Supporting Information

Structure-Based Analysis and Optimization of a Highly Enantioselective Catalyst for the Strecker Reaction

Petr Vachal and Eric N. Jacobsen*
Harvard University, Department of Chemistry and Chemical Biology
Cambridge, MA 02138

General: Boc-L-tert-leucine was purchased from Fluka, O-Benztriazole-1-N,N,N', N'tetraethyluronium hexafluorophosphate (HBTU) from Advanced ChemTech, (S)-N-tert-Butoxycarbonyl-2-amino-3-methyl-3-phenylbutyric acid tert-butylamine salt was purchased from ChiroTech; unless stated otherwise, all other chemicals were purchased from Aldrich or Alfa Aesar and used without purification. (R, R)-1,2-Diaminocyclohexane was resolved by literature methods. ${ }^{1}$ Imine substrates and Strecker adducts were prepared according to published procedures. ${ }^{2}{ }^{15} N$-Benzylamine for the synthesis of isotopically labeled ${ }^{15} \mathrm{~N}$-2,2-dimethylpropylidene benzylamine was prepared in two steps from ${ }^{15} \mathrm{~N}$ amonium chloride according to literature procedure. ${ }^{3}$ 2-Hydroxy-5-pivaloyloxy-3-tertbutylbenzaldehyde was prepared according to published procedure. ${ }^{2}$

General Procedure for the Preparation of the Urea Catalysts (Illustrated for $\mathbf{1})^{4}$

Coupling of Boc-L-tert-leucine with benzylamine, followed by deprotection: A $1000-\mathrm{mL}$ round bottom flask equipped with a stirbar was charged with $5.00 \mathrm{~g}(21.6$ $\mathrm{mmol})$ of Boc-L-tert-leucine. Dichloromethane (170 mL) and HBTU ($8.21 \mathrm{~g}, 1.0 \mathrm{eq}$.) were added with stirring. After 2 min , DIPEA ($7.55 \mathrm{~mL}, 2$ eq.) and benzylamine (2.37
$\mathrm{mL}, 1.0$ eq.) were added sequentially and the reaction was stirred for 90 min . The mixture was combined with dichloromethane (250 mL) and water (250 mL) and the organic layer was separated, washed three times with $1 N$ hydrochloric acid (250 mL), and dried over sodium sulfate. Solvents were removed in vacuo to afford crude Boc-protected amide as colorless oil. The oil was dissolved in dichloromethane (110 mL); then trifluoroacetic acid ($25 \mathrm{~mL}, 15 \mathrm{eq}$.) was added in one portion and the reaction was stirred at rt for 1 hour. The reaction mixture was then cooled to $0^{\circ} \mathrm{C}$ and a 20% aqueous solution of sodium carbonate (250 mL) was added slowly. The resulting biphasic mixture was transferred to a separatory funnel, diluted with chloroform (140 mL), and the organic and aqueous layers were separated. The organic layer was washed with a 20% aqueous solution of sodium carbonate (250 mL). The combined aqueous layers were washed with chloroform ($3 \times 150 \mathrm{~mL}$). All organic phases were combined, dried over sodium sulfate and concentrated to afford a mixture of product and tetramethylurea as a white solid (4.71 $\mathrm{g}, 21.4 \mathrm{mmol}, 99 \%$ over two steps based on crude mass and ${ }^{1} \mathrm{H}$ NMR analysis). The mixture was carried on to the next step without further purification. The spectral properties are as follows: mp 53-54 ${ }^{\circ} \mathrm{C}$: IR (KBr) $3303,1650 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.33(\mathrm{~m}, 5 \mathrm{H}), 7.05(\mathrm{~s}, 1 \mathrm{H}), 4.45(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H})$, $3.14(\mathrm{~s}, 1 \mathrm{H}), 1.41(\mathrm{~s}, 2 \mathrm{H}), 1.01(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left\{{ }^{1} \mathrm{H}\right\}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.4$, $138.5,128.5,127.8,127.3,64.3,43.0,34.1,26.7$; HRMS (M + H) calcd 221.1654, obsd 221.1658 .

Carbamate and urea formation: A $500 \mathrm{~mL}-$ round-bottom flask equipped with a stir bar was flame-dried and charged with the entire amount of crude amine obtained from the previous step $(4.71 \mathrm{~g}, 21.4 \mathrm{mmol})$ dissolved in freshly distilled dichloromethane (50 mL). Freshly distilled pyridine ($3.49 \mathrm{~mL}, 2$ equiv.) was added via syringe to the stirred solution; after 2 min , 4-nitrophenylchloroformate ($4.44 \mathrm{~g}, 1.02$ equiv.) was added in one portion. After the reaction was stirred for $10 \mathrm{~min},(R, R)-1,2$-diaminocyclohexane ($7.40 \mathrm{~g}, 3$ equiv.) was added in one portion, followed by addition of DIPEA ($4.2 \mathrm{~mL}, 1.1$ equiv.) via syringe, and the reaction mixture was stirred for an additional 10 min . The resulting mixture was then combined with dichloromethane (500 mL) and 0.5 M sodium hydroxide solution (120 mL). The organic layer was separated, washed with another portion of 0.5 M sodium hydroxide solution (120 mL), and dried over sodium sulfate. The organic layer was concentrated to afford viscous oil, which was suspended in hexanes (500 mL). The resulting mixture was allowed to stand for 30 min , and then filtered, with the collected solids then washed with ($3 \times 125 \mathrm{~mL}$) hexanes. The product was obtained as a white powder ($6.25 \mathrm{~g}, 17.3 \mathrm{mmol}, 82 \%$ yield over 2 steps) with no impurities detectable by ${ }^{1} \mathrm{H}$ NMR analysis (for some urea catalysts, the amine product was purified by flash chromatography on silica gel; eluent: 2 M solution of amonia in methanol/dichloromethane $=1 / 9$): IR (thin film) 3284, 2934, 2858, 1631, $1555 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.28(\mathrm{~m}, 5 \mathrm{H}), 7.08(\mathrm{~s}, 1 \mathrm{H}), 6.11(\mathrm{~s}, 1 \mathrm{H}), 5.31(\mathrm{~s}, 1 \mathrm{H}), 4.48$ $\left(\mathrm{dd}, J_{1}=14.9 \mathrm{~Hz}, J_{2}=6.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.26\left(\mathrm{dd}, J_{1}=14.9 \mathrm{~Hz}, J_{2}=5.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.20(\mathrm{~d}, J=$ $8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{~m}, 1 \mathrm{H}), 2.31(\mathrm{~m}, 1 \mathrm{H}), 1.98(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.85(\mathrm{~m}, 2 \mathrm{H}), 1.68(\mathrm{~d}$, $J=11.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.16(\mathrm{~m}, 5 \mathrm{H}), 1.03(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left\{{ }^{1} \mathrm{H}\right\}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.7$, $159.0,138.5,128.5,127.5,127.1,61.3,57.0,55.1,43.1,35.0,34.7,33.4,27.1,25.3,25.1$.

Schiff base formation: A 1L-round-bottom flask equipped with a stirbar was charged with 6.25 g of amine prepared in the previous step and anhydrous methanol (40 mL) was added with stirring. Once the solution became homogeneous, sodium sulfate
$(10 \mathrm{~g})$ was added. In a separate flask, 2-hydroxy-5-pivaloyloxy-3-tert-butylbenzaldehyde ($4.73 \mathrm{~g}, 0.98$ eq.) was dissolved in anhydrous methanol (40 mL), then transferred to the reaction mixture. An additional 30 mL of methanol was used to effect quantitative transfer of the aldehyde into the reaction mixture. The reaction mixture was stirred for 90 min, then concentrated under reduced pressure with the sodium sulfate still present. The resulting mixture was combined with hexanes $(250 \mathrm{~mL})$ and filtered through a Buchner funnel, and the solids were rinsed with hexanes $(250 \mathrm{~mL})$. The filtrate was concentrated under reduced pressure to yield 10.55 g of 1 as a yellow solid ($17.0 \mathrm{mmol}, 98 \%$ yield, 80% overall yield from Boc-L-tert-leucine): IR (KBr) 3309, 2960, 1752, 1684, 1550, 1437, 1270, 1150, $1116 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 14.32(\mathrm{~s}, 1 \mathrm{H}), 8.08(\mathrm{~s}, 1 \mathrm{H})$, $7.23(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~m}, 2 \mathrm{H}), 7.08(\mathrm{~m}, 2 \mathrm{H}), 7.02(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{t}, J=$ $7.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~m}, 1 \mathrm{H}), 5.63(\mathrm{~m}, 1 \mathrm{H}), 4.59(\mathrm{~m}, 1 \mathrm{H}), 4.37(\mathrm{dd}, J=14.8,6.6 \mathrm{~Hz}, 1 \mathrm{H})$, $4.29(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{dd}, J=14.8,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{~m}, 1 \mathrm{H}), 3.15(\mathrm{~m}, 1 \mathrm{H}), 1.95$ $(\mathrm{m}, 1 \mathrm{H}), 1.68-1.0(\mathrm{~m}, 7 \mathrm{H}), 1.51(\mathrm{~s}, 9 \mathrm{H}), 1.30(\mathrm{~s}, 9 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left\{{ }^{1} \mathrm{H}\right\}(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 177.4,172.0,164.3,158.1,157.7,141.7,138.5,130.1,128.4,127.4$, 127.1, 122.6, 121.2, 118.1, 70.3, 61.5, 54.0, 43.1, 38.9, 34.8, 34.7, 31.5, 29.1, 27.1, 26.7, 24.2, 23.6, 22.6; HRMS (ES) (M) ${ }^{+}$calcd 621.4016, obsd 621.3986.

2: Catalyst was prepared in 50% overall yield according to the general procedure for the synthesis of urea catalysts. The spectral properties are as follows: IR (thin film) 3368, $1750,1633,1550 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.22(\mathrm{~s}, 1 \mathrm{H}), 8.22(\mathrm{~s}, 1 \mathrm{H}), 7.24$ $(\mathrm{m}, 3 \mathrm{H}), 7.14(\mathrm{~m}, 2 \mathrm{H}), 6.94(\mathrm{~d}, J=6 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~d}, J=6 \mathrm{~Hz}, 1 \mathrm{H}), 5.38(\mathrm{~d}, J=9 \mathrm{~Hz}$, $1 \mathrm{H}), 5.33(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{~m}, 1 \mathrm{H}), 4.70(\mathrm{~m}, 1 \mathrm{H}), 4.38(\mathrm{~d}, J=15 \mathrm{~Hz}, 0.3 \mathrm{H}), 4.10$ (d, $J=15 \mathrm{~Hz}, 0.7 \mathrm{H}), 3.34(\mathrm{~m}, 1 \mathrm{H}), 3.17(\mathrm{~m}, 1 \mathrm{H}), 2.91(\mathrm{~s}, 0.7 \mathrm{x} 3 \mathrm{H}), 2.79(\mathrm{~s}, 0.3 \times 3 \mathrm{H}), 1.99$ $(\mathrm{d}, J=12 \mathrm{~Hz}, 1 \mathrm{H}), 1.81(\mathrm{~d}, 12 \mathrm{~Hz}, 1 \mathrm{H}), 1.69(\mathrm{~m}, 2 \mathrm{H}), 1.21-1.50(\mathrm{~m}, 4 \mathrm{H}), 1.40(\mathrm{~s}, 0.7 \mathrm{x} 9 \mathrm{H})$, $1.39(\mathrm{~s}, 0.3 \mathrm{x} 9 \mathrm{H}), 1.34(\mathrm{~s}, 0.7 \mathrm{x} 9 \mathrm{H}), 1.33(\mathrm{~s}, 0.3 \mathrm{x} 9 \mathrm{H}), 0.91(\mathrm{~s}, 0.7 \mathrm{x} 9 \mathrm{H}), 0.86(\mathrm{~s}, 0.3 \mathrm{x} 9 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left\{{ }^{1} \mathrm{H}\right\}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 177.4,173.01,164.1,158.2,141.8,138.6,136.9$, $129.9,128.2,128.1,127.8,127.3,126.4,122.6,121.2,118.2,72.0,69.0,55.2,49.2,38.9$, $36.4,36.2,34.9,33.2,31.5,29.2,27.2,24.2,23.8 ; \mathrm{MS}(\mathrm{MH})^{+} 635.6$.

3: Catalyst was prepared in 34% overall yield according to the general procedure for the synthesis of urea catalysts. The spectral properties are as follows: IR (thin film) 3370, $1748,1632,1550,1438 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.78(\mathrm{~s}, 1 \mathrm{H}), 8.27(\mathrm{~s}, 1 \mathrm{H})$, $7.26(\mathrm{~s}, 6 \mathrm{H}), 6.94(\mathrm{~s}, 4 \mathrm{H}), 6.94(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~s}, 1 \mathrm{H}), 5.07(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H})$, $4.88(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.77(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{~s}, 1 \mathrm{H}), 4.26(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H})$, $3.90(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{~s}, 1 \mathrm{H}), 3.23(\mathrm{~s}, 1 \mathrm{H}), 2.07(\mathrm{~s}, 1 \mathrm{H}), 1.88(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.60$ $(\mathrm{m}, 4 \mathrm{H}), 1.55-1.36(\mathrm{~m}, 2 \mathrm{H}), 1.39(\mathrm{~s}, 9 \mathrm{H}), 1.33(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left\{{ }^{1} \mathrm{H}\right\}(100$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.4,173.3,164.3,158.2$, 157.0, 128.7, 128.7, 128.1, 127.8, 127.7, $127.5,122.6,121.2,118.2,70.3,55.2,54.3,50.8,47.7,38.9,36.0,34.9,33.0,31.1,29.2$, 27.1, 26.9, 26.6, 24.4, 23.5; MS (TOF) m/z (M+H) calcd 711.4, obs 711.6.

4: Coupling with Boc-L-tert-leucine was performed using dimethylamine hydrochloride (1equiv) and DIPEA (3 equiv).

Boc deprotection: A $25-\mathrm{mL}$, round-bottomed flask equipped with a stirbar was charged with N -(tert-Butoxycarbonyl)-L-tert-Leucine N, N-dimethylamide (2.0 mmol). A

4 M solution of hydrogen chloride in 1,4-dioxane (5 mL) was added at room temperature with stirring. After 2 hours, solvents were removed in vacuo. The product was used as hydrochloric salt in the subsequent step without further purification. The subsequent steps were performed according to the general procedure for urea catalysts (3 equivalents of pyridine were used for the urea formation). The product was isolated as a yellow solid in 16% overall yield. The spectral properties are as follows: IR (thin film) 3400, 1750, 1633, 1557, $1437 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.72(\mathrm{~s}, 1 \mathrm{H}), 8.27(\mathrm{~s}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=$ $2.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~s}, 1 \mathrm{H}), 4.65(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{~s}, 1 \mathrm{H})$, $3.55(\mathrm{~s}, 1 \mathrm{H}), 3.13(\mathrm{~m}, 1 \mathrm{H}), 2.99(\mathrm{~s}, 3 \mathrm{H}), 2.82(\mathrm{~s}, 3 \mathrm{H}), 2.12-2.07(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.84(\mathrm{~m}$, $1 \mathrm{H}), 1.82-1.62(\mathrm{~m}, 4 \mathrm{H}), 1.44-1.34(\mathrm{~m}, 2 \mathrm{H}), 1.40(\mathrm{~s}, 9 \mathrm{H}), 1.34(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left\{{ }^{1} \mathrm{H}\right\}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 177.4,172.7,164.0,158.2,157.2,141.7,138.5,122.5$, $121.1,118.2,71.3,54.9,54.1,38.9,38.2,35.6,35.5,34.8,33.2,31.6,29.2,27.1,26.4$, 24.6, 23.8; MS (TOF) m/z (M+H) calcd 559.4, obs 559.5.

5: The catalyst was prepared in 31% overall yield from the Boc-amino acid salt (3 equiv. of DIPEA used for the initial coupling), using the general synthetic protocol for the urea catalysts. The spectral properties of the yellow product are as follows: IR (thin film) 2934, 1751, 1632, 1549, $1439 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.72(\mathrm{~s}, 1 \mathrm{H}), 8.31(\mathrm{~s}$, $1 \mathrm{H}), 7.37$ (d, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.26$ (t, $J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.93$ (d, $J=$ $2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~s}, 1 \mathrm{H}), 5.24(\mathrm{~s}, 1 \mathrm{H}), 4.86(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{~s}, 1 \mathrm{H}), 3.56(\mathrm{~m}$, $1 \mathrm{H}), 3.19(\mathrm{~m}, 1 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H}), 3.09(\mathrm{~s}, 3 \mathrm{H}), 1.89(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.77(\mathrm{~m}, 3 \mathrm{H})$, $1.67(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.48-1.33(\mathrm{~m}, 3 \mathrm{H}), 1.39(\mathrm{~s}, 9 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{~s}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left\{{ }^{1} \mathrm{H}\right\}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 177.4,171.7,164.1,158.2,157.1,145.9,141.7,138.6$, $127.9,126.8,126.4,122.6,121.1,118.2,71.4,56.1,54.3,42.5,38.9,36.7,35.1,34.9$, $33.3,31.6,29.2,27.1,26.4,24.7,23.8,22.4$; MS (TOF) m/z (M+H) calcd 621.4, obs 621.3.

Synthesis of catalyst 6:

Coupling of Boc-L-tert-leucine with benzylamine, followed by deprotection was performed according to the procedure described for the preparation of 4.

Thiourea formation: ${ }^{5}$ A 500 mL -round bottom flask equipped with a stir bar was charged with $1.86 \mathrm{~g}(9.54 \mathrm{mmol})$ of crude amine hydrochloride from the deprotection step. To this mixture dichloromethane (50 mL), and saturated aqueous solution of sodium bicarbonate was added. The biphasic mixture is cooled to $0^{\circ} \mathrm{C}$ and neat thiophosgene ($0.80 \mathrm{~mL}, 1.1$ equiv.) was added via syringe with vigorous stirring. The reaction mixture was vigorously stirred at $0^{\circ} \mathrm{C}$ for additional 30 min , the organic layer was separated, dried over sodium sulfate, and concentrated in vacuo to afford isothiocynate used immediately without purification. The crude isothiocyanate was dissolved in freshly distilled dichloromethane (30 mL) and (R, R)-1,2-diaminocyclohexane ($1.20 \mathrm{~g}, 1.1$ equiv.) was added in one portion. The reaction mixture was allowed to stir at room temperature for 30 min and concentrated in vacuo. Crude product was purified by flash chromatography on silica gel (Eluent: 2 M solution of ammonia in methanol/dichloromethane $=1 / 9$, stain with ninhydrine) to afford $2.13 \mathrm{~g}(75 \%$ overall from Boc-L-tert-leucine) of pure amine.

Schiff base formation was performed according to the general procedure for the preparation of urea catalysts (1.00 equivalents of aldehyde used). Catalyst $\mathbf{6}$ was isolated as a yellow solid in 75% overall yield (form Boc-L-tert-leucine). The spectral properties are as follows: IR (thin film) $3293,1750,1630,1535 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $13.55(\mathrm{~s}, 1 \mathrm{H}), 8.23(\mathrm{~s}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{~s}, 1 \mathrm{H})$, $6.44(\mathrm{~d}, J=7 \mathrm{~Hz}, 1 \mathrm{H}), 5.56(\mathrm{~d}, J=9 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~m}, 1 \mathrm{H}), 3.18(\mathrm{~s}, 3 \mathrm{H}), 3.11(\mathrm{td}, J=2$, $8 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{~s}, 3 \mathrm{H}), 2.09(\mathrm{~m}, 1 \mathrm{H}), 1.88(\mathrm{~m}, 1 \mathrm{H}), 1.71(\mathrm{~m}, 3 \mathrm{H}), 1.25-1.44(\mathrm{~m}, 3 \mathrm{H}), 1.40$ (s, 9H), $1.34(\mathrm{~s}, 9 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left\{{ }^{1} \mathrm{H}\right\}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 177.6,172.0$, 165.0, 157.9, 141.9, 135.5, 123.0, 121.6, 118.2, 60.4, 38.9, 38.4, 36.0, 35.6, 34.9, 29.2, 27.2, 26.6; MS (MH)+ 575.6.

Asymmetric Strecker reaction of model imine substrate:

A flame-dried 10 mL -round-bottom flask equipped with a stir bar was charged with 0.003 mmol of a catalyst (0.01 equiv.), 2.5 mL of toluene, and imine (0.3 mmol). The reaction was stirred at ambient temperature until catalyst completely dissolved and then cooled below $-70^{\circ} \mathrm{C}$ by means of a constant temperature bath. A flame-dried 5 mL -recoveryflask was equipped with a stir bar and charged with freshly distilled toluene (0.5 mL) and $50 \mu \mathrm{~L}$ TMSCN (1.25 equiv.). The mixture was cooled to $0^{\circ} \mathrm{C}$; to this solution $15 \mu \mathrm{~L}$ of anhydrous methanol (1.25 equiv.) was added via syringe; the solution was allowed to stir at $0^{\circ} \mathrm{C}$ for 2 h and then added to reaction flask containing catalyst and substrate by a syringe addition at $-78^{\circ} \mathrm{C}$. After 15 h , a sample was transferred into a precooled vial via a precooled syringe and the solvents were removed under reduced pressure at low temperature to ensure no reaction progress during this operation. The conversion of the Strecker reaction was determined by ${ }^{1} \mathrm{H}$ NMR (product/imine). To the NMR sample, an
excess of TFAA (approx. 5 equiv.) was added at room temperature in one portion and the resulting trifluoroacetamide of the Strecker adduct was analyzed by chiral GC ananlysis. ${ }^{2}$

Identification of the active site of the catalyst: Several derivatives of 1 were prepared and tested as catalyst in the asymmetric Strecker reaction of N-(2,2-dimethylpropylidene) benzylamine; the screen was conducted according to the general procedure given for N isobutylene benzylamine. The results and comments are summarized in the following Table:

C, $R^{1}=H, R^{2}=M e$
D, $R^{1}=M e, R^{2}=H$

Entry	Catalyst	Conv. $^{a}(\%)$	Ee (\%)	Comments
1	$\mathbf{1}$	>99	95.6	
2	$\mathbf{2}$	>99	96.4	$\mathbf{2}$ even better catalyst than $\mathbf{1} \rightarrow$ amide H not active site
3	\mathbf{A}	>99	85	Ee declines from $\mathbf{1}$ (not surprise: weaker H-bond, etc.)
4	\mathbf{B}	>99	88	B better catalyst than $\mathbf{A} \rightarrow$ phenol H not active site
5	\mathbf{C}	83	13	C and \mathbf{D} are significantly worse catalysts than $\mathbf{1} \rightarrow$ \rightarrow urea H(s) are important for both rate and ee; might be the active site
6	\mathbf{D}	46	27	

a : in 15 h at $-78^{\circ} \mathrm{C}$

Kinetics, General: Reaction kinetics were investigated using an ASI 1000 React-IR ${ }^{\mathrm{TM}}$ instrument equipped with a silicon probe. The probe was dried by heating with a heat gun $\left(<200^{\circ} \mathrm{C}\right)$ and allowed to cool under nitrogen atmosphere prior to each run to ensure reproducible results. Rate dependence on the concentration of each reagent was investigated under pseudo-constant concentration of remaining reagents by monitoring the change of the initial rate (10% conversion) as a function of investigated reagent concentration. The Strecker reaction was conducted by the means of the general protocol given for the testing of catalyst derivatives. The observed dependence on the concentration of each reagent is given bellow (Charts 1-3). Saturation kinetics in imine substrate was confirmed by Lineweaver Burk plot (Chart 4):

Saturation Kinetics in Imine

Lineweaver Burk Plot for Imine

NMR Spectroscopy, General: All experiments were performed using instruments equipped with a Brucker magnet and Varian software. Experiments at room temperature $\left(20^{\circ} \mathrm{C}\right.$, regulated) were performed using INOVA 600 MHz instrument. Low temperature (regulated) experiments were performed using INOVA 500 MHz , or MERCURY 400 MHz instruments equipped with an external thermostat filled with liquid nitrogen. All NMR solvents were purchased from Cambridge Isotope Laboratories and used as received. Prior to the ROESY and NOE experiments, the NMR sample was degassed with nitrogen for 10 min .

Catalyst 1:

Assignment of H-signals in relevant solvents (THF and dioxane) for ${ }^{1} H$ NMR was accomplished by COSY connectivity experiments; tBuPiv, tBuAr, ArHa, and ArHb were assign based on their NOE interactions (NOESY, ROESY):

10 mM 1 in d_{8}-dioxane:

10 mM 1 in d_{8}-THF:

Determination of the correct mixing time for 2D-ROESY experiments was accomplished by monitoring of NOE build-up curves ($\mathrm{mix}=30-600 \mathrm{~ms}$) for significant xpeaks in ROESY. Charts below show selected xpeaks for 10 mM 1 in d_{8}-dioxane (determined as 120 ms) and 50 mM 1 in d_{8}-THF (determined as 160 ms ; unchanged when imine substrate was present); other conditions: $\mathrm{i} 600, \mathrm{~d} 1=2 \mathrm{~s}, \mathrm{t}=20^{\circ} \mathrm{C}$ (regulated), $\mathrm{nt}=4, \mathrm{ni}=350$, $\mathrm{sw}=9000$.

NOE buildup curves (ROESY): 50 mM 1 in THF

Determination of the correct mixing time for NOESY, and NOESY1D experiments was accomplished by monitoring NOE build up curves for significant xpeaks in NOESY experiment. Chart below shows selected xpeaks for 50 mM 1 in d_{8}-THF (determined as 160 ms ; unchanged if imine substrate was present); other conditions: $1600, \mathrm{~d} 1=2 \mathrm{~s}, \mathrm{t}=20^{\circ} \mathrm{C}$ (regulated), $n t=4, n i=350, \mathrm{sw}=9000$.

NOE build up curves (NOESY): 50mM 1 in THF

ROESY Experiment, 50 mM 1 in $\mathrm{d}_{8}-T H F, 20^{\circ} \mathrm{C}$ (regulated), $\mathrm{i} 600, \mathrm{~d} 1=1 \mathrm{~s}, \mathrm{ni}=1 \mathrm{~K}, \mathrm{sw}=9000$, $\mathrm{nt}=16$, mix $=160 \mathrm{~ms}$; distance in \AA, compare to calculations (MM2):

Peak1	Peak 2	Xpeak	distance, \dot{A}	distance, \dot{A}
		(ROESY)	(computation)	
Phenol	Imine	0.18	3.8	3.9
Phenol	UreaHa	0.09	4.2	4.3
Phenol	CHHa	0.074	4.4	4.0
Phenol	tBuAr	0.351	3.4	4.0
Imine	ArHa	2.26	define as 2.46 (law of cosine)	
Imine	UreaHa	0.242	3.6	3.6
Imine	CHHa	0.714	3.0	2.7
Imine	CHHj	4.15	2.2	2.4
Imine	tBuAA	0.577	3.1	3.5
Amide	$\alpha-H$	4.13	2.2	2.2
Amide	tBuAA	1.71	2.6	3.7
ArHb	tBuAr	4.61	2.2	2.1
ArHa	tBuAr	3.57	2.3	2.4
UreaHb	UreaHa	3.325	2.3	2.3
UreaHb	tBuAA	3.04	2.3	2.4

UreaHa	CHHa	1.021	2.8	2.8
UreaHa	CHHj	0.959	2.8	2.9
$\alpha-\mathrm{H}$	tBuAA	5.16	2.1	2.3
BnHb	BnHa	3.685	mix w/ cosy	2.2

ROESY Experiment, 10 mM 1 in d_{8}-dioxane, $20^{\circ} \mathrm{C}$ (regulated), i 600 , $\mathrm{d} 1=1 \mathrm{~s}, \mathrm{ni}=1 \mathrm{~K}$, $\mathrm{sw}=9000, \mathrm{nt}=16$, $\mathrm{mix}=120 \mathrm{~ms}$:

Peak 1	Peak 2	ROESY xpeak volume
Phenol (14.07)	tBu-Ar (1.38)	0.74519854
Phenol (14.07)	CH-Ha (3.38)	1.684133
Phenol (14.07)	Urea-Ha (5.43)	0.200816
Phenol (14.07)	Imine (8.29)	0.97271824
Imine (8.29)	tBu-AA (0.87)	1.7759821
Imine (8.29)	CH-Hb (1.87)	1.97931078
Imine (8.29)	CH-Ha (3.38)	7.86
Imine (8.29)	CH-Hj (3.42)	18.64
Imine (8.29)	Urea-Ha (5.43)	1.442701
Imine (8.29)	Ar-Ha (6.84)	14.717
Imine (8.29)	Ar-Hb (6.92)	5.18
Amid (7.29)	tBu-AA (0.87)	8.62042714
Amid (7.29)	a-H (3.96)	26.14315296
Amid (7.29)	Bn-Hb (4.4)	3.20317565
Phenyl (7.17-7.26)	tBu-AA (0.87)	6.48191987
$\mathrm{Ar}-\mathrm{Hb}$ (6.92)	tBu-AA (0.87)	2.44275541
Ar-Hb (6.92)	tBu-Ar (1.38)	37.73484386
Ar-Ha (6.84)	tBu-AA (0.87)	4.06189233
Ar-Ha (6.84)	tBu-Ar (1.38)	15.2834654
Urea-Hb (5.49)	tBu-AA (0.87)	15.27080143
Urea-Hb (5.49)	a-H (3.96)	3.77627491
Urea-Hb (5.49)	Urea-Ha (5.43)	15
Urea-Ha (5.43)	tBu-AA (0.87)	2.8687825
Urea-Ha (5.43)	CH-Hc-h (1.63)/ CH-Hc-h (1.70)	3.69794199
Urea-Ha (5.43)	CH-Ha (3.38)	7.04332542
Urea-Ha (5.43)	CH-Hj (3.42)	6.04332542
a-H (3.96)	tBu-AA (0.87)	22.81397889
CH-Hj (3.42)	tBu-Ar (1.38) or CH	7.24282364
CH-Hj (3.42)	CH-Hb (1.87)	5.1718353
CH-Hj (3.42)	CH-Hi (1.98)	0.5
CH-Ha (3.38)	tBu-Ar (1.38) or CH	5.23395427
CH-Ha (3.38)	CH-Hb (1.87)	0.5000001
CH-Ha (3.38)	CH-Hi (1.98)	5.21282502

CH-Hd-g (1.75)	tBu-Ar (1.38) or CH	53.46867114
CH-Hc-h (1.70)	tBu-Ar (1.38) or CH	49.25715698

NOESY1D Experiments, 70mM 1 in $\mathrm{d}_{8}-\mathrm{THF}, 20^{\circ} \mathrm{C}$ (regulated), i 600 , $\mathrm{d} 1=1 \mathrm{~s}, \mathrm{ni}=1 \mathrm{~K}$, $\mathrm{sw}=9000$, nt $=4000-7000$, mix $=300 \mathrm{~ms}$ (presence of 3,4 -dihydroisoquinoline did not have an influence on the magnitude of intramolecular xpeaks; same relative volumes observed):

			$\begin{array}{\|l} \stackrel{.0}{0} \\ \stackrel{\rightharpoonup}{\epsilon} \end{array}$		$\begin{array}{\|l} \text { 우 } \\ \frac{1}{⿺} \end{array}$	$\begin{array}{\|l\|l\|} \stackrel{\widetilde{T}}{\dot{<}} \\ \hline \end{array}$			I		$\left\lvert\, \begin{aligned} & \underset{\sim}{\widetilde{1}} \\ & \underset{\sim}{5} \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \frac{\mathbb{T}}{\mathbf{T}} \\ & \mathbf{T} \end{aligned}\right.$	$\mid \underset{\text { I }}{\mathbf{I}}$	$\begin{aligned} & \text { 울 } \\ & \text { 저 } \end{aligned}$	$\mid \stackrel{\overline{1}}{\bar{\top}}$		$\left\lvert\, \begin{aligned} & \geq \geq \\ & \stackrel{\geq}{n} \\ & \stackrel{\rightharpoonup}{2} \end{aligned}\right.$	宕
Phenol		0.20														0.99		
Imine	0.19					1.28		0.10				0.24	1.50					0.17
Amide				0.38			0.01		1.66									
ArHb		0.09														4.15	0.13	
ArHa	0.01	0.99														0.05	0.09	0.14
UreaHb		0.10																1.73
UreaHa		0.27										0.86	0.71					
$\alpha-\mathrm{H}$			1.09															2.11
BnHb				0.41												0.03		0.11
BnHa				0.46	0.03											0.03		0.05
CHHa	0.05	0.25						0.64						0.80				
CHHj	0.04	1.67						0.42							0.82			
CHHb		0.02						0.29				1.14	0.24					
CHHi	0.01	0.27										0.22	1.07					
tBuAr	0.06				0.99													
tBuPiv					0.01	0.01										0.14		0.16
tBuAA		0.05	0.12	0.10		0.01	0.34		0.69	0.12	0.15					0.14	0.16	

Intermolecular xpeaks between catalyst 1 and 3,4-dihydroisoquinoline. The xpeaks were observed in NOESY1D experiment, $20^{\circ} \mathrm{C}$ (regulated), $\mathrm{nt}=4000-12000$, $\mathrm{d} 1=0.1-1 \mathrm{~s}$, $\mathrm{sw}=9000,70 \mathrm{mM} 1$ and 330 mM in 3,4 -dihydroisoquinoline in d_{8}-THF. Since correct mixing time was not established for catalyst/substrate complex, reported xpeak volumes should be considered as qualitative, not quantitative measure of the distance. Following Figure shows important intermolecular xpeaks; integrated values are given in the Table:

Intermolecular xpeak volume:

	H 1	H 3	H 4
Phenol			
Imine	0.01		
Amide	0.05	0.10	
ArHb	0.02		
ArHa	0.07		
UreaHb	0.12		
UreaHa	0.10		
$\alpha-\mathrm{H}$	0.07	0.08	
BnHb		0.10	
BnHa	0.01	0.03	
CHHa	0.01		
CHHj	0.03	0.02	
CHHb			
CHHi			
tBuAr			
tBuPiv			
tBuAA	0.12	0.13	0.18

Intermolecular xpeaks between catalyst 1 and a Z-Imine. The xpeaks were observed in NOESY1D experiment, $20^{\circ} \mathrm{C}$ (regulated), $\mathrm{nt}=12000-25000$, $\mathrm{d} 1=0.1-1 \mathrm{~s}$, $\mathrm{sw}=9000$, 100 mM 1 and 90 mM imine (overall concentration of both isomers) in $d_{8}-\mathrm{THF}$. The intensity of the intermolecular xpeaks was low and a quantitative integration was not possible, therefore qualitative comparison is given instead; four significant xpeaks are shown in the following figure:

Catalyst 3:

Assignment of H-signals for $25 m M 3$ in $\mathrm{d}_{8}-T H F$ was accomplished by COSY connectivity experiments. tBuPiv, tBuAA, ArHa, and ArHb were assign based on NOE xpeaks (ROESY):

Determination of the correct mixing time for 2D-ROESY experiments was accomplished by monitoring the NOE build up curves ($\mathrm{mix}=60-400 \mathrm{~ms}$) for significant xpeaks in 2DROESY. Chart shows selected xpeaks for 25 mM 3 in d_{8}-THF (determined as 120 ms); other conditions: $\mathrm{i} 600, \mathrm{~d} 1=1.5 \mathrm{~s}, \mathrm{t}=20^{\circ} \mathrm{C}$ (regulated), $\mathrm{nt}=4, \mathrm{ni}=350$, $\mathrm{sw}=9000$.

NOE build up curves (ROESY) for 25 mM 3 in THF

ROESY Experiment, 25 mM 3 in $\mathrm{d}_{8}-\mathrm{THF}, 20^{\circ} \mathrm{C}$ (regulated), $\mathrm{i} 600, \mathrm{~d} 1=1.7 \mathrm{~s}, \mathrm{ni}=1.5 \mathrm{~K}$, $\mathrm{sw}=9000$, $\mathrm{nt}=16$, $\mathrm{mix}=120 \mathrm{~ms}$; distance calculated based on the relative xpeak volume related to the standard distance in \AA; comments included for an easier data analysis:

Entry	Peak 1	Peak 2	Xpeak vol.	Dist.	Comments
1	Phenol (14.11)	$\mathrm{CHHj}(3.45)$	half of 0.402	nd	overlap
2	Phenol (14.11)	$\mathrm{CHHa} \mathrm{(3.50)}$	half of 0.402	nd	overlap
3	Phenol (14.11)	Imine (8.39)	0.1953	3.5	trivial
4	Imine (8.39)	$\mathrm{CHHc} \mathrm{\& CHHh}$ $(1.61-1.71)$	0.212	3.4	trivial
5	Imine (8.39)	$\mathrm{CHHi}(1.90)$	0.304	3.2	sets imine-CH ring
6	Imine (8.39)	$\mathrm{CHHj}(3.45)$	2.53	2.3	conformation
(Entries 5-8)					

15	Phenyl (7.15-7.27)	$\alpha-\mathrm{H}(4.85)$	1.544	2.4	very strong --> hindered face
16	ArHb (6.94)	tBuAr (1.37)	4.917	2.0	trivial
17	ArHa (6.86)	tBuAr (1.37)	2.262	2.3	trivial
18	Urea Hb (5.76)	tBuAA (0.87)	2.4833	2.3	trivial
19	Urea Hb (5.76)	$\alpha-\mathrm{H}(4.85)$	0.4996	3.0	trivial
20	Urea Hb (5.76)	UreaHa (5.67)	$0.617^{\text {b }}$	nd	trivial
21	UreaHa (5.67)	$\begin{aligned} & \text { CHHc\&CHHh } \\ & (1.61-1.71) \end{aligned}$	0.5958	2.9	sets Urea-CH ring
22	UreaHa (5.67)	CHHb (2.10)	0.2221	3.4	conformation
23	UreaHa (5.67)	CHHj (3.45)	$\begin{aligned} & \text { half of } \\ & 1.8166 \\ & \hline \end{aligned}$	nd	(Entries 21-24)
24	UreaHa (5.67)	CHHa (3.50)	$\begin{aligned} & \text { half of } \\ & 1.8166 \end{aligned}$	nd	
25	$\alpha-\mathrm{H}(4.85)$	tBuAA (0.87)	3.887	2.1	trivial
26	$\alpha-\mathrm{H}(4.85)$	Bn2Ha (4.41)	2.002	2.3	confirms rigidity and potential
27	$\alpha-\mathrm{H}(4.85)$	Bn2Hb (4.63)	3.636	2.1	hindrance as origin of enantios.
28	Bn 1 Hb (4.82)	Bn1Ha (4.06)	9.0699 ${ }^{\text {c }}$	nd	trivial
29	Bn2Hb (4.63)	tBuAA (0.87)	1.731	2.4	very strong --> hindered face
30	Bn 2 Hb (4.63)	Bn1Ha (4.06)	0.3832	3.1	weak -->rigid conf., hind. face
31	Bn 2 Hb (4.63)	Bn2Ha (4.41)	(-) $5.6384^{\text {c }}$	nd	trivial
32	Bn2Ha (4.41)	tBuAA (0.87)	1.276	2.5	very strong --> hindered face
33	CHHa (3.50)	CHHb (2.10)	1.2187	2.5	trivial
34	CHHj (3.45)	CHHi (1.90)	1.2007	2.6	trivial

a : volume magnified by overlap with entry $6 ; b$: volume reduced by close proximity to the diagonal peak; c : mixed with cosy.

Isotopically labeled imine experiment:
Direct evidence of binding by ${ }^{1} \mathrm{H}$ NMR: Following Figure represents two ${ }^{1} \mathrm{H}$ NMR of the mixture of catalyst $\mathbf{3}$ with 2,2-dimethylpropylidene benzylamine in d_{8}-THF printed on the top of each other. Both samples contain the same amount of 3 (0.162 M), and the same amount of imine $(0.668 \mathrm{M})$. In case of sample $1,{ }^{14} N$-imine was used (natural abundance); In case of sample $2,{ }^{15} \mathrm{~N}$-imine was used (content of ${ }^{15} \mathrm{~N}>99 \%$). Frequency (δ) of none of the protons of 1 has changed $(\Delta \delta<1 \mathrm{~Hz})$ as a function of the isotope content of the imine nitrogen, except for 2 signals: both urea-hydrogens ($\Delta \delta=$ 16.9 Hz , and 16.1 Hz). Urea region of catalyst $\mathbf{3}$ is enlarged in the offset. Since the only difference between the two samples is the content of ${ }^{15} \mathrm{~N}$ in the imine substrate, this result represented a direct evidence of imine nitrogen binding to the UreaH's portion of the catalyst.

Equilibrium between E-and Z-stereoisomers of imine substrate by NMR

The sample of α-methylnaphtylidene allylamine that coexists as a mixture of both stereoisomers was irradiated (saturated) with the frequency of the Z-isomer allylic proton in NOESY1D experiment in d_{12}-cyclohexane (top spectrum). Exchanging allylic protons of E-isomer ($\delta=4.14 \mathrm{ppm}$) and Z-isomer ($\delta=$ 3.84 ppm) had the same phase (opposite phase to the NOE xpeaks) as they underwent energy transfer due to chemical exchange. The ${ }^{1} \mathrm{H}$ NMR spectrum of the sample is provided below for clarity (Figure follows).

Computation and Modeling, General: Calculations were performed using standard computational methods. Theoretical calculations on the simplified system were performed using Gausian $98 ;{ }^{6}$ method B3LYP with many available basics sets. Reported data are consistent for all applied basic sets; data shown in Figure 2 of the text relate to 6$31 G(d, p)$ basic set in the gas phase. The strength of the hydrogen bond was calculated as a difference of the energy of the complex and each individual component with dummyatoms replacing other relevant fragments present in the complex. Calculations of the energy minimum of $\mathbf{1}$ were performed on Spartan with semi-empirical base, MM2, solvent-free as well as in hexadecane matrix. The 3D pictures of catalyst and catalyst/substrate complex were generated using Spartan and Gaussian 98 and modified in MOLMOL ${ }^{7}$ (see the text of the paper for relevant graphics).

Selected example of the resulting Z-matrix for imine-catalyst complex (N-ethylidene methylamine and N, N^{\prime}-dimethylthiourea; Figure 1a of the main text):

01						
C						
N	1	B1				
C	2	B2	1	A1		
H	2	B3	1	A2	3	D1
N	2	B4	1	A3	3	D2
C	5	B5	2	A4	1	D3
N	6	B6	5	A5	2	D4
H	7	B7	6	A6	5	D5
S	6	B8	5	A7	2	D6
C	7	B9	6	A8	5	D7
C	5	B10	2	A9	1	D8
H	1	B11	2	A10	3	D9
H	1	B12	2	A11	3	D10
H	1	B13	2	A12	3	D11
H	3	B14	2	A13	1	D12
H	11	B15	5	A14	2	D13
H	11	B16	5	A15	2	D14
H	11	B17	5	A16	2	D15
H	10	B18	7	A17	6	D16
H	10	B19	7	A18	6	D17
H	10	B20	7	A19	6	D18
C	3	B21	2	A20	1	D19
H	22	B22	3	A21	2	D20
H	22	B23	3	A22	2	D21
H	22	B24	3	A23	2	D22
B1	1.455741					
B2	1.276237					
B3	2.239701					
B4	3.182107					
B5	1.360697					
B6	1.360724					
B7	1.015077					
B8	1.689246					
B9	1.449707					
B10	1.449708					
B11	1.095109					
B12	1.095077					

B13	1.095523
B14	1.095273
B15	1.093754
B16	1.095671
B17	1.093286
B18	1.093715
B19	1.093289
B20	1.095708
B21	1.504538
B22	1.096302
B23	1.096289
B24	1.089971
A1	122.568110
A2	125.590662
A3	132.352264
A4	101.892446
A5	113.793423
A6	117.226997
A7	123.099027
A8	123.695380
A9	134.262370
A10	108.509599
A11	108.503048
A12	115.769535
A13	114.856042
A14	111.033669
A15	111.775786
A16	108.033520
A17	111.016624
A18	108.035103
A19	111.789957
A20	130.784654
A21	109.221987
A22	109.229639
A23	114.402737
D1	145.373132
D2	151.123449
D3	114.066421
D4	-6.217759
D5	-4.120913
D6	173.088171
D7	-177.574987
D8	-70.440674
D9	-122.004795
D10	122.363105
D11	0.180566
D12	-179.995330
D13	-116.416000
D14	123.524546
D15	3.368130
D16	-58.144599
D17	-177.922986
D18	61.914645
D19	0.008921
D20	121.933831
D21	-122.013128

```
D22 -0.032016
121.0 121.0 131.0 141.0
2 32.0
3 151.0 22 1.0
4 }1.
5 61.5111.0
671.591.0
7 81.0 101.0
8
9
1 0 1 9 1 . 0 2 0 1 . 0 ~ 2 1 ~ 1 . 0
11 161.0 171.0 18 1.0
12
13
14
15
16
1 7
18
19
20
21
22 231.0 241.0 25 1.0
23
24
25
```

Selected example of the resulting Z-matrix for imine-Strecker adduct complex (2methylamino propionitrile and N, N^{\prime}-dimethylthiourea; Figure 2b in the main text): 01

C						
H	1	B1				
N	1	B2	2	A1		
C	3	B3	1	A2	2	D1
N	4	B4	3	A3	1	D2
H	5	B5	4	A4	3	D3
S	4	B6	3	A5	1	D4
S	5	B7	4	A6	3	D5
C	5	B8	1	A7	2	D6
C	3	B9	2	A8	3	D7
H	1	B10	2	A9	3	D8
H	1	B10	2	A10	3	D9
H	1	B11	2	A		
H	9	B12	3	A11	1	D10
H	9	B13	3	A12	1	D11
H	9	B14	3	A13	1	D12
H	8	B15	5	A14	4	D13
H	8	B16	5	A15	4	D14
H	8	B17	5	A16	4	D15
C	1	B18	2	A17	3	D16
H	19	B19	1	A18	2	D17
H	19	B20	1	A19	2	D18
H	19	B21	1	A20	2	D19
C	19	B22	1	A21	2	D20
H	23	B23	19	A22	1	D21

A25	110.905524
A26	177.230410
D1	35.971619
D2	-28.271400
D3	-25.964968
D4	151.056784
D5	-172.277881
D6	-168.998991
D7	18.902969
D8	-88.919579
D9	137.675719
D10	146.593476
D11	27.194684
D12	-93.495556
D13	-177.415610
D14	61.540940
D15	-58.412203
D16	85.971445
D17	-29.522778
D18	136.293714
D19	-137.815655
D20	79.665522
D21	-145.725867
D22	151.264711
D23	118.891813
D24	97.026468
D25	-132.139643
1101.0	111.0121 .0251 .0
231.0	
341.59	91.0
451.57	71.0
561.08	81.0
6	
7	
8161.0	171.0181 .0
9131.0	141.0151 .0
10	
11	
12	
13	
14	
15	
16	
17	
18	
19201.0211 .0221 .0231 .0	
20	
21	
22	
23241.0251 .0271 .0	
24	
25261.0	
26	
27283.0	
28	

Optimization to the energy minimum of a catalyst 6 derivative using Gaussian 98; method B3LYP; basis set 3-21G* (gas phase) provided the same structure that was observed by NMR spectroscopy in solution (Figure 1a of the text). Following is the figure (all hydrogens omitted for clarity) of the calculated structure and the resulting Zmatrix (including hydrogens).

Symbolic Z-matrix:

B54	1.09523
B55	1.09279
B56	1.09692
B57	1.0961
B58	1.55391
B59	1.09689
B60	1.09564
B61	1.09447
B62	1.094
B63	1.09803
B64	1.09624
B65	1.09681
B66	1.09584
B67	1.47366
B68	1.09641
B69	1.08928
B70	1.09786
B71	1.46721
B72	1.09937
B73	1.08652
B74	1.09772
B75	1.45621
B76	1.09765
B77	1.09757
B78	1.09065
A1	120.72517
A2	117.01515
A3	113.81247
A4	111.00832
A5	113.23394
A6	108.2498
A7	108.23234
A8	121.15722
A9	123.14424
A10	114.12773
A11	119.17522
A12	116.14609
A13	121.48891
A14	146.10246
A15	146.98971
A16	90.31198
A17	112.36749
A18	35.10283
A19	110.03427
A20	119.82911
A21	122.75859
A22	118.95156
A23	120.00438
A24	118.63279
A25	123.49792
A26	117.77938
A27	116.41702
A28	121.9508
A29	117.12898
A30	109.49413
A31	114.88095

A32	111.63737
A33	106.14158
A34	108.32793
A35	109.40145
A36	112.63195
A37	111.32942
A38	109.19633
A39	111.19055
A40	110.77232
A41	109.45774
A42	109.47194
A43	109.24995
A44	109.6469
A45	109.32544
A46	108.55464
A47	109.06709
A48	121.22349
A49	120.99213
A50	118.65008
A51	107.99163
A52	112.33078
A53	110.16859
A54	111.12335
A55	107.79737
A56	109.09485
A57	108.38429
A58	109.77108
A59	111.22957
A60	109.93512
A61	104.3915
A62	91.61034
A63	144.68439
A64	90.01697
A65	144.30072
A66	117.62067
A67	110.01124
A68	107.0382
A69	110.48987
A70	127.17575
A71	110.77438
A72	110.32411
A73	109.28869
A74	117.90664
A75	111.90703
A76	111.90925
A77	104.98726
D1	-174.97216
D2	172.92094
D3	-57.19889
D4	59.89443
D5	-179.02921
D6	-62.01234
D7	-43.70959
D8	3.33987
D9	-177.73844
D10	173.51594

D11	158.16273
D12	-6.73402
D13	-115.98529
D14	112.87055
D15	-134.24379
D16	115.71943
D17	-7.16314
D18	120.09487
D19	114.57599
D20	179.88701
D21	178.35154
D22	-179.67675
D23	1.10892
D24	-0.48953
D25	-1.28705
D26	-179.23457
D27	-177.33593
D28	-179.95149
D29	-50.84911
D30	-170.8978
D31	-62.63932
D32	56.80967
D33	-173.62152
D34	-54.23142
D35	67.57077
D36	56.97602
D37	176.23957
D38	-65.31227
D39	-56.82477
D40	-175.9341
D41	64.0879
D42	93.0285
D43	-149.37133
D44	61.94659
D45	-55.59575
D46	-119.5129
D47	-0.38606
D48	0.31102
D49	179.53152
D50	-176.48374
D51	61.13493
D52	-60.08847
D53	57.84253
D54	177.09801
D55	-179.2681
D56	68.2336
D57	-177.92236
D58	-57.68025
D59	62.70808
D60	-3.05731
D61	-117.3486
D62	6.99653
D63	115.55696
D64	-6.28774
D65	-4.32683
D66	-122.99338

D67	-3.00875
D68	116.57464
D69	170.83295
D70	-107.78505
D71	14.62921
D72	133.33393
D73	-179.81204
D74	-61.34278
D75	61.34813
D76	-179.99249

Z-matrix for the catalyst-imine complex (including hydrogens); Figure 2b-c of the main text:

01						
C						
N	1	1.455100				
C	2	1.307659	1	120.326986		
O	3	1.217380	2	124.951408	1	0.150436
C	3	1.537574	2	113.113208	1	-179.982473
C	5	1.547259	3	111.304327	2	121.863903
N	5	1.464335	3	110.818912	2	-115.964654
C	6	1.537108	5	110.094633	3	61.342520
C	6	1.530865	5	109.663057	3	-178.541730
C	6	1.533359	5	109.590417	3	-58.870713
C	7	1.315610	5	120.314565	3	-10.053245
O	11	1.215877	7	120.721550	5	-0.005474
N	11	1.319129	7	119.034418	5	-179.990229
C	13	1.466249	11	122.751257	7	179.840369
H	7	1.011999	5	119.597747	3	169.883662
N	13	2.904829	11	100.906104	7	-0.019423
C	14	2.503556	13	144.236575	11	-125.366467
C	14	2.493638	13	144.759766	11	115.671826
C	18	1.531964	14	90.072562	13	124.005363
C	14	1.529160	13	109.292019	11	115.369939
C	14	1.529334	13	109.066819	11	-124.952615
C	1	1.436670	2	112.630728	3	176.434088
C	22	1.405807	1	120.034799	2	179.997704
C	23	1.404255	22	119.919026	1	179.993126
C	24	1.404425	23	120.015986	22	-0.009202
C	25	1.404770	24	120.046423	23	-0.081602
C	22	1.403141	1	119.944134	2	-0.069812
N	21	1.431013	14	108.705660	13	60.147439
C	28	1.339587	21	119.989678	14	-119.783391
C	29	1.320516	28	122.036228	21	179.957090
C	30	1.404100	29	120.429102	28	179.974290
C	31	1.405305	30	119.940692	29	179.950946
C	32	1.404137	31	120.067753	30	0.112073
C	33	1.403600	32	119.956263	31	-0.108519
C	34	1.404311	33	120.046419	32	0.101346
O	32	1.392087	31	119.942920	30	179.960959
O	35	1.391273	34	120.038204	33	179.995640
C	36	1.315207	32	106.044677	31	-179.949661
O	38	1.207858	36	119.918747	32	0.134995
C	38	1.448154	36	118.521426	32	-179.912822
C	40	1.544513	38	107.343896	36	-179.762586

C	40	1.54291438	110.411370	36	61.565281
C	40	1.54311638	110.761871	36	-59.246233
C	34	1.44960233	118.942088	32	179.978131
C	44	1.54296134	109.164788	33	-59.938961
C	44	1.54460534	110.275620	33	59.669479
C	44	1.54299134	108.950032	33	-178.935849
C	16	1.27950513	117.405295	11	103.108901
H	13	1.01309611	118.574677	7	-0.038520
C	16	1.47163313	117.445992	11	-101.842503
C	48	1.53194916	119.998372	13	154.970391
C	48	1.53091916	119.986104	13	-25.104829
C	51	2.77130816	153.003071	13	138.431560
C	51	1.38586448	119.979739	16	-0.081275
C	51	1.38715448	119.957641	16	179.957536
C	55	1.38516551	119.981485	48	179.989198
C	53	1.38580351	59.990805	54	0.017075
C	50	1.53147316	109.436884	13	25.604244
C	58	1.33280050	119.960560	16	-179.702030
H	1	B1 2	A1 3		D1
H	5	B2 3	A2 2		D2
H	8	B3 6	A3 5		D3
H	8	B4 6	A4 5		D
H	8	B5 6	A5 5		D5
H	9	B6 6	A6 5		D6
H	9	B7 6	A7 5		D7
H	9	B8 6	A8 5		D8
H	10	B9 6	A9 5		D9
H	10	B10 6	A10 5		D10
H	10	B11 6	A11 5		D11
H	14	B12 13	A12 11		D12
H	17	B13 14	A13 13		D13
H	17	B14 14	A14 13		D14
H	18	B15 14	A15 13		D15
H	18	B16 14	A16 13		D16
H	19	B17 18	A17 14		D17
H	19	B18 18	A18 14		D18
H	20	B19 14	A19 13		D19
H	20	B20 14	A20 13		D20
H	21	B21 14	A21 13		D21
H	23	B22 22	A22 1		D22
H	24	B23 23	A23 22		D23
H	25	B24 24	A24 23		D24
H	26	B25 25	A25 24		D25
H	27	B26 22	A26 1		D26
H	29	B27 28	A27 21		D27
H	31	B28 30	A28 29		D28
H	33	B29 32	A29 31		D29
H	37	B30 35	A30 34		D30
H	41	B31 40	A31 38		D31
H	41	B32 40	A32 38		D32
H	41	B33 40	A33 38		D33
H	42	B34 40	A34 38		D34
H	42	B35 40	A35 38		D35
H	42	B36 40	A36 38		D36
H	43	B37 40	A37 38		D37
H	43	B38 40	A38 38		D38

B33	1.070000
B34	1.070000
B35	1.070000
B36	1.070000
B37	1.070000
B38	1.070000
B39	1.070000
B40	1.070000
B41	1.070000
B42	1.070000
B43	1.070000
B44	1.070000
B45	1.070000
B46	1.070000
B47	1.070000
B48	1.070000
B49	1.070000
B50	1.070000
B51	1.070000
B52	1.070000
B53	1.070000
B54	1.070000
B55	1.070000
B56	1.070000
B57	1.070000
B58	1.070000
B59	1.070000
B60	1.070000
B61	1.070000
A1	123.684636
A2	107.311453
A3	109.471221
A4	109.471221
A5	109.471221
A6	109.471221
A7	109.471221
A8	109.471221
A9	109.471221
A10	109.471221
A11	109.471221
A12	109.866854
A13	141.765216
A14	85.675338
A15	85.029188
A16	142.112676
A17	106.813008
A18	106.813008
A19	106.852493
A20	106.852493
A21	109.971157
A22	120.040487
A23	119.992007
A24	119.976788
A25	120.041946
A26	119.959342
A27	118.981886

A28	120.029654
A29	120.021868
A30	109.471221
A31	109.471221
A32	109.471221
A33	109.471221
A34	109.471221
A35	109.471221
A36	109.471221
A37	109.471221
A38	109.471221
A39	109.471221
A40	109.471221
A41	109.471221
A42	109.471221
A43	109.471221
A44	109.471221
A45	109.471221
A46	109.471221
A47	109.471221
A48	109.471221
A49	106.785975
A50	106.785975
A51	109.471221
A52	109.471221
A53	109.471221
A54	119.991139
A55	120.045682
A56	120.009257
A57	120.007307
A58	119.977930
A59	120.019720
A60	120.000000
A61	120.000000
D1	-3.565912
D2	3.118839
D3	180.000000
D4	60.000000
D5	-60.000000
D6	-180.000000
D7	60.000000
D8	-60.000000
D9	180.000000
D10	-60.000000
D11	60.000000
D12	-4.723939
D13	-7.064176
D14	128.516025
D15	-129.103199
D16	5.765422
D17	-84.663267
D18	145.771523
D19	64.507789
D20	-65.108182
D21	-60.026839
D22	-0.006874

D23	179.990798
D24	179.918398
D25	-179.879157
D26	0.046110
D27	-0.042910
D28	-0.049054
D29	179.891481
D30	-10.884943
D31	-180.000000
D32	-60.000000
D33	60.000000
D34	-180.000000
D35	60.000000
D36	-60.000000
D37	180.000000
D38	-60.000000
D39	60.000000
D40	0.000000
D41	120.000000
D42	-120.000000
D43	0.000000
D44	-120.000000
D45	120.000000
D46	-180.000000
D47	-60.000000
D48	60.000000
D49	140.838962
D50	-89.630475
D51	179.999998
D52	-60.000000
D53	60.000000
D54	179.954276
D55	0.013566
D56	-0.010802
D57	179.960425
D58	179.982915
D59	0.297970
D60	-0.000001
D61	180.000000
D	
D	

Notes and References

(1) (a) Larrow, J. F.; Jacobsen, E. N.; Gao, Y.; Hong, Y.; Nie, X.; Zepp, C. M. J. Org. Chem. 1994, 59, 1939; (b) Larrow, J.F.; Jacobsen, E.N. Org. Synth. 1997, vol. 75, 1.
(2) (a) Sigman, M.S.; Jacobsen, E.N. J. Am. Chem. Soc. 1998, 120, 4901; (b) Sigman, M.S.; Vachal, P.; Jacobsen, E.N. Angew. Chem. Int. Ed. 2000, 39, 1279; (c) Vachal, P.; Jacobsen, E.N. Org. Lett. 2000, 2, 867.
(3) Cappon, J.J.; Witters, K.D.; Baart, J.; Verdegem, P.J.E.; Hoek, A.C. Recl. Trav. Chim. Pays-Bas 1994; 113; 318.
(4) (a) Su, J.T.; Vachal, P.; Jacobsen, E.N. Adv. Synth. Catal. 2001, 343, 197; (b) Su, J.T.; Vachal, P.; Jacobsen, E.N. Org Synth., submitted.
(5) The procedure for the thiourea formation is based on: Wenzel, A.; Jacobsen, E.N. Unpublished results.
(6) Gaussian 98 (version 5.4), M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, P. Salvador, J. J. Dannenberg, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. AlLaham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, and J. A. Pople, Gaussian, Inc., Pittsburgh PA, 2001.
(7) Koradi, R.; Billeter, M.; Wüthrich, K. J Mol Graphics 1996, 14, 51: MOLMOL: a program for display and analysis of macromolecular structures.

