Supporting Information
Dynamics and Fluidity of Amyloid Fibrils: A Model of Fibrous Protein Aggregates
Ami S. Lakdawala, David M. Morgan, Dennis C. Liotta, David G. Lynn, James P. Snyder

## Relationship of Peptide Length to Ideal $\boldsymbol{\beta}$-sheet Geometry

| Residues | AMBER* $\Delta \mathbf{E}^{\mathbf{a}}(\mathrm{kcal} / \mathrm{mol})$ | $\begin{gathered} \text { B3LYP/6-31G*** } \\ \Delta \mathbf{E}^{\text {a }}(\mathrm{kcal} / \mathrm{mol}) \end{gathered}$ |
| :---: | :---: | :---: |
| ${ }^{16} \mathrm{KL}$ | 3.95 | 3.75 |
| ${ }^{16} \mathrm{KLV}$ | 4.43 | 4.09 |
| ${ }^{16} \mathrm{KLVF}$ | 6.96 | 7.41 |
| ${ }^{16} \mathrm{KLVFF}$ | 9.48 | 8.94 |
| ${ }^{16}$ KLVFFA | 11.29 | - |

${ }^{\mathrm{a}} \Delta \mathrm{E}=($ constrained geometry $)-($ unconstrained geometry $)$


Figure S1. Plot of the energy differences between fully optimized peptides and their idealized $\beta$-strand geometries ( $\Delta \mathrm{E}$ (constrained-unconstrained)) for the di-, tri-, tetra-, penta- and hexapeptides from KLVFFA; AMBER $* / G B S A / \mathrm{H}_{2} \mathrm{O}$ force field; Slope $=2.0 \mathrm{kcal} / \mathrm{mol}$.


Figure S2. Plot of the energy differences between fully optimized peptides and their idealized $\beta$-strand geometries ( $\Delta \mathrm{E}$ (constrained-unconstrained)) for the di-, tri-, tetra-, pentapeptides from KLVFFA; B3LYP/6-31G** single point; Slope $=1.9 \mathrm{kcal} / \mathrm{mol}$.

