), 202.9(\mathrm{CO}) . \quad \mathrm{MS}, \mathrm{m} / \mathrm{z}$ (relative intensity): $212\left(\mathrm{M}^{+}, 0.4\right), 169$ (21), 139 (8), 95 (42), 81 (14), 55 (24), 43 (100).

Ethyl 2-Acetyl-5-phenyl-4-pentenoate. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.26(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.26\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 2.75(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHH}), 2.75(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CHH})$, $3.59(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 4.20\left(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 6.12(\mathrm{dt}, J=15.6$ and 7.2 Hz , $1 \mathrm{H}, \mathrm{PhCH}=\mathrm{CH}), 6.46(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}=\mathrm{CH}), 7.18-7.34(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right): \delta 14.1\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 29.2\left(\mathrm{CH}_{3} \mathrm{CO}\right), 31.5\left(\mathrm{CH}_{2}\right), 59.5(\mathrm{CH}), 61.4\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 125.6$ $(\mathrm{Ph}), 126.1(\mathrm{Ph}), 127.3(\mathrm{Ph}), 128.5(\mathrm{PhCH}=\mathrm{CH}), 132.7(\mathrm{PhCH}=\mathrm{CH}), 136.9(\mathrm{Ph}), 169.2\left(\mathrm{CO}_{2} \mathrm{Et}\right)$, 202.4 (CO). MS, m/z (relative intensity): 246 (${ }^{+}$, 8), 228 (6), 203 (14), 172 (12), 157 (49), 129 (24), 117 (22), 104 (5), 91 (33), 77 (7), 43 (100).

Ethyl 2-Acetyl-2-(3-phenyl-2-propenyl)-5-phenyl-4-pentenoate. ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $\delta 1.27\left(\mathrm{td}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.21\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 2.78(\mathrm{dd}, J=14.4$ and $7.5 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{CHH}), 2.85(\mathrm{dd}, J=14.4$ and $7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CHH}), 4.23\left(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 6.01(\mathrm{dt}, J$ $=15.6$ and $7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{PhCH}=\mathrm{CH}), 6.46(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{PhCH}=\mathrm{CH}) 7.18-7.34(\mathrm{~m}, 10 \mathrm{H}$,

Ph). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \quad \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 14.1\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 26.9\left(\mathrm{CH}_{3} \mathrm{CO}\right), 35.7\left(\mathrm{CH}_{2}\right), 61.4$ $\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 63.8(\mathrm{COCCO}), 123.7(\mathrm{Ph}), 126.2(\mathrm{Ph}), 127.5(\mathrm{Ph}), 128.5(\mathrm{PhCH}=\mathrm{CH}), 134.1$ $(\mathrm{PhCH}=\mathrm{CH}), 136.9(\mathrm{Ph}), 171.5\left(\mathrm{CO}_{2} \mathrm{Et}\right), 204.2(\mathrm{CO}) . \quad \mathrm{MS}, \mathrm{m} / \mathrm{z}$ (relative intensity): $362\left(\mathrm{M}^{+}\right.$, $0.1), 344$ (6), 288 (10), 245 (7), 199 (60), 171 (7), 157 (32), 141 (12), 128 (11), 117 (39), 91 (43), 43(100).

Ethyl 2-Ethoxycarbonyl-4-pentenoate. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 1.26(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}$, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$), $2.63\left(\mathrm{tt}, J=7.0\right.$ and $\left.1.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) 3.41(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 4.19(\mathrm{q}, J=7.2$ $\mathrm{Hz}, 4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$), 5.05 (ddt, $J=10.2,1.5$ and $1.5 \mathrm{~Hz}, 1 \mathrm{H}$, cis- $\mathrm{CH}=\mathrm{CHH}$), 5.11 (ddt, $J=17.1$, 1.5 and $1.5 \mathrm{~Hz}, 1 \mathrm{H}$, trans $-\mathrm{CH}=\mathrm{CHH}$), 5.77 (ddt, $J=17.1,10.2$ and $6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}$). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 14.1\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 32.8\left(\mathrm{CH}_{2}\right), 51.6(\mathrm{CH}), 61.4\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 117.5$ $\left(\mathrm{CH}=\mathrm{CH}_{2}\right), 134.0\left(\mathrm{CH}=\mathrm{CH}_{2}\right), 168.9\left(\mathrm{CO}_{2} \mathrm{Et}\right) . \quad \mathrm{MS}, \mathrm{m} / \mathrm{z}$ (relative intensity): $200\left(\mathrm{M}^{+}, 0.4\right), 155$ (8), 127 (100), 109 (95), 81 (83), 55 (65).

Ethyl 2-(2-propenyl)-2-cyclohexanonecarboxylate. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 1.23(\mathrm{t}, J=$ $\left.7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.37-2.67\left(\mathrm{~m}, 10 \mathrm{H}, \mathrm{CH}_{2}\right), 4.17\left(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, 4.97-5.07 (m, 2H, CH= $\left.\mathrm{CH}_{2}\right), 5.73\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 14.1$ $\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 22.4,27.5,35.7,39.3,41.1,60.8(\mathrm{COCCO}), 61.2\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 118.2\left(\mathrm{CH}=\mathrm{CH}_{2}\right)$, $133.3\left(\mathrm{CH}=\mathrm{CH}_{2}\right), 171.4\left(\mathrm{CO}_{2} \mathrm{Et}\right), 207.5(\mathrm{CO}) . \quad \mathrm{MS}, \mathrm{m} / \mathrm{z}$ (relative intensity): $210\left(\mathrm{M}^{+}, 3\right), 182$ (3), 164 (6), 141 (7), 137 (41), 119 (32), 108 (23), 93 (27), 79 (31), 67 (65), 41 (100).

Preparation of $\left[\mathbf{P t}_{\mathbf{2}}(\boldsymbol{\mu}-\mathbf{H})_{\mathbf{2}}(\mathbf{D P C B})_{\mathbf{2}}\right]^{\mathbf{2 +}}\left(\mathbf{O T f}^{-}\right)_{\mathbf{2}}\left(\mathbf{5}^{\prime}\right)$. The complex $\mathrm{PtMe}(\mathrm{OTf})(\mathrm{DPCB})$ (7) ${ }^{2}$ ($312 \mathrm{mg}, 0.28 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL}$; pretreated with water), and $\mathrm{HSiMe}_{2} \mathrm{Ph}(44 \mathrm{~mL}, 0.29 \mathrm{mmol})$ was added at room temperature. The color of the solution instantly changed from orange to dark red. GLC analysis revealed the formation of $\mathrm{PhMe}_{2} \mathrm{SiOSiMe}_{2} \mathrm{Ph}(0.15 \mathrm{mmol})$ and methane (qualitative). The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum exhibited a set of signals assignable to the title compound. The solvent was removed by pumping, and the dark red solid was washed repeatedly with pentane, and dried under vacuum ($160 \mathrm{mg}, 52 \%$). This product was spectroscopically pure, but satisfactory elemental analysis data was not obtained. Attempts to perform recrystallization were unsuccessful. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta-8.10$ (quintet, $\left.{ }^{1} J_{\mathrm{PtH}}=521 \mathrm{~Hz},{ }^{2} J_{\mathrm{PH}}=60 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{PtH}\right), 1.45(\mathrm{~s}, 36 \mathrm{H}, t-\mathrm{Bu}(p)), 1.53$ $(\mathrm{s}, 72 \mathrm{H}, t-\mathrm{Bu}(o)), 6.88(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 8 \mathrm{H}, o-\mathrm{Ph}), 6.94(\mathrm{t}, J=8.0 \mathrm{~Hz}, m-\mathrm{Ph}), 7.22(\mathrm{t}, J=6.6 \mathrm{~Hz}$, $4 \mathrm{H}, p-\mathrm{Ph}), 7.62(\mathrm{br}, 8 \mathrm{H}, \mathrm{PAr}) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 152.4\left(\mathrm{~m},{ }^{1} J_{\mathrm{PtP}}=3455 \mathrm{~Hz},{ }^{3} J_{\mathrm{PtP}}=\right.$ 342 Hz ; see Figure 1).

Figure 1. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (121.49 MHz) spectrum of $\mathbf{5}^{\prime}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Preparation of $\left[\mathbf{P t}\left(\boldsymbol{\eta}^{\mathbf{3}} \mathbf{-} \mathbf{C}_{\mathbf{3}} \mathbf{H}_{\mathbf{5}}\right)(\mathbf{D P C B})\right]^{+} \mathbf{O T f}{ }^{-}(\mathbf{8})$. Complex $\mathbf{7}(250 \mathrm{mg}, 0.22 \mathrm{mmol})$ was dissolved in $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$ (5 mL ; pretreated with water) at room temperature. 2-Propenyl alcohol ($150 \mathrm{~mL}, 2.2 \mathrm{mmol}$) was added. Dimethylphenylsilane ($35 \mathrm{~mL}, 0.23 \mathrm{mmol}$) was added to generate the hydridoplatinum complex. The resulting solution was stirred at $50^{\circ} \mathrm{C}$ for 5 h . Volatile materials were removed by pumping at room temperature, and the residue was washed with $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{~mL})$ to give an orange precipitate. The crude product was dissolved in a minimum amount of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, layered with $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{~mL})$, and allowed to stand at room temperature to give a crystalline solid of $8(168 \mathrm{mg}, 67 \%) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 1.45(\mathrm{~s}, 18 \mathrm{H}, t-\mathrm{Bu}(p)), 1.55(\mathrm{~s}, 18 \mathrm{H}$, $t-\mathrm{Bu}(o)), 1.64(\mathrm{~s}, 18 \mathrm{H}, t-\mathrm{Bu}(o)), 3.24\left(\mathrm{t}, J=12.6 \mathrm{~Hz},{ }^{2} J_{\mathrm{PtH}}=47.4 \mathrm{~Hz}, 2 \mathrm{H}\right.$, allylH$($ anti) $), 4.71$ (br, $\left.{ }^{2} J \mathrm{PtH}=10.1 \mathrm{~Hz}, 2 \mathrm{H}, \operatorname{allylH}(s y n)\right), 5.33\left(\mathrm{tt}, J=12.6\right.$ and $6.8 \mathrm{~Hz},{ }^{2} J_{\mathrm{PtH}}=66.6 \mathrm{~Hz}, 1 \mathrm{H}$, allylH(central)), $6.88(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 4 \mathrm{H}, o-\mathrm{Ph}), 7.03(\mathrm{t}, J=7.7 \mathrm{~Hz}, 4 \mathrm{H}, m-\mathrm{Ph}), 7.32(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $2 \mathrm{H}, p-\mathrm{Ph}), 7.71(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{PAr}), 7.72(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{PAr}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ $\left.\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 31.4\left(\mathrm{~s}, \mathrm{CMe}_{3}\right), 33.8\left(\mathrm{t}, J=4 \mathrm{~Hz}, \mathrm{CMe} e_{3}\right), 34.0(\mathrm{t}, J=4 \mathrm{~Hz}, \mathrm{CMe})_{3}\right), 36.0\left(\mathrm{~s}, C \mathrm{Ce}_{3}\right)$, $39.0\left(\mathrm{~s}, C \mathrm{Me}_{3}\right), 39.2\left(\mathrm{~s}, C \mathrm{Me}_{3}\right), 64.8\left(\mathrm{~m}, J=37 \mathrm{~Hz},{ }^{1} J_{\mathrm{PtC}}=125 \mathrm{~Hz}\right.$, allylC(1, 3)), $115.5(\mathrm{t}, J=5$ $\mathrm{Hz},{ }^{1} J_{\mathrm{PtC}}=39 \mathrm{~Hz}$, allylC(2)$), 121.3\left(\mathrm{q},{ }^{1} J_{\mathrm{FC}}=321 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 124.2(\mathrm{~d}, J=5 \mathrm{~Hz}, \mathrm{PAr}), 124.2(\mathrm{~d}$, $J=5 \mathrm{~Hz}, \mathrm{PAr}), 128.5(\mathrm{t}, J=9 \mathrm{~Hz}, \mathrm{PAr}), 128.5(\mathrm{~s}, \mathrm{Ph}), 129.2(\mathrm{~s}, \mathrm{Ph}), 129.2(\mathrm{~s}, \mathrm{Ph}), 132.0(\mathrm{~s}, \mathrm{Ph})$, $152.9(\mathrm{~m}, J=57$ and $32 \mathrm{~Hz}, \mathrm{P}=\mathrm{C}), 156.3(\mathrm{~s}, \mathrm{PAr}), 157.6\left(\mathrm{~s},{ }^{2} J_{\mathrm{PtC}}=16 \mathrm{~Hz}, \mathrm{PAr}\right), 158.0\left(\mathrm{~s},{ }^{2} J_{\mathrm{PtC}}=\right.$ $14 \mathrm{~Hz}, \mathrm{PAr}), 174.2(\mathrm{dd}, J=67$ and $12 \mathrm{~Hz}, \mathrm{P}=\mathrm{C}-C) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 133.6\left(\mathrm{~s},{ }^{1} J_{\mathrm{PtP}}\right.$ $=4549 \mathrm{~Hz}$). Anal. Calcd for $\mathrm{C}_{56} \mathrm{H}_{73} \mathrm{~F}_{3} \mathrm{O}_{3} \mathrm{P}_{2}$ SPt: C, $58.98 ; \mathrm{H}, 6.45$. Found: C, $58.35 ; \mathrm{H}, 6.49$

Preparation of $\left[\mathbf{P d}\left(\boldsymbol{\eta}^{\mathbf{3}}-\mathbf{C}_{\mathbf{3}} \mathbf{H}_{\mathbf{5}}\right)(\mathbf{D P C B})\right]^{+} \mathbf{O T f}{ }^{-}(\mathbf{1 b})$. The complex $\mathrm{PdMe}(\mathrm{OTf})(\mathrm{DPCB})$ (6) $)^{2}(51.3 \mathrm{mg}, 50 \mathrm{mmol})$ was placed in a Schlenk tube and dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 mL ; pretreated with water) at room temperature. 2-Propenyl alcohol ($4.1 \mathrm{~mL}, 60 \mathrm{mmol}$) and dimethylphenylsilane ($7.7 \mathrm{~mL}, 50 \mathrm{mmol}$) were successively added. The color of the solution instantly changed from orange to red. GLC analysis revealed the formation of methane (qualitative) and $\mathrm{PhMe}_{2} \mathrm{SiOSiMe}_{2} \mathrm{Ph}(25 \mathrm{mmol})$ in the system. The reaction solution was filtered through a filter-paper-tipped cannula and concentrated to dryness to give a yellow powder of $\mathbf{1 b}(32.6 \mathrm{mg}, 62 \%)$, which showed the NMR data identical with the authentic sample. ${ }^{1}$

References and Notes

(1) Minami, T.; Okamoto, H.; Ikeda, S.; Tanaka, R.; Ozawa, F.; Yoshifuji, M. Angew. Chem., Int. Ed. Engl. 2001, 40, 4501.
(2) (a) Ikeda, S.; Ohhata, F.; Miyoshi, M.; Tanaka, R.; Minami, T.; Ozawa, F.; Yoshifuji, M. Angew. Chem. Int. Ed. 2000, 39, 4512. (b) Ozawa, F.; Yamamoto, S.; Kawagishi, S.; Hiraoka, M.; Ikeda, S.; Minami, T.; Ito, S.; Yoshifuji, M. Chem. Lett. 2001, 972.
(3) The vinylic proton signals of the (Z)-isomer were obscured due to overlap with those of the (E)-isomer. However, the presence of the (Z)-isomer was clearly indicated by GLC and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy.
(4) Kwong, F. Y.; Klapars, A.; Buchwald, S. L. Org. Lett. 2002, 4, 581.
(5) Reetz, M. T.; Drewes, M. W.; Schwickardi, R. Org. Synth. 1998, 76, 110.

