### **Supporting Information**

## Structure-Based Analysis and Optimization of a Highly Enantioselective Catalyst for the Strecker Reaction

### Petr Vachal and Eric N. Jacobsen\*

## Harvard University, Department of Chemistry and Chemical Biology Cambridge, MA 02138

**General**: Boc-L-*tert*-leucine was purchased from Fluka, O-Benztriazole-1-N,N,N',N'tetraethyluronium hexafluorophosphate (HBTU) from Advanced ChemTech, (*S*)-*N*-*tert*-Butoxycarbonyl-2-amino-3-methyl-3-phenylbutyric acid *tert*-butylamine salt was purchased from ChiroTech; unless stated otherwise, all other chemicals were purchased from Aldrich or Alfa Aesar and used without purification. (*R*,*R*)-1,2-Diaminocyclohexane was resolved by literature methods.<sup>1</sup> Imine substrates and Strecker adducts were prepared according to published procedures.<sup>2</sup> <sup>15</sup>*N*-Benzylamine for the synthesis of isotopically labeled <sup>15</sup>*N*-2,2-dimethylpropylidene benzylamine was prepared in two steps from <sup>15</sup>*N*amonium chloride according to literature procedure.<sup>3</sup> 2-Hydroxy-5-pivaloyloxy-3-*tert*butylbenzaldehyde was prepared according to published procedure.<sup>2</sup>

General Procedure for the Preparation of the Urea Catalysts (Illustrated for 1)<sup>4</sup>



*Coupling of Boc-L*-tert-*leucine with benzylamine, followed by deprotection*: A 1000-mL round bottom flask equipped with a stirbar was charged with 5.00 g (21.6 mmol) of Boc-L-*tert*-leucine. Dichloromethane (170 mL) and HBTU (8.21 g, 1.0 eq.) were added with stirring. After 2 min, DIPEA (7.55 mL, 2 eq.) and benzylamine (2.37

mL, 1.0 eq.) were added sequentially and the reaction was stirred for 90 min. The mixture was combined with dichloromethane (250 mL) and water (250 mL) and the organic layer was separated, washed three times with 1N hydrochloric acid (250 mL), and dried over sodium sulfate. Solvents were removed in vacuo to afford crude Boc-protected amide as colorless oil. The oil was dissolved in dichloromethane (110 mL); then trifluoroacetic acid (25 mL, 15 eq.) was added in one portion and the reaction was stirred at rt for 1 hour. The reaction mixture was then cooled to 0°C and a 20% aqueous solution of sodium carbonate (250 mL) was added slowly. The resulting biphasic mixture was transferred to a separatory funnel, diluted with chloroform (140 mL), and the organic and aqueous layers were separated. The organic layer was washed with a 20% aqueous solution of sodium carbonate (250 mL). The combined aqueous layers were washed with chloroform (3 x 150 mL). All organic phases were combined, dried over sodium sulfate and concentrated to afford a mixture of product and tetramethylurea as a white solid (4.71 g, 21.4 mmol, 99% over two steps based on crude mass and <sup>1</sup>H NMR analysis). The mixture was carried on to the next step without further purification. The spectral properties are as follows: mp 53-54 °C: IR (KBr) 3303, 1650 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.33 (m, 5H), 7.05 (s, 1H), 4.45 (d, J = 0.9 Hz, 1H), 4.43 (d, J = 0.9 Hz, 1H), 3.14 (s, 1H), 1.41 (s, 2H), 1.01 (s, 9H); <sup>13</sup>C NMR {<sup>1</sup>H} (100 MHz, CDCl<sub>3</sub>)  $\delta$  173.4, 138.5, 128.5, 127.8, 127.3, 64.3, 43.0, 34.1, 26.7; HRMS (M + H) calcd 221.1654, obsd 221.1658.

Carbamate and urea formation: A 500mL-round-bottom flask equipped with a stir bar was flame-dried and charged with the entire amount of crude amine obtained from the previous step (4.71 g, 21.4 mmol) dissolved in freshly distilled dichloromethane (50 mL). Freshly distilled pyridine (3.49 mL, 2 equiv.) was added via syringe to the stirred solution; after 2 min, 4-nitrophenylchloroformate (4.44 g, 1.02 equiv.) was added in one portion. After the reaction was stirred for 10 min, (R,R)-1,2-diaminocyclohexane (7.40 g, 3 equiv.) was added in one portion, followed by addition of DIPEA (4.2 mL, 1.1 equiv.) via syringe, and the reaction mixture was stirred for an additional 10 min. The resulting mixture was then combined with dichloromethane (500 mL) and 0.5 M sodium hydroxide solution (120 mL). The organic layer was separated, washed with another portion of 0.5 M sodium hydroxide solution (120 mL), and dried over sodium sulfate. The organic layer was concentrated to afford viscous oil, which was suspended in hexanes (500 mL). The resulting mixture was allowed to stand for 30 min, and then filtered, with the collected solids then washed with (3 x 125 mL) hexanes. The product was obtained as a white powder (6.25 g, 17.3 mmol, 82% yield over 2 steps) with no impurities detectable by <sup>1</sup>H NMR analysis (for some urea catalysts, the amine product was purified by flash chromatography on silica gel; eluent: 2M solution of amonia in methanol/dichloromethane = 1/9): IR (thin film) 3284, 2934, 2858, 1631, 1555 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.28 (m, 5H), 7.08 (s, 1 H), 6.11 (s, 1H), 5.31 (s, 1H), 4.48  $(dd, J_1 = 14.9 Hz, J_2 = 6.1 Hz, 1H), 4.26 (dd, J_1 = 14.9 Hz, J_2 = 5.1 Hz, 1H), 4.20 (d, J = 14.9 Hz, J_2 = 5.1 Hz, 1H)$ 8.8 Hz, 1H), 3.20 (m, 1H), 2.31 (m, 1H), 1.98 (d, J = 11.7 Hz, 1H), 1.85 (m, 2H), 1.68 (d, J = 11.2 Hz, 2H), 1.16 (m, 5H), 1.03 (s, 9H); <sup>13</sup>C NMR {<sup>1</sup>H} (100 MHz, CDCl<sub>3</sub>)  $\delta$  172.7, 159.0, 138.5, 128.5, 127.5, 127.1, 61.3, 57.0, 55.1, 43.1, 35.0, 34.7, 33.4, 27.1, 25.3, 25.1.

*Schiff base formation:* A 1L-round-bottom flask equipped with a stirbar was charged with 6.25 g of amine prepared in the previous step and anhydrous methanol (40 mL) was added with stirring. Once the solution became homogeneous, sodium sulfate

(10 g) was added. In a separate flask, 2-hydroxy-5-pivaloyloxy-3-*tert*-butylbenzaldehyde (4.73 g, 0.98 eq.) was dissolved in anhydrous methanol (40 mL), then transferred to the reaction mixture. An additional 30 mL of methanol was used to effect quantitative transfer of the aldehyde into the reaction mixture. The reaction mixture was stirred for 90 min, then concentrated under reduced pressure with the sodium sulfate still present. The resulting mixture was combined with hexanes (250 mL) and filtered through a Buchner funnel, and the solids were rinsed with hexanes (250 mL). The filtrate was concentrated under reduced pressure to yield 10.55 g of 1 as a yellow solid (17.0 mmol, 98% yield, 80% overall yield from Boc-L-tert-leucine): IR (KBr) 3309, 2960, 1752, 1684, 1550, 1437, 1270, 1150, 1116 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, C<sub>6</sub>D<sub>6</sub>) δ 14.32 (s, 1H), 8.08 (s, 1H), 7.23 (d, J = 2.6 Hz, 1H), 7.12 (m, 2H), 7.08 (m, 2H), 7.02 (d, J = 2.6 Hz, 1H), 7.00 (t, J = 2.6 Hz, 2H), 7 7.1 Hz, 1H), 6.67 (m, 1H), 5.63 (m, 1H), 4.59 (m, 1H), 4.37 (dd, J = 14.8, 6.6 Hz, 1H), 4.29 (d, J = 9.1 Hz, 1H), 3.86 (dd, J = 14.8, 4.6 Hz, 1H), 3.43 (m, 1H), 3.15 (m, 1H), 1.95 (m, 1H), 1.68- 1.0 (m, 7H), 1.51 (s, 9H), 1.30 (s, 9H), 1.05 (s, 9H);  ${}^{13}C$  NMR { ${}^{1}H$ } (100 MHz, CDCl<sub>3</sub>) δ 177.4, 172.0, 164.3, 158.1, 157.7, 141.7, 138.5, 130.1, 128.4, 127.4, 127.1, 122.6, 121.2, 118.1, 70.3, 61.5, 54.0, 43.1, 38.9, 34.8, 34.7, 31.5, 29.1, 27.1, 26.7, 24.2, 23.6, 22.6; HRMS (ES) (M)<sup>+</sup> calcd 621.4016, obsd 621.3986.

**2**: Catalyst was prepared in 50% overall yield according to the general procedure for the synthesis of urea catalysts. The spectral properties are as follows: IR (thin film) 3368, 1750, 1633, 1550cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  14.22 (s, 1H), 8.22 (s, 1H), 7.24 (m, 3H), 7.14 (m, 2H), 6.94 (d, *J* = 6 Hz, 1H), 6.76 (d, *J* = 6 Hz, 1H), 5.38 (d, *J* = 9 Hz, 1H), 5.33 (d, *J* = 8 Hz, 1H), 4.81 (m, 1H), 4.70 (m, 1H), 4.38 (d, *J* = 15 Hz, 0.3H), 4.10 (d, *J* = 15 Hz, 0.7H), 3.34 (m, 1H), 3.17 (m, 1H), 2.91 (s, 0.7x3H), 2.79 (s, 0.3x3H), 1.99 (d, *J* = 12Hz, 1H), 1.81 (d, 12Hz, 1H), 1.69 (m, 2H), 1.21-1.50 (m, 4H), 1.40 (s, 0.7x9H), 1.39 (s, 0.3x9H), 1.34 (s, 0.7x9H), 1.33 (s, 0.3x9H), 0.91 (s, 0.7x9H), 0.86 (s, 0.3x9H); <sup>13</sup>C NMR {<sup>1</sup>H} (100 MHz, CDCl<sub>3</sub>)  $\delta$  177.4, 173.01, 164.1, 158.2, 141.8, 138.6, 136.9, 129.9, 128.2, 128.1, 127.8, 127.3, 126.4, 122.6, 121.2, 118.2, 72.0, 69.0, 55.2, 49.2, 38.9, 36.4, 36.2, 34.9, 33.2, 31.5, 29.2, 27.2, 24.2, 23.8; MS (MH)<sup>+</sup> 635.6.

**3**: Catalyst was prepared in 34% overall yield according to the general procedure for the synthesis of urea catalysts. The spectral properties are as follows: IR (thin film) 3370, 1748, 1632, 1550, 1438 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  13.78 (s, 1H), 8.27 (s, 1H), 7.26 (s, 6H), 6.94 (s, 4H), 6.94 (d, *J*= 2.6 Hz, 1H), 6.77 (s, 1H), 5.07 (d, *J*= 14.6 Hz, 1H), 4.88 (d, *J*= 9.2 Hz, 1H), 4.77 (d, *J*= 16.1 Hz, 1H), 4.59 (s, 1H), 4.26 (d, *J*= 16.1 Hz, 1H), 3.90 (d, *J*= 14.6 Hz, 1H), 3.41 (s, 1H), 3.23 (s, 1H), 2.07 (s, 1H), 1.88 (m, 1H), 1.79-1.60 (m, 4H), 1.55-1.36 (m, 2H), 1.39 (s, 9H), 1.33 (s, 9H), 0.89 (s, 9H); <sup>13</sup>C NMR {<sup>1</sup>H} (100 MHz, CDCl<sub>3</sub>)  $\delta$  177.4, 173.3, 164.3, 158.2, 157.0, 128.7, 128.7, 128.1, 127.8, 127.7, 127.5, 122.6, 121.2, 118.2, 70.3, 55.2, 54.3, 50.8, 47.7, 38.9, 36.0, 34.9, 33.0, 31.1, 29.2, 27.1, 26.9, 26.6, 24.4, 23.5; MS (TOF) m/z (M+H) calcd 711.4, obs 711.6.

**4**: *Coupling with Boc-L*-tert-*leucine* was performed using dimethylamine hydrochloride (1equiv) and DIPEA (3 equiv).

*Boc deprotection*: A 25-mL, round-bottomed flask equipped with a stirbar was charged with N-(tert-Butoxycarbonyl)-L-tert-Leucine N,N-dimethylamide (2.0 mmol). A

4 M solution of hydrogen chloride in 1,4-dioxane (5 mL) was added at room temperature with stirring. After 2 hours, solvents were removed in vacuo. The product was used as hydrochloric salt in the subsequent step without further purification. The subsequent steps were performed according to the general procedure for urea catalysts (3 equivalents of pyridine were used for the urea formation). The product was isolated as a yellow solid in 16% overall yield. The spectral properties are as follows: IR (thin film) 3400, 1750, 1633, 1557, 1437 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  13.72 (s, 1H), 8.27 (s, 1H), 6.94 (d, *J*= 2.9 Hz, 1H), 6.79 (d, *J*= 2.6 Hz, 1H), 5.06 (s, 1H), 4.65 (d, *J*= 9.2 Hz, 1H), 4.35 (s, 1H), 3.55 (s, 1H), 3.13 (m, 1H), 2.99 (s, 3H), 2.82 (s, 3H), 2.12-2.07 (m, 1H), 1.92-1.84 (m, 1H), 1.82-1.62 (m, 4H), 1.44-1.34 (m, 2H), 1.40 (s, 9H), 1.34 (s, 9H), 0.89 (s, 9H); <sup>13</sup>C NMR {<sup>1</sup>H} (100 MHz, CDCl<sub>3</sub>)  $\delta$  177.4, 172.7, 164.0, 158.2, 157.2, 141.7, 138.5, 122.5, 121.1, 118.2, 71.3, 54.9, 54.1, 38.9, 38.2, 35.6, 35.5, 34.8, 33.2, 31.6, 29.2, 27.1, 26.4, 24.6, 23.8; MS (TOF) m/z (M+H) calcd 559.4, obs 559.5.

**5**: The catalyst was prepared in 31% overall yield from the Boc-amino acid salt (3 equiv. of DIPEA used for the initial coupling), using the general synthetic protocol for the urea catalysts. The spectral properties of the yellow product are as follows: IR (thin film) 2934, 1751, 1632, 1549, 1439 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  13.72 (s, 1H), 8.31 (s, 1H), 7.37 (d, *J*= 7.3 Hz, 2H), 7.26 (t, *J*= 6.7 Hz, 2H), 7.18 (t, *J*= 7.3 Hz, 1H), 6.93 (d, *J*= 2.7 Hz, 1H), 6.81 (s, 1H), 5.24 (s, 1H), 4.86 (d, *J*= 7.9 Hz, 1H), 4.41 (s, 1H), 3.56 (m, 1H), 3.19 (m, 1H), 2.57 (s, 3H), 3.09 (s, 3H), 1.89 (d, *J*= 11.3 Hz, 1H), 1.77 (m, 3H), 1.67 (d, *J*= 13.7 Hz, 1H), 1.48-1.33 (m, 3H), 1.39 (s, 9H), 1.35 (s, 3H), 1.33 (s, 12H); <sup>13</sup>C NMR {<sup>1</sup>H} (100 MHz, CDCl<sub>3</sub>)  $\delta$  177.4, 171.7, 164.1, 158.2, 157.1, 145.9, 141.7, 138.6, 127.9, 126.8, 126.4, 122.6, 121.1, 118.2, 71.4, 56.1, 54.3, 42.5, 38.9, 36.7, 35.1, 34.9, 33.3, 31.6, 29.2, 27.1, 26.4, 24.7, 23.8, 22.4; MS (TOF) m/z (M+H) calcd 621.4, obs 621.3.

Synthesis of catalyst 6:



*Coupling of Boc-L*-tert-*leucine with benzylamine, followed by deprotection* was performed according to the procedure described for the preparation of **4**.

*Thiourea formation*:<sup>5</sup> A 500mL-round bottom flask equipped with a stir bar was charged with 1.86 g (9.54 mmol) of crude amine hydrochloride from the deprotection step. To this mixture dichloromethane (50 mL), and saturated aqueous solution of sodium bicarbonate was added. The biphasic mixture is cooled to 0°C and neat thiophosgene (0.80 mL, 1.1 equiv.) was added via syringe with vigorous stirring. The reaction mixture was vigorously stirred at 0°C for additional 30 min, the organic layer was separated. dried over sodium sulfate, and concentrated in vacuo to afford isothiocynate used immediately without purification. The crude isothiocyanate was dissolved in freshly distilled dichloromethane (30 mL) and (R,R)-1,2-diaminocyclohexane (1.20 g, 1.1 equiv.) was added in one portion. The reaction mixture was allowed to stir at room temperature for 30 min and concentrated in vacuo. Crude product was purified by flash chromatography on silica gel (Eluent: 2M solution of ammonia in methanol/dichloromethane = 1/9, stain with ninhydrine) to afford 2.13 g (75% overall from Boc-L-tert-leucine) of pure amine.

*Schiff base formation* was performed according to the general procedure for the preparation of urea catalysts (1.00 equivalents of aldehyde used). Catalyst **6** was isolated as a yellow solid in 75% overall yield (form Boc-L-*tert*-leucine). The spectral properties are as follows: IR (thin film) 3293, 1750, 1630, 1535cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  13.55 (s, 1H), 8.23 (s, 1H), 6.92 (d, *J* = 8 Hz, 1H), 6.85 (d, *J* = 8 Hz, 1H), 6.55 (s, 1H), 6.44 (d, *J* = 7 Hz, 1H), 5.56 (d, *J* = 9 Hz, 1H), 3.83 (m, 1H), 3.18 (s, 3H), 3.11 (td, *J* = 2, 8Hz, 1H), 2.92 (s, 3H), 2.09 (m, 1H), 1.88 (m, 1H), 1.71 (m, 3H), 1.25-1.44 (m, 3H), 1.40 (s, 9H), 1.34 (s, 9H), 0.90 (s, 9H); <sup>13</sup>C NMR {<sup>1</sup>H} (100 MHz, CDCl<sub>3</sub>)  $\delta$  177.6, 172.0, 165.0, 157.9, 141.9, 135.5, 123.0, 121.6, 118.2, 60.4, 38.9, 38.4, 36.0, 35.6, 34.9, 29.2, 27.2, 26.6; MS (MH)<sup>+</sup> 575.6.

### Asymmetric Strecker reaction of model imine substrate:



A flame-dried 10mL-round-bottom flask equipped with a stir bar was charged with 0.003 mmol of a catalyst (0.01 equiv.), 2.5 mL of toluene, and imine (0.3 mmol). The reaction was stirred at ambient temperature until catalyst completely dissolved and then cooled below -70 °C by means of a constant temperature bath. A flame-dried 5mL-recovery-flask was equipped with a stir bar and charged with freshly distilled toluene (0.5 mL) and 50 µL TMSCN (1.25 equiv.). The mixture was cooled to 0°C; to this solution 15 µL of anhydrous methanol (1.25 equiv.) was added via syringe; the solution was allowed to stir at 0°C for 2h and then added to reaction flask containing catalyst and substrate by a syringe addition at -78°C. After 15h, a sample was transferred into a precooled vial via a precooled syringe and the solvents were removed under reduced pressure at low temperature to ensure no reaction progress during this operation. The conversion of the Strecker reaction was determined by <sup>1</sup>H NMR (product/imine). To the NMR sample, an

excess of TFAA (approx. 5 equiv.) was added at room temperature in one portion and the resulting trifluoroacetamide of the Strecker adduct was analyzed by chiral GC ananlysis.<sup>2</sup>

<u>Identification of the active site of the catalyst:</u> Several derivatives of 1 were prepared and tested as catalyst in the asymmetric Strecker reaction of N-(2,2-dimethylpropylidene) benzylamine; the screen was conducted according to the general procedure given for N-isobutylene benzylamine. The results and comments are summarized in the following Table:



| Entry | Catalyst | $\operatorname{Conv.}^{a}(\%)$ | Ee (%) | Comments                                                                             |
|-------|----------|--------------------------------|--------|--------------------------------------------------------------------------------------|
| 1     | 1        | > 99                           | 95.6   |                                                                                      |
| 2     | 2        | > 99                           | 96.4   | 2 even better catalyst than $1 \rightarrow$ amide H not active site                  |
| 3     | Α        | > 99                           | 85     | Ee declines from <b>1</b> (not surprise: weaker H-bond, etc.)                        |
| 4     | В        | > 99                           | 88     | <b>B</b> better catalyst than $\mathbf{A} \rightarrow$ phenol H not active site      |
| 5     | С        | 83                             | 13     | C and D are significantly worse catalysts than $1 \rightarrow$                       |
| 6     | D        | 46                             | 27     | $\rightarrow$ urea H(s) are important for both rate and ee; might be the active site |
|       |          |                                |        | DE LIE ACTIVE SILE                                                                   |

*a*: in 15h at -78°C

**Kinetics, General:** Reaction kinetics were investigated using an ASI 1000 React-IR<sup>TM</sup> instrument equipped with a silicon probe. The probe was dried by heating with a heat gun (<200°C) and allowed to cool under nitrogen atmosphere prior to each run to ensure reproducible results. Rate dependence on the concentration of each reagent was investigated under pseudo-constant concentration of remaining reagents by monitoring the change of the initial rate (10% conversion) as a function of investigated reagent concentration. The Strecker reaction was conducted by the means of the general protocol given for the testing of catalyst derivatives. The observed dependence on the concentration of each reagent is given bellow (Charts 1-3). Saturation kinetics in imine substrate was confirmed by Lineweaver Burk plot (Chart 4):











**NMR Spectroscopy, General:** All experiments were performed using instruments equipped with a Brucker magnet and Varian software. Experiments at room temperature (20°C, regulated) were performed using INOVA 600 MHz instrument. Low temperature (regulated) experiments were performed using INOVA 500 MHz, or MERCURY 400 MHz instruments equipped with an external thermostat filled with liquid nitrogen. All NMR solvents were purchased from Cambridge Isotope Laboratories and used as received. Prior to the ROESY and NOE experiments, the NMR sample was degassed with nitrogen for 10 min.

### Catalyst 1:

Assignment of H-signals in relevant solvents (THF and dioxane) for <sup>1</sup>H NMR was accomplished by COSY connectivity experiments; tBuPiv, tBuAr, ArHa, and ArHb were assign based on their NOE interactions (NOESY, ROESY):

10mM **1** in  $d_8$ -dioxane:





Determination of the correct mixing time for 2D-ROESY experiments was accomplished by monitoring of NOE build-up curves (mix=30-600ms) for significant xpeaks in ROESY. Charts below show selected xpeaks for 10mM 1 in  $d_8$ -dioxane (determined as 120 ms) and 50mM 1 in  $d_8$ -THF (determined as 160ms; unchanged when imine substrate was present); other conditions: i600, d1=2s, t=20°C (regulated), nt=4, ni=350, sw=9000.



NOE build up curves (ROESY): 10 mM 1 in dioxane





Determination of the correct mixing time for NOESY, and NOESY1D experiments was accomplished by monitoring NOE build up curves for significant xpeaks in NOESY experiment. Chart below shows selected xpeaks for 50mM **1** in  $d_8$ -THF (determined as 160ms; unchanged if imine substrate was present); other conditions: i600, d1=2s, t=20°C (regulated), nt=4, ni=350, sw=9000.



NOE build up curves (NOESY): 50mM 1 in THF

*ROESY Experiment, 50mM 1 in* d<sub>8</sub>-*THF*, 20°C (regulated), i600, d1=1s, ni=1K, sw=9000, nt=16, mix=160ms; distance in Å, compare to calculations (MM2):

| in-10, inix-100ins, distance in 11, compare to calculations (11112). |                                                                                                                           |                                                                                                                                                                                                                                                                                                                             |                                                        |  |  |  |  |
|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--|--|--|--|
| Poak 2                                                               | Xpeak                                                                                                                     | distance, Å                                                                                                                                                                                                                                                                                                                 | distance, Å                                            |  |  |  |  |
| reak 2                                                               | volume                                                                                                                    | (ROESY)                                                                                                                                                                                                                                                                                                                     | (computation)                                          |  |  |  |  |
| Imine                                                                | 0.18                                                                                                                      | 3.8                                                                                                                                                                                                                                                                                                                         | 3.9                                                    |  |  |  |  |
| UreaHa                                                               | 0.09                                                                                                                      | 4.2                                                                                                                                                                                                                                                                                                                         | 4.3                                                    |  |  |  |  |
| CHHa                                                                 | 0.074                                                                                                                     | 4.4                                                                                                                                                                                                                                                                                                                         | 4.0                                                    |  |  |  |  |
| tBuAr                                                                | 0.351                                                                                                                     | 3.4                                                                                                                                                                                                                                                                                                                         | 4.0                                                    |  |  |  |  |
| ArHa                                                                 | 2.26                                                                                                                      | define as 2.46                                                                                                                                                                                                                                                                                                              | (law of cosine)                                        |  |  |  |  |
| UreaHa                                                               | 0.242                                                                                                                     | 3.6                                                                                                                                                                                                                                                                                                                         | 3.6                                                    |  |  |  |  |
| CHHa                                                                 | 0.714                                                                                                                     | 3.0                                                                                                                                                                                                                                                                                                                         | 2.7                                                    |  |  |  |  |
| СННј                                                                 | 4.15                                                                                                                      | 2.2                                                                                                                                                                                                                                                                                                                         | 2.4                                                    |  |  |  |  |
| tBuAA                                                                | 0.577                                                                                                                     | 3.1                                                                                                                                                                                                                                                                                                                         | 3.5                                                    |  |  |  |  |
| α-H                                                                  | 4.13                                                                                                                      | 2.2                                                                                                                                                                                                                                                                                                                         | 2.2                                                    |  |  |  |  |
| tBuAA                                                                | 1.71                                                                                                                      | 2.6                                                                                                                                                                                                                                                                                                                         | 3.7                                                    |  |  |  |  |
| tBuAr                                                                | 4.61                                                                                                                      | 2.2                                                                                                                                                                                                                                                                                                                         | 2.1                                                    |  |  |  |  |
| tBuAr                                                                | 3.57                                                                                                                      | 2.3                                                                                                                                                                                                                                                                                                                         | 2.4                                                    |  |  |  |  |
| UreaHa                                                               | 3.325                                                                                                                     | 2.3                                                                                                                                                                                                                                                                                                                         | 2.3                                                    |  |  |  |  |
| tBuAA                                                                | 3.04                                                                                                                      | 2.3                                                                                                                                                                                                                                                                                                                         | 2.4                                                    |  |  |  |  |
|                                                                      | Peak 2<br>Imine<br>UreaHa<br>CHHa<br>tBuAr<br>ArHa<br>UreaHa<br>CHHj<br>tBuAA<br>α-H<br>tBuAA<br>tBuAr<br>tBuAr<br>UreaHa | Xpeak     Xpeak       Peak 2     volume       Imine     0.18       UreaHa     0.09       CHHa     0.074       tBuAr     0.351       ArHa     2.26       UreaHa     0.242       CHHa     0.714       CHHj     4.15       tBuAA     0.577       α-H     4.13       tBuAA     1.71       tBuAr     3.57       UreaHa     3.325 | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ |  |  |  |  |

| UreaHa | CHHa  | 1.021 | 2.8         | 2.8 |
|--------|-------|-------|-------------|-----|
| UreaHa | СННј  | 0.959 | 2.8         | 2.9 |
| α-H    | tBuAA | 5.16  | 2.1         | 2.3 |
| BnHb   | BnHa  | 3.685 | mix w/ cosy | 2.2 |

*ROESY Experiment, 10mM* 1 *in*  $d_8$ *-dioxane,* 20°C (regulated), i600, d1=1s, ni=1K, sw=9000, nt=16, mix=120ms:

| Peak 1             | Peak 2                            | ROESY xpeak volume |
|--------------------|-----------------------------------|--------------------|
| Phenol (14.07)     | tBu-Ar (1.38)                     | 0.74519854         |
| Phenol (14.07)     | СН-На (3.38)                      | 1.684133           |
| Phenol (14.07)     | Urea-Ha (5.43)                    | 0.200816           |
| Phenol (14.07)     | Imine (8.29)                      | 0.97271824         |
| Imine (8.29)       | tBu-AA (0.87)                     | 1.7759821          |
| Imine (8.29)       | CH-Hb (1.87)                      | 1.97931078         |
| Imine (8.29)       | СН-На (3.38)                      | 7.86               |
| Imine (8.29)       | СН-Нј (3.42)                      | 18.64              |
| Imine (8.29)       | Urea-Ha (5.43)                    | 1.442701           |
| Imine (8.29)       | Ar-Ha (6.84)                      | 14.717             |
| Imine (8.29)       | Ar-Hb (6.92)                      | 5.18               |
| Amid (7.29)        | tBu-AA (0.87)                     | 8.62042714         |
| Amid (7.29)        | a-H (3.96)                        | 26.14315296        |
| Amid (7.29)        | Bn-Hb (4.4)                       | 3.20317565         |
| Phenyl (7.17-7.26) | tBu-AA (0.87)                     | 6.48191987         |
| Ar-Hb (6.92)       | tBu-AA (0.87)                     | 2.44275541         |
| Ar-Hb (6.92)       | tBu-Ar (1.38)                     | 37.73484386        |
| Ar-Ha (6.84)       | tBu-AA (0.87)                     | 4.06189233         |
| Ar-Ha (6.84)       | tBu-Ar (1.38)                     | 15.2834654         |
| Urea-Hb (5.49)     | tBu-AA (0.87)                     | 15.27080143        |
| Urea-Hb (5.49)     | a-H (3.96)                        | 3.77627491         |
| Urea-Hb (5.49)     | Urea-Ha (5.43)                    | 15                 |
| Urea-Ha (5.43)     | tBu-AA (0.87)                     | 2.8687825          |
| Urea-Ha (5.43)     | CH-Hc-h (1.63)/<br>CH-Hc-h (1.70) | 3.69794199         |
| Urea-Ha (5.43)     | СН-На (3.38)                      | 7.04332542         |
| Urea-Ha (5.43)     | СН-Нј (3.42)                      | 6.04332542         |
| a-H (3.96)         | tBu-AA (0.87)                     | 22.81397889        |
| СН-Нј (3.42)       | tBu-Ar (1.38) or CH               | 7.24282364         |
| СН-Нј (3.42)       | CH-Hb (1.87)                      | 5.1718353          |
| СН-Нј (3.42)       | CH-Hi (1.98)                      | 0.5                |
| CH-Ha (3.38)       | tBu-Ar (1.38) or CH               | 5.23395427         |
| CH-Ha (3.38)       | CH-Hb (1.87)                      | 0.5000001          |
| CH-Ha (3.38)       | CH-Hi (1.98)                      | 5.21282502         |
| L                  |                                   |                    |

| CH-Hd-g (1.75) | tBu-Ar (1.38) or CH | 53.46867114 |
|----------------|---------------------|-------------|
| CH-Hc-h (1.70) | tBu-Ar (1.38) or CH | 49.25715698 |

*NOESY1D Experiments, 70mM 1 in*  $d_8$ -*THF*, 20°C (regulated), i600, d1=1s, ni=1K, sw=9000, nt=4000-7000, mix=300ms (presence of 3,4-dihydroisoquinoline did not have an influence on the magnitude of intramolecular xpeaks; same relative volumes observed):

| Iradiated | Phenol | Imine | Amide | Phenyl | ArHb | ArHa | UreaHb | UreaHa | α-H  | BnHb | BnHa | СННа | СННј | CHHb | CHHi | tBuAr | tBuPiv | tBuAA |
|-----------|--------|-------|-------|--------|------|------|--------|--------|------|------|------|------|------|------|------|-------|--------|-------|
| Phenol    |        | 0.20  |       |        |      |      |        |        |      |      |      |      |      |      |      | 0.99  |        |       |
| Imine     | 0.19   |       |       |        |      | 1.28 |        | 0.10   |      |      |      | 0.24 | 1.50 |      |      |       |        | 0.17  |
| Amide     |        |       |       | 0.38   |      |      | 0.01   |        | 1.66 |      |      |      |      |      |      |       |        |       |
| ArHb      |        | 0.09  |       |        |      |      |        |        |      |      |      |      |      |      |      | 4.15  | 0.13   |       |
| ArHa      | 0.01   | 0.99  |       |        |      |      |        |        |      |      |      |      |      |      |      | 0.05  | 0.09   | 0.14  |
| UreaHb    |        | 0.10  |       |        |      |      |        |        |      |      |      |      |      |      |      |       |        | 1.73  |
| UreaHa    |        | 0.27  |       |        |      |      |        |        |      |      |      | 0.86 | 0.71 |      |      |       |        |       |
| α-Η       |        |       | 1.09  |        |      |      |        |        |      |      |      |      |      |      |      |       |        | 2.11  |
| BnHb      |        |       |       | 0.41   |      |      |        |        |      |      |      |      |      |      |      | 0.03  |        | 0.11  |
| BnHa      |        |       |       | 0.46   | 0.03 |      |        |        |      |      |      |      |      |      |      | 0.03  |        | 0.05  |
| CHHa      | 0.05   | 0.25  |       |        |      |      |        | 0.64   |      |      |      |      |      | 0.80 |      |       |        |       |
| CHHj      | 0.04   | 1.67  |       |        |      |      |        | 0.42   |      |      |      |      |      |      | 0.82 |       |        |       |
| CHHb      |        | 0.02  |       |        |      |      |        | 0.29   |      |      |      | 1.14 | 0.24 |      |      |       |        |       |
| CHHi      | 0.01   | 0.27  |       |        |      |      |        |        |      |      |      | 0.22 | 1.07 |      |      |       |        |       |
| tBuAr     | 0.06   |       |       |        | 0.99 |      |        |        |      |      |      |      |      |      |      |       |        |       |
| tBuPiv    |        |       |       |        | 0.01 | 0.01 |        |        |      |      |      |      |      |      |      | 0.14  |        | 0.16  |
| tBuAA     |        | 0.05  | 0.12  | 0.10   |      | 0.01 | 0.34   |        | 0.69 | 0.12 | 0.15 |      |      |      |      | 0.14  | 0.16   |       |

Intermolecular xpeaks between catalyst 1 and 3,4-dihydroisoquinoline. The xpeaks were observed in NOESY1D experiment, 20°C (regulated), nt=4000-12000, d1=0.1-1s, sw=9000, 70mM 1 and 330mM in 3,4-dihydroisoquinoline in  $d_8$ -THF. Since correct mixing time was not established for catalyst/substrate complex, reported xpeak volumes should be considered as qualitative, not quantitative measure of the distance. Following Figure shows important intermolecular xpeaks; integrated values are given in the Table:



Intermolecular xpeak volume:

| 1    |                                                                                            |                                                                                                                                                                                                                                   |
|------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| H1   | H3                                                                                         | H4                                                                                                                                                                                                                                |
|      |                                                                                            |                                                                                                                                                                                                                                   |
| 0.01 |                                                                                            |                                                                                                                                                                                                                                   |
| 0.05 | 0.10                                                                                       |                                                                                                                                                                                                                                   |
| 0.02 |                                                                                            |                                                                                                                                                                                                                                   |
| 0.07 |                                                                                            |                                                                                                                                                                                                                                   |
| 0.12 |                                                                                            |                                                                                                                                                                                                                                   |
| 0.10 |                                                                                            |                                                                                                                                                                                                                                   |
| 0.07 | 0.08                                                                                       |                                                                                                                                                                                                                                   |
|      | 0.10                                                                                       |                                                                                                                                                                                                                                   |
| 0.01 | 0.03                                                                                       |                                                                                                                                                                                                                                   |
| 0.01 |                                                                                            |                                                                                                                                                                                                                                   |
| 0.03 | 0.02                                                                                       |                                                                                                                                                                                                                                   |
|      |                                                                                            |                                                                                                                                                                                                                                   |
|      |                                                                                            |                                                                                                                                                                                                                                   |
|      |                                                                                            |                                                                                                                                                                                                                                   |
|      |                                                                                            |                                                                                                                                                                                                                                   |
| 0.12 | 0.13                                                                                       | 0.18                                                                                                                                                                                                                              |
|      | H1<br>0.01<br>0.05<br>0.02<br>0.07<br>0.12<br>0.10<br>0.07<br>0.01<br>0.01<br>0.01<br>0.03 | 0.01     0.05     0.10       0.05     0.10     0.02       0.07     0.12     0.10       0.10     0.07     0.08       0.07     0.08     0.10       0.07     0.03     0.02       0.01     0.03     0.02       0.03     0.02     0.02 |

Intermolecular xpeaks between catalyst 1 and a Z-Imine. The xpeaks were observed in NOESY1D experiment, 20°C (regulated), nt=12000-25000, d1=0.1-1s, sw=9000, 100mM 1 and 90mM imine (overall concentration of both isomers) in  $d_8$ -THF. The intensity of the intermolecular xpeaks was low and a quantitative integration was not possible, therefore qualitative comparison is given instead; four significant xpeaks are shown in the following figure:

| - | Catalyst<br>Peak | Xpeak to αMe<br>(Z-imine) |                |
|---|------------------|---------------------------|----------------|
| - | i ean            |                           |                |
|   | Phenol           | W                         |                |
|   | Imine            | S                         | N <sup>×</sup> |
|   | Amide            |                           | H H            |
|   | ArHb             | S                         | MeO            |
|   | ArHa             | S                         |                |
|   | UreaHb           | m                         |                |
|   | UreaHa           | m                         |                |
|   | α-H              | m                         | , ⊢ H H O I    |
|   | BnHb             |                           |                |
|   | BnHa             |                           |                |
|   | CHHa             |                           |                |
|   | CHHj             |                           | NH /           |
|   | tBuAr            |                           |                |
|   | tBuPiv           |                           | НŅ́О           |
|   | tBuAA            | S                         | Ph             |
|   |                  | ····P                     |                |

w=weak, m=medium, s=strong

# Catalyst 3:

Assignment of H-signals for 25mM 3 in d<sub>8</sub>-THF was accomplished by COSY connectivity experiments. tBuPiv, tBuAA, ArHa, and ArHb were assign based on NOE xpeaks (ROESY):



Determination of the correct mixing time for 2D-ROESY experiments was accomplished by monitoring the NOE build up curves (mix=60-400ms) for significant xpeaks in 2D-ROESY. Chart shows selected xpeaks for 25mM **3** in  $d_8$ -THF (determined as 120ms); other conditions: i600, d1=1.5s, t=20°C (regulated), nt=4, ni=350, sw=9000.



### NOE build up curves (ROESY) for 25mM 3 in THF

*ROESY Experiment, 25mM 3 in*  $d_8$ -*THF*, 20°C (regulated), i600, d1=1.7s, ni=1.5K, sw=9000, nt=16, mix=120ms; distance calculated based on the relative xpeak volume related to the standard distance in Å; comments included for an easier data analysis:

|       | i to the standard di | stallee III A, coll | ments menu        |       | all easier uata allarysis.   |
|-------|----------------------|---------------------|-------------------|-------|------------------------------|
| Entry | Peak 1               | Peak 2              | Xpeak vol.        | Dist. | Comments                     |
| 1     | Phenol (14.11)       | CHHj (3.45)         | half of 0.402     | nd    | overlap                      |
| 2     | Phenol (14.11)       | CHHa (3.50)         | half of 0.402     | nd    | overlap                      |
| 3     | Phenol (14.11)       | Imine (8.39)        | 0.1953            | 3.5   | trivial                      |
| 4     | Imine (8.39)         | CHHc&CHHh           | 0.212             | 3.4   | trivial                      |
|       |                      | (1.61-1.71)         |                   |       |                              |
| 5     | Imine (8.39)         | CHHi (1.90)         | 0.304             | 3.2   | sets imine-CH ring           |
| 6     | Imine (8.39)         | CHHj (3.45)         | 2.53              | 2.3   | conformation                 |
| 7     | Imine (8.39)         | CHHa (3.50)         | 1.21 <sup>a</sup> | nd    | (Entries 5-8)                |
| 8     | Imine (8.39)         | UreaHa (5.67)       | 0.251             | 3.3   | imine and urea: same face    |
| 9     | Imine (8.39)         | ArHa (6.86)         | 1.485             | 2.5   | Standard for distance, 2.46A |
| 10    | Imine (8.39)         | ArHb (6.94)         | 0.8395            | 2.7   | trivial                      |
| 11    | Phenyl (7.15-7.27)   | tBuAA (0.87)        | 2.099             | 2.3   | very strong> hindered face   |
| 12    | Phenyl (7.15-7.27)   | Bn1Ha (4.06)        | 1.027             | 2.6   | trivial                      |
| 13    | Phenyl (7.15-7.27)   | Bn2Ha (4.41)        | 1.244             | 2.5   | trivial                      |
| 14    | Phenyl (7.15-7.27)   | Bn2Hb (4.63)        | 0.6665            | 2.8   | trivial                      |

| 15 | Phenyl (7.15-7.27) | α-H (4.85)               | 1.544                   | 2.4 | very strong> hindered face       |
|----|--------------------|--------------------------|-------------------------|-----|----------------------------------|
| 16 | ArHb (6.94)        | tBuAr (1.37)             | 4.917                   | 2.0 | trivial                          |
| 17 | ArHa (6.86)        | tBuAr (1.37)             | 2.262                   | 2.3 | trivial                          |
| 18 | Urea Hb (5.76)     | tBuAA (0.87)             | 2.4833                  | 2.3 | trivial                          |
| 19 | Urea Hb (5.76)     | α-H (4.85)               | 0.4996                  | 3.0 | trivial                          |
| 20 | Urea Hb (5.76)     | UreaHa (5.67)            | 0.617 <sup>b</sup>      | nd  | trivial                          |
| 21 | UreaHa (5.67)      | CHHc&CHHh<br>(1.61-1.71) | 0.5958                  | 2.9 | sets Urea-CH ring                |
| 22 | UreaHa (5.67)      | CHHb (2.10)              | 0.2221                  | 3.4 | conformation                     |
| 23 | UreaHa (5.67)      | CHHj (3.45)              | half of<br>1.8166       | nd  | (Entries 21-24)                  |
| 24 | UreaHa (5.67)      | CHHa (3.50)              | half of 1.8166          | nd  |                                  |
| 25 | α-H (4.85)         | tBuAA (0.87)             | 3.887                   | 2.1 | trivial                          |
| 26 | α-H (4.85)         | Bn2Ha (4.41)             | 2.002                   | 2.3 | confirms rigidity and potential  |
| 27 | α-H (4.85)         | Bn2Hb (4.63)             | 3.636                   | 2.1 | hindrance as origin of enantios. |
| 28 | Bn1Hb (4.82)       | Bn1Ha (4.06)             | 9.0699 <sup>c</sup>     | nd  | trivial                          |
| 29 | Bn2Hb (4.63)       | tBuAA (0.87)             | 1.731                   | 2.4 | very strong> hindered face       |
| 30 | Bn2Hb (4.63)       | Bn1Ha (4.06)             | 0.3832                  | 3.1 | weak>rigid conf., hind. face     |
| 31 | Bn2Hb (4.63)       | Bn2Ha (4.41)             | (-) 5.6384 <sup>c</sup> | nd  | trivial                          |
| 32 | Bn2Ha (4.41)       | tBuAA (0.87)             | 1.276                   | 2.5 | very strong> hindered face       |
| 33 | CHHa (3.50)        | CHHb (2.10)              | 1.2187                  | 2.5 | trivial                          |
| 34 | CHHj (3.45)        | CHHi (1.90)              | 1.2007                  | 2.6 | trivial                          |
|    |                    |                          |                         |     |                                  |

*a*: volume magnified by overlap with entry 6; *b*: volume reduced by close proximity to the diagonal peak; *c*: mixed with cosy.

### Isotopically labeled imine experiment:

Direct evidence of binding by <sup>1</sup>H NMR: Following Figure represents two <sup>1</sup>H NMR of the mixture of catalyst **3** with 2,2-dimethylpropylidene benzylamine in  $d_8$ -THF printed on the top of each other. Both samples contain the same amount of **3** (0.162M), and the same amount of imine (0.668M). In case of sample 1, <sup>14</sup>N-imine was used (natural abundance); In case of sample 2, <sup>15</sup>N-imine was used (content of <sup>15</sup>N > 99%). Frequency ( $\delta$ ) of none of the protons of **1** has changed ( $\Delta \delta < 1$ Hz) as a function of the isotope content of the imine nitrogen, except for 2 signals: both urea-hydrogens ( $\Delta \delta = 16.9$ Hz, and 16.1Hz). Urea region of catalyst **3** is enlarged in the offset. Since the only difference between the two samples is the content of <sup>15</sup>N in the imine substrate, this result represented a direct evidence of imine nitrogen binding to the UreaH's portion of the catalyst.



### Equilibrium between E-and Z-stereoisomers of imine substrate by NMR

The sample of  $\alpha$ -methylnaphtylidene allylamine that coexists as a mixture of both stereoisomers was irradiated (saturated) with the frequency of the Z-isomer allylic proton in NOESY1D experiment in  $d_{12}$ -cyclohexane (top spectrum). Exchanging allylic protons of E-isomer ( $\delta = 4.14$  ppm) and Z-isomer ( $\delta = 3.84$  ppm) had the same phase (opposite phase to the NOE xpeaks) as they underwent energy transfer due to chemical exchange. The <sup>1</sup>H NMR spectrum of the sample is provided below for clarity (Figure follows).



**Computation and Modeling, General:** Calculations were performed using standard computational methods. Theoretical calculations on the simplified system were performed using Gausian 98;<sup>6</sup> method B3LYP with many available basics sets. Reported data are consistent for all applied basic sets; data shown in Figure 2 of the text relate to 6-31G (d, p) basic set in the gas phase. The strength of the hydrogen bond was calculated as a difference of the energy of the complex and each individual component with dummy-atoms replacing other relevant fragments present in the complex. Calculations of the energy minimum of **1** were performed on Spartan with semi-empirical base, MM2, solvent-free as well as in hexadecane matrix. The 3D pictures of catalyst and catalyst/substrate complex were generated using Spartan and Gaussian 98 and modified in MOLMOL<sup>7</sup> (see the text of the paper for relevant graphics).

| Selected example of the resulting Z-matrix for imine-catalyst complex (N-ethylidene |
|-------------------------------------------------------------------------------------|
| methylamine and N,N'-dimethylthiourea; Figure 1a of the main text):                 |
| 0 1                                                                                 |

| 0 1                                                                     |                                                                                                                   |                                                                   |       |     |
|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-------|-----|
| С                                                                       |                                                                                                                   |                                                                   |       |     |
| Ν                                                                       | 1                                                                                                                 | B1                                                                |       |     |
| С                                                                       | 2                                                                                                                 | B2 1                                                              | A1    |     |
| Н                                                                       | 2                                                                                                                 | B3 1                                                              | A2 3  | D1  |
| Ν                                                                       | 2                                                                                                                 | B4 1                                                              | A3 3  | D2  |
| С                                                                       | 5                                                                                                                 | B5 2                                                              | A4 1  | D3  |
| Ν                                                                       | 6                                                                                                                 | B6 5                                                              | A5 2  | D4  |
| Н                                                                       | 7                                                                                                                 | B7 6                                                              | A6 5  | D5  |
| S                                                                       | 6                                                                                                                 | B8 5                                                              | A7 2  | D6  |
| С                                                                       | 7                                                                                                                 | B9 6                                                              | A8 5  | D7  |
| С                                                                       | 5                                                                                                                 | B10 2                                                             | A9 1  | D8  |
| Н                                                                       | 1                                                                                                                 | B11 2                                                             | A10 3 | D9  |
| Н                                                                       | 1                                                                                                                 | B12 2                                                             | A11 3 | D10 |
| Н                                                                       | 1                                                                                                                 | B13 2                                                             | A12 3 | D11 |
| Н                                                                       | 3                                                                                                                 | B14 2                                                             | A13 1 | D12 |
| Н                                                                       | 11                                                                                                                | B15 5                                                             | A14 2 | D13 |
| Н                                                                       | 11                                                                                                                | B16 5                                                             | A15 2 | D14 |
| Н                                                                       | 11                                                                                                                | B17 5                                                             | A16 2 | D15 |
| Н                                                                       | 10                                                                                                                | B18 7                                                             | A17 6 | D16 |
| Н                                                                       | 10                                                                                                                | B19 7                                                             | A18 6 | D17 |
| Н                                                                       | 10                                                                                                                | B20 7                                                             | A19 6 | D18 |
| С                                                                       | 3                                                                                                                 | B21 2                                                             | A20 1 | D19 |
| Н                                                                       | 22                                                                                                                | B22 3                                                             | A21 2 | D20 |
| Н                                                                       | 22                                                                                                                | B23 3                                                             | A22 2 | D21 |
| Н                                                                       | 22                                                                                                                | B24 3                                                             | A23 2 | D22 |
| B1<br>B2<br>B3<br>B4<br>B5<br>B6<br>B7<br>B8<br>B9<br>B10<br>B11<br>B12 | 1.4557<br>1.2762<br>2.2397<br>3.1821<br>1.3606<br>1.3607<br>1.0150<br>1.6892<br>1.4497<br>1.449<br>1.095<br>1.095 | 237<br>701<br>07<br>597<br>724<br>077<br>246<br>707<br>708<br>109 |       |     |
|                                                                         |                                                                                                                   |                                                                   |       |     |

| D12        | 1 005522    |
|------------|-------------|
| B13        | 1.095523    |
| B14        | 1.095273    |
| B15        | 1.093754    |
| B16        | 1.095671    |
| B17        | 1.093286    |
| B18        |             |
|            | 1.093715    |
| B19        | 1.093289    |
| B20        | 1.095708    |
| B21        | 1.504538    |
| B22        | 1.096302    |
| B23        | 1.096289    |
|            |             |
| B24        | 1.089971    |
| A1         | 122.568110  |
| A2         | 125.590662  |
| A3         | 132.352264  |
| A4         | 101.892446  |
| A5         | 113.793423  |
|            |             |
| A6         | 117.226997  |
| A7         | 123.099027  |
| A8         | 123.695380  |
| A9         | 134.262370  |
| A10        | 108.509599  |
|            | 108.503048  |
| A11        |             |
| A12        | 115.769535  |
| A13        | 114.856042  |
| A14        | 111.033669  |
| A15        | 111.775786  |
| A16        | 108.033520  |
|            |             |
| A17        | 111.016624  |
| A18        | 108.035103  |
| A19        | 111.789957  |
| A20        | 130.784654  |
| A21        | 109.221987  |
| A22        | 109.229639  |
| A23        | 114.402737  |
|            |             |
| D1         | 145.373132  |
| D2         | 151.123449  |
| D3         | 114.066421  |
| D4         | -6.217759   |
| D5         | -4.120913   |
| D6         | 173.088171  |
|            |             |
| D7         | -177.574987 |
| D8         | -70.440674  |
| D9         | -122.004795 |
| D10        | 122.363105  |
| D11        | 0.180566    |
|            | -179.995330 |
| D12        |             |
| D13        | -116.416000 |
| D14        | 123.524546  |
| D15        | 3.368130    |
| D16        | -58.144599  |
| D10<br>D17 | -177.922986 |
|            |             |
| D18        | 61.914645   |
| D19        | 0.008921    |
| D20        | 121.933831  |
| D21        | -122.013128 |
|            |             |

| D22                                                                                                       | -0.032016                                         |
|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| 1 2 1.0 2<br>2 3 2.0<br>3 15 1.0<br>4 5 1.0<br>5 6 1.5 2<br>6 7 1.5 9<br>7 8 1.0 2<br>8<br>9<br>10 19 1.0 | 12 1.0 13 1.0 14 1.0<br>22 1.0<br>11 1.0<br>9 1.0 |
| 17<br>18<br>19<br>20<br>21<br>22 23 1.0<br>23<br>24                                                       | 0 24 1.0 25 1.0                                   |
| 25                                                                                                        |                                                   |

| Selecte | ed example | e of the result | ting Z-matrix | for imine-  | Strecker adduct complex (2-     |
|---------|------------|-----------------|---------------|-------------|---------------------------------|
| methy   | lamino pro | opionitrile and | d N.N'-dimet  | hylthiourea | a; Figure 2b in the main text): |
| 0 1     |            | I · · · · ·     |               | <b>J</b>    | ., 8                            |
| С       |            |                 |               |             |                                 |
| Н       | 1          | B1              |               |             |                                 |
| Ν       | 1          | B2 2            | A1            |             |                                 |
| С       | 3          | B3 1            | A2 2          | D1          |                                 |
| Ν       | 4          | B4 3            | A3 1          | D2          |                                 |
| Η       | 5          | B5 4            | A4 3          | D3          |                                 |
| S       | 4          | B6 3            | A5 1          | D4          |                                 |
| С       | 5          | B7 4            | A6 3          | D5          |                                 |
| С       | 3          | B8 1            | A7 2          | D6          |                                 |
| Η       | 1          | B9 2            | A8 3          | D7          |                                 |
| Η       | 1          | B10 2           | A9 3          | D8          |                                 |
| Η       | 1          | B11 2           | A10 3         | D9          |                                 |
| Н       | 9          | B12 3           | A11 1         | D10         |                                 |
| Η       | 9          | B13 3           | A12 1         | D11         |                                 |
| Η       | 9          | B14 3           | A13 1         | D12         |                                 |
| Η       | 8          | B15 5           | A14 4         | D13         |                                 |
| Η       | 8          | B16 5           | A15 4         | D14         |                                 |
| Η       | 8          | B17 5           | A16 4         | D15         |                                 |
| С       | 1          | B18 2           | A17 3         | D16         |                                 |
| Н       | 19         | B19 1           | A18 2         | D17         |                                 |
| Н       | 19         | B20 1           | A19 2         | D18         |                                 |
| Η       | 19         | B21 1           | A20 2         | D19         |                                 |
| С       | 19         | B22 1           | A21 2         | D20         |                                 |
| Н       | 23         | B23 19          | A22 1         | D21         |                                 |

| N<br>H<br>C<br>N | 1<br>25<br>23<br>27 | B24 2<br>B25 1<br>B26 19<br>B27 23 | A23 3<br>A24 2<br>A25 1<br>A26 19 | D22<br>D23<br>D24<br>D25 |
|------------------|---------------------|------------------------------------|-----------------------------------|--------------------------|
|                  | 21                  | D27 23                             | A20 17                            | D25                      |
| B1               | 3.01522             |                                    |                                   |                          |
| B2               | 3.98258             |                                    |                                   |                          |
| В3<br>В4         | 1.35874<br>1.38005  |                                    |                                   |                          |
| Б4<br>В5         | 1.01209             |                                    |                                   |                          |
| B6               | 1.68141             |                                    |                                   |                          |
| B7               | 1.45701             |                                    |                                   |                          |
| B8               | 1.45236             |                                    |                                   |                          |
| B9               | 1.09233             |                                    |                                   |                          |
| B10              | 1.0925              | 83                                 |                                   |                          |
| B11              | 1.0992              |                                    |                                   |                          |
| B12              | 1.0923              |                                    |                                   |                          |
| B13              | 1.0930              |                                    |                                   |                          |
| B14              | 1.0965              |                                    |                                   |                          |
| B15              | 1.0932              |                                    |                                   |                          |
| B16<br>B17       | 1.0965<br>1.0906    |                                    |                                   |                          |
| B17<br>B18       | 3.0737              |                                    |                                   |                          |
| B10<br>B19       | 1.0921              |                                    |                                   |                          |
| B20              | 1.0924              |                                    |                                   |                          |
| B21              | 1.0923              |                                    |                                   |                          |
| B22              | 1.5355              | 76                                 |                                   |                          |
| B23              | 1.0962              |                                    |                                   |                          |
| B24              | 1.4721              |                                    |                                   |                          |
| B25              | 1.0182              |                                    |                                   |                          |
| B26              | 1.4847              |                                    |                                   |                          |
| B27              | 1.1614              |                                    |                                   |                          |
| A1<br>A2         | 5.51292<br>131.2826 |                                    |                                   |                          |
| A2<br>A3         | 113.1972            |                                    |                                   |                          |
| A4               | 114.4556            |                                    |                                   |                          |
| A5               | 123.8717            |                                    |                                   |                          |
| A6               | 122.0645            | 513                                |                                   |                          |
| A7               | 101.1184            | 426                                |                                   |                          |
| A8               | 83.6506             |                                    |                                   |                          |
| A9               | 89.8531             |                                    |                                   |                          |
| A10              | 152.593             |                                    |                                   |                          |
| A11              | 110.366             |                                    |                                   |                          |
| A12<br>A13       | 108.053<br>112.276  |                                    |                                   |                          |
| A13<br>A14       | 108.047             |                                    |                                   |                          |
| A15              | 112.514             |                                    |                                   |                          |
| A16              | 109.760             |                                    |                                   |                          |
| A17              | 62.7803             |                                    |                                   |                          |
| A18              | 96.4049             | 969                                |                                   |                          |
| A19              | 154.142             | 282                                |                                   |                          |
| A20              | 68.0463             |                                    |                                   |                          |
| A21              | 53.7047             |                                    |                                   |                          |
| A22              | 107.803             |                                    |                                   |                          |
| A23              | 39.641              |                                    |                                   |                          |
| A24              | 107.966             | 420                                |                                   |                          |

| A25 $110.905524$ A26 $177.230410$ D1 $35.971619$ D2 $-28.271400$ D3 $-25.964968$ D4 $151.056784$ D5 $-172.277881$ D6 $-168.998991$ D7 $18.902969$ D8 $-88.919579$ D9 $137.675719$ D10 $146.593476$ D11 $27.194684$ D12 $-93.495556$ D13 $-177.415610$ D14 $61.540940$ D15 $-58.412203$ D16 $85.971445$ D17 $-29.522778$ D18 $136.293714$ D19 $-137.815655$ D20 $79.665522$ D21 $-145.725867$ D22 $151.264711$ D23 $118.891813$ D24 $97.026468$ D25 $-132.139643$                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{array}{c} 1 \ 10 \ 1.0 \ 11 \ 1.0 \ 12 \ 1.0 \ 25 \ 1.0 \\ 2 \ 3 \ 1.0 \\ 3 \ 4 \ 1.5 \ 9 \ 1.0 \\ 4 \ 5 \ 1.5 \ 7 \ 1.0 \\ 5 \ 6 \ 1.0 \ 8 \ 1.0 \\ 6 \\ 7 \\ 8 \ 16 \ 1.0 \ 17 \ 1.0 \ 18 \ 1.0 \\ 9 \ 13 \ 1.0 \ 14 \ 1.0 \ 15 \ 1.0 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \ 20 \ 1.0 \ 21 \ 1.0 \ 22 \ 1.0 \ 23 \ 1.0 \\ 20 \\ 21 \\ 22 \\ 23 \ 24 \ 1.0 \ 25 \ 1.0 \ 27 \ 1.0 \\ 24 \\ 25 \ 26 \ 1.0 \\ 26 \\ 27 \ 28 \ 3.0 \\ 28 \end{array}$ |

Optimization to the energy minimum of a catalyst **6** derivative using Gaussian 98; method B3LYP; basis set 3-21G\* (gas phase) provided the same structure that was observed by NMR spectroscopy in solution (Figure 1a of the text). Following is the figure (all hydrogens omitted for clarity) of the calculated structure and the resulting Z-matrix (including hydrogens).



| Symbolic Z-1<br>0 1 | matr | ix:        |    |       |   |      |     |
|---------------------|------|------------|----|-------|---|------|-----|
| N                   |      |            |    |       |   |      |     |
| С                   | 1    | B1         |    |       |   |      |     |
| 0                   | 2    | B2         | 1  | A1    |   |      |     |
| С                   | 2    | B3         | 1  | A2    | 3 | D1   | 0   |
| С                   | 4    | <b>B</b> 4 | 2  | A3    | 1 | D2   | 0   |
| Ν                   | 4    | B5         | 2  | A4    | 1 | D3   | 0   |
| С                   | 5    | B6         | 4  | A5    | 2 | D4   | 0   |
| С                   | 5    | B7         | 4  | A6    |   | D5   | 0   |
| С                   | 5    | B8         | 4  | A7    |   | D6   | 0   |
| С                   | 6    | B9         | 4  | A8    | 2 | D7   | 0   |
| 0                   | 10   | B10        | 6  |       | 4 | D8   | 0   |
| Ν                   | 10   | B11        | 6  |       | 4 | D9   | 0   |
| С                   | 12   | B12        | 10 |       | 6 |      | ) 0 |
| Н                   | 6    | B13        | 4  | A12   | 2 | D11  | 0   |
| Н                   | 12   | B14        | 1  |       |   |      |     |
| С                   | 13   | B15        | 12 |       |   | 0 D1 |     |
| С                   | 13   | B16        | 12 |       |   | 0 D1 |     |
| С                   | 16   | B17        | 1. |       |   | 2 D1 |     |
| С                   | 13   | B18        | 12 |       |   | 0 D1 | 6 0 |
| С                   | 16   | B19        | 1. |       |   | 2 D1 |     |
| Ν                   | 20   | B20        | 1  | 6 A19 | 1 | 3 D1 | 8 0 |

| С  | 21 B21           | 20 A20           | 16 D19 0             |
|----|------------------|------------------|----------------------|
| C  | 21 B21<br>22 B22 | 20 A20<br>21 A21 | 10 D19 0<br>20 D20 0 |
| C  | 22 B22<br>23 B23 | 21 A21<br>22 A22 | 20 D20 0<br>21 D21 0 |
| C  | 23 B23<br>24 B24 | 22 A22<br>23 A23 |                      |
| C  |                  |                  |                      |
|    |                  | 24 A24           |                      |
| C  | 26 B26           | 25 A25           | 24 D24 0             |
| C  | 27 B27           | 26 A26           | 25 D25 0             |
| 0  | 25 B28           | 24 A27           | 23 D26 0             |
| 0  | 28 B29           | 27 A28           | 26 D27 0             |
| С  | 27 B30           | 26 A29           | 25 D28 0             |
| С  | 31 B31           | 27 A30           | 26 D29 0             |
| С  | 31 B32           | 27 A31           | 26 D30 0             |
| Н  | 33 B33           | 31 A32           | 27 D31 0             |
| Н  | 4 B34            | 2 A33            | 1 D32 0              |
| Н  | 7 B35            | 5 A34            | 4 D33 0              |
| Н  | 7 B36            | 5 A35            | 4 D34 0              |
| Н  | 7 B37            | 5 A36            | 4 D35 0              |
| Н  | 8 B38            | 5 A37            | 4 D36 0              |
| Н  | 8 B39            | 5 A38            | 4 D37 0              |
| Н  | 8 B40            | 5 A39            | 4 D38 0              |
| Н  | 9 B41            | 5 A40            | 4 D39 0              |
| H  | 9 B42            | 5 A41            | 4 D40 0              |
| Н  | 9 B43            | 5 A42            | 4 D41 0              |
| Н  | 18 B44           | 16 A43           | 13 D42 0             |
| H  | 18 B45           | 16 A44           | 13 D42 0<br>13 D43 0 |
| H  | 10 D45<br>19 B46 | 10 A44<br>13 A45 | 13 D43 0<br>12 D44 0 |
| H  | 19 B40<br>19 B47 | 13 A45<br>13 A46 | 12 D44 0<br>12 D45 0 |
| Н  | 19 B47<br>20 B48 | 15 A40<br>16 A47 | 12 D45 0<br>13 D46 0 |
|    |                  |                  |                      |
| H  |                  |                  | 20 D47 0             |
| H  | 24 B50           | 23 A49           | 22 D48 0             |
| Н  | 26 B51           | 25 A50           | 24 D49 0             |
| H  | 30 B52           | 28 A51           | 27 D50 0             |
| Н  | 32 B53           | 31 A52           | 27 D51 0             |
| Н  | 32 B54           | 31 A53           | 27 D52 0             |
| H  | 33 B55           | 31 A54           | 27 D53 0             |
| Н  | 33 B56           | 31 A55           | 27 D54 0             |
| Н  | 32 B57           | 31 A56           | 27 D55 0             |
| С  | 31 B58           | 27 A57           | 26 D56 0             |
| Н  | 59 B59           | 31 A58           | 27 D57 0             |
| Н  | 59 B60           | 31 A59           | 27 D58 0             |
| Н  | 59 B61           | 31 A60           | 27 D59 0             |
| Н  | 13 B62           | 12 A61           | 10 D60 0             |
| Н  | 17 B63           | 13 A62           | 12 D61 0             |
| Н  | 17 B64           | 13 A63           | 12 D62 0             |
| Н  | 16 B65           | 13 A64           | 12 D63 0             |
| Н  | 16 B66           | 13 A65           | 12 D64 0             |
| С  | 1 B67            | 2 A66            | 3 D65 0              |
| Н  | 68 B68           | 1 A67            | 2 D66 0              |
| Н  | 68 B69           | 1 A68            | 2 D67 0              |
| Н  | 68 B70           | 1 A69            | 2 D68 0              |
| C  | 1 B71            | 2 A70            | 3 D69 0              |
| H  | 72 B72           | 1 A71            | 2 D70 0              |
| H  | 72 B72<br>72 B73 | 1 A72            | 2 D70 0<br>2 D71 0   |
| Н  | 72 B73<br>72 B74 | 1 A73            | 2 D71 0<br>2 D72 0   |
| C  | 29 B75           | 25 A74           | 24 D72 0             |
| Н  | 76 B76           | 29 A74<br>29 A75 | 24 D73 0<br>25 D74 0 |
| 11 | 10 010           | 2) AIJ           | 25 074 0             |

| Н           | 76 | B77     | 29 |     | 25 |     |
|-------------|----|---------|----|-----|----|-----|
| Н           | 76 | B78     | 29 | A77 | 25 | D76 |
| Variables   |    | 27701   |    |     |    |     |
| B1          |    | .37791  |    |     |    |     |
| B2          |    | .24688  |    |     |    |     |
| B3          |    | .55597  |    |     |    |     |
| B4          |    | .56422  |    |     |    |     |
| B5          |    | .47848  |    |     |    |     |
| B6          |    | .54778  |    |     |    |     |
| B7          |    | .54895  |    |     |    |     |
| B8          |    | .55018  |    |     |    |     |
| B9          |    | .38729  |    |     |    |     |
| B10         |    | .24336  |    |     |    |     |
| B11         |    | .38548  |    |     |    |     |
| B12         |    | .46434  |    |     |    |     |
| B13         |    | .01527  |    |     |    |     |
| B14         |    | .01401  |    |     |    |     |
| B15         |    | 2.53026 |    |     |    |     |
| B16         |    | 2.54031 |    |     |    |     |
| B17         |    | .54479  |    |     |    |     |
| B18         |    | .54286  |    |     |    |     |
| B19         |    | .54554  |    |     |    |     |
| B20         |    | .47683  |    |     |    |     |
| B21         |    | .29382  |    |     |    |     |
| B22         |    | .45107  |    |     |    |     |
| B23         |    | .39859  |    |     |    |     |
| B24         |    | .38629  |    |     |    |     |
| B25         |    | .39909  |    |     |    |     |
| B26         |    | .40071  |    |     |    |     |
| B27         |    | .41578  |    |     |    |     |
| B28         |    | .3935   |    |     |    |     |
| B29         |    | .36153  |    |     |    |     |
| B30         |    | .54993  |    |     |    |     |
| B31         |    | .55098  |    |     |    |     |
| B32         |    |         |    |     |    |     |
| B33<br>B34  |    | .08826  |    |     |    |     |
| Б34<br>В35  |    | .10009  |    |     |    |     |
|             |    | .09735  |    |     |    |     |
| B36         |    | .0887   |    |     |    |     |
| B37<br>B38  |    | .09283  |    |     |    |     |
| B38<br>B39  |    | .09921  |    |     |    |     |
| B39<br>B40  |    | .09531  |    |     |    |     |
| B40<br>B41  |    | .09551  |    |     |    |     |
| B41<br>B42  |    | .0988   |    |     |    |     |
| B42<br>B43  |    | .09391  |    |     |    |     |
| B43<br>B44  |    | .09879  |    |     |    |     |
| B44<br>B45  |    | .09617  |    |     |    |     |
| B45<br>B46  |    | .09017  |    |     |    |     |
| B40<br>B47  |    | .09523  |    |     |    |     |
| B47<br>B48  |    | .10475  |    |     |    |     |
| B48<br>B49  |    | .10475  |    |     |    |     |
| B49<br>B50  |    | .08328  |    |     |    |     |
| B50<br>B51  |    | .08528  |    |     |    |     |
| B51<br>B52  |    | .0804   |    |     |    |     |
| B52<br>B53  |    | .035    |    |     |    |     |
| <b>D</b> 33 | 1  |         |    |     |    |     |

| B54                                                                                                                                                                    | 1.09523                                                                                                                                                                                                                                                                                                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| B55                                                                                                                                                                    | 1.09279                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                               |
| B56                                                                                                                                                                    | 1.09692                                                                                                                                                                                                                                                                                                                       |
| B57                                                                                                                                                                    | 1.0961                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                               |
| B58                                                                                                                                                                    | 1.55391                                                                                                                                                                                                                                                                                                                       |
| B59                                                                                                                                                                    | 1.09689                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                               |
| B60                                                                                                                                                                    | 1.09564                                                                                                                                                                                                                                                                                                                       |
| B61                                                                                                                                                                    | 1.09447                                                                                                                                                                                                                                                                                                                       |
| B62                                                                                                                                                                    | 1.094                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                               |
| B63                                                                                                                                                                    | 1.09803                                                                                                                                                                                                                                                                                                                       |
| B64                                                                                                                                                                    | 1.09624                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                               |
| B65                                                                                                                                                                    | 1.09681                                                                                                                                                                                                                                                                                                                       |
| B66                                                                                                                                                                    | 1.09584                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                               |
| B67                                                                                                                                                                    | 1.47366                                                                                                                                                                                                                                                                                                                       |
| B68                                                                                                                                                                    | 1.09641                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                        | 1.08928                                                                                                                                                                                                                                                                                                                       |
| B69                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                               |
| B70                                                                                                                                                                    | 1.09786                                                                                                                                                                                                                                                                                                                       |
| B71                                                                                                                                                                    | 1.46721                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                               |
| B72                                                                                                                                                                    | 1.09937                                                                                                                                                                                                                                                                                                                       |
| B73                                                                                                                                                                    | 1.08652                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                               |
| B74                                                                                                                                                                    | 1.09772                                                                                                                                                                                                                                                                                                                       |
| B75                                                                                                                                                                    | 1.45621                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                               |
| B76                                                                                                                                                                    | 1.09765                                                                                                                                                                                                                                                                                                                       |
| B77                                                                                                                                                                    | 1.09757                                                                                                                                                                                                                                                                                                                       |
| B78                                                                                                                                                                    | 1.09065                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                               |
| A1                                                                                                                                                                     | 120.72517                                                                                                                                                                                                                                                                                                                     |
| A2                                                                                                                                                                     | 117.01515                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                               |
| A3                                                                                                                                                                     | 113.81247                                                                                                                                                                                                                                                                                                                     |
| A 4                                                                                                                                                                    | 111 00022                                                                                                                                                                                                                                                                                                                     |
| A4                                                                                                                                                                     | 111.00652                                                                                                                                                                                                                                                                                                                     |
| A4                                                                                                                                                                     | 111.00832                                                                                                                                                                                                                                                                                                                     |
| A5                                                                                                                                                                     | 113.23394                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                        | 113.23394                                                                                                                                                                                                                                                                                                                     |
| A5<br>A6                                                                                                                                                               | 113.23394<br>108.2498                                                                                                                                                                                                                                                                                                         |
| A5<br>A6<br>A7                                                                                                                                                         | 113.23394<br>108.2498<br>108.23234                                                                                                                                                                                                                                                                                            |
| A5<br>A6                                                                                                                                                               | 113.23394<br>108.2498<br>108.23234<br>121.15722                                                                                                                                                                                                                                                                               |
| A5<br>A6<br>A7<br>A8                                                                                                                                                   | 113.23394<br>108.2498<br>108.23234<br>121.15722                                                                                                                                                                                                                                                                               |
| A5<br>A6<br>A7<br>A8<br>A9                                                                                                                                             | 113.23394<br>108.2498<br>108.23234<br>121.15722<br>123.14424                                                                                                                                                                                                                                                                  |
| A5<br>A6<br>A7<br>A8<br>A9<br>A10                                                                                                                                      | 113.23394<br>108.2498<br>108.23234<br>121.15722<br>123.14424<br>114.12773                                                                                                                                                                                                                                                     |
| A5<br>A6<br>A7<br>A8<br>A9<br>A10                                                                                                                                      | 113.23394<br>108.2498<br>108.23234<br>121.15722<br>123.14424<br>114.12773                                                                                                                                                                                                                                                     |
| A5<br>A6<br>A7<br>A8<br>A9<br>A10<br>A11                                                                                                                               | 113.23394<br>108.2498<br>108.23234<br>121.15722<br>123.14424<br>114.12773<br>119.17522                                                                                                                                                                                                                                        |
| A5<br>A6<br>A7<br>A8<br>A9<br>A10<br>A11<br>A12                                                                                                                        | 113.23394<br>108.2498<br>108.23234<br>121.15722<br>123.14424<br>114.12773<br>119.17522<br>116.14609                                                                                                                                                                                                                           |
| A5<br>A6<br>A7<br>A8<br>A9<br>A10<br>A11                                                                                                                               | 113.23394<br>108.2498<br>108.23234<br>121.15722<br>123.14424<br>114.12773<br>119.17522                                                                                                                                                                                                                                        |
| A5<br>A6<br>A7<br>A8<br>A9<br>A10<br>A11<br>A12<br>A13                                                                                                                 | 113.23394<br>108.2498<br>108.23234<br>121.15722<br>123.14424<br>114.12773<br>119.17522<br>116.14609<br>121.48891                                                                                                                                                                                                              |
| A5<br>A6<br>A7<br>A8<br>A9<br>A10<br>A11<br>A12<br>A13<br>A14                                                                                                          | 113.23394<br>108.2498<br>108.23234<br>121.15722<br>123.14424<br>114.12773<br>119.17522<br>116.14609<br>121.48891<br>146.10246                                                                                                                                                                                                 |
| A5<br>A6<br>A7<br>A8<br>A9<br>A10<br>A11<br>A12<br>A13                                                                                                                 | 113.23394<br>108.2498<br>108.23234<br>121.15722<br>123.14424<br>114.12773<br>119.17522<br>116.14609<br>121.48891                                                                                                                                                                                                              |
| A5<br>A6<br>A7<br>A8<br>A9<br>A10<br>A11<br>A12<br>A13<br>A14<br>A15                                                                                                   | 113.23394<br>108.2498<br>108.23234<br>121.15722<br>123.14424<br>114.12773<br>119.17522<br>116.14609<br>121.48891<br>146.10246<br>146.98971                                                                                                                                                                                    |
| A5<br>A6<br>A7<br>A8<br>A9<br>A10<br>A11<br>A12<br>A13<br>A14<br>A15<br>A16                                                                                            | 113.23394<br>108.2498<br>108.23234<br>121.15722<br>123.14424<br>114.12773<br>119.17522<br>116.14609<br>121.48891<br>146.10246<br>146.98971<br>90.31198                                                                                                                                                                        |
| A5<br>A6<br>A7<br>A8<br>A9<br>A10<br>A11<br>A12<br>A13<br>A14<br>A15<br>A16<br>A17                                                                                     | 113.23394<br>108.2498<br>108.23234<br>121.15722<br>123.14424<br>114.12773<br>119.17522<br>116.14609<br>121.48891<br>146.10246<br>146.98971<br>90.31198<br>112.36749                                                                                                                                                           |
| A5<br>A6<br>A7<br>A8<br>A9<br>A10<br>A11<br>A12<br>A13<br>A14<br>A15<br>A16                                                                                            | 113.23394<br>108.2498<br>108.23234<br>121.15722<br>123.14424<br>114.12773<br>119.17522<br>116.14609<br>121.48891<br>146.10246<br>146.98971<br>90.31198                                                                                                                                                                        |
| A5<br>A6<br>A7<br>A8<br>A9<br>A10<br>A11<br>A12<br>A13<br>A14<br>A15<br>A16<br>A17<br>A18                                                                              | 113.23394<br>108.2498<br>108.23234<br>121.15722<br>123.14424<br>114.12773<br>119.17522<br>116.14609<br>121.48891<br>146.10246<br>146.98971<br>90.31198<br>112.36749<br>35.10283                                                                                                                                               |
| A5<br>A6<br>A7<br>A8<br>A9<br>A10<br>A11<br>A12<br>A13<br>A14<br>A15<br>A16<br>A17<br>A18<br>A19                                                                       | 113.23394<br>108.2498<br>108.23234<br>121.15722<br>123.14424<br>114.12773<br>119.17522<br>116.14609<br>121.48891<br>146.10246<br>146.98971<br>90.31198<br>112.36749<br>35.10283<br>110.03427                                                                                                                                  |
| A5<br>A6<br>A7<br>A8<br>A9<br>A10<br>A11<br>A12<br>A13<br>A14<br>A15<br>A16<br>A17<br>A18                                                                              | 113.23394<br>108.2498<br>108.23234<br>121.15722<br>123.14424<br>114.12773<br>119.17522<br>116.14609<br>121.48891<br>146.10246<br>146.98971<br>90.31198<br>112.36749<br>35.10283                                                                                                                                               |
| A5<br>A6<br>A7<br>A8<br>A9<br>A10<br>A11<br>A12<br>A13<br>A14<br>A15<br>A16<br>A17<br>A18<br>A19<br>A20                                                                | 113.23394<br>108.2498<br>108.23234<br>121.15722<br>123.14424<br>114.12773<br>119.17522<br>116.14609<br>121.48891<br>146.10246<br>146.98971<br>90.31198<br>112.36749<br>35.10283<br>110.03427<br>119.82911                                                                                                                     |
| A5<br>A6<br>A7<br>A8<br>A9<br>A10<br>A11<br>A12<br>A13<br>A14<br>A15<br>A16<br>A17<br>A18<br>A19<br>A20<br>A21                                                         | 113.23394<br>108.2498<br>108.23234<br>121.15722<br>123.14424<br>114.12773<br>119.17522<br>116.14609<br>121.48891<br>146.10246<br>146.98971<br>90.31198<br>112.36749<br>35.10283<br>110.03427<br>119.82911<br>122.75859                                                                                                        |
| A5<br>A6<br>A7<br>A8<br>A9<br>A10<br>A11<br>A12<br>A13<br>A14<br>A15<br>A16<br>A17<br>A18<br>A19<br>A20<br>A21<br>A22                                                  | $\begin{array}{c} 113.23394\\ 108.2498\\ 108.23234\\ 121.15722\\ 123.14424\\ 114.12773\\ 119.17522\\ 116.14609\\ 121.48891\\ 146.10246\\ 146.98971\\ 90.31198\\ 112.36749\\ 35.10283\\ 110.03427\\ 119.82911\\ 122.75859\\ 118.95156\end{array}$                                                                              |
| A5<br>A6<br>A7<br>A8<br>A9<br>A10<br>A11<br>A12<br>A13<br>A14<br>A15<br>A16<br>A17<br>A18<br>A19<br>A20<br>A21                                                         | 113.23394<br>108.2498<br>108.23234<br>121.15722<br>123.14424<br>114.12773<br>119.17522<br>116.14609<br>121.48891<br>146.10246<br>146.98971<br>90.31198<br>112.36749<br>35.10283<br>110.03427<br>119.82911<br>122.75859                                                                                                        |
| A5<br>A6<br>A7<br>A8<br>A9<br>A10<br>A11<br>A12<br>A13<br>A14<br>A15<br>A16<br>A17<br>A18<br>A19<br>A20<br>A21<br>A22<br>A23                                           | $\begin{array}{c} 113.23394\\ 108.2498\\ 108.23234\\ 121.15722\\ 123.14424\\ 114.12773\\ 119.17522\\ 116.14609\\ 121.48891\\ 146.10246\\ 146.98971\\ 90.31198\\ 112.36749\\ 35.10283\\ 110.03427\\ 119.82911\\ 122.75859\\ 118.95156\\ 120.00438\\ \end{array}$                                                               |
| A5<br>A6<br>A7<br>A8<br>A9<br>A10<br>A11<br>A12<br>A13<br>A14<br>A15<br>A16<br>A17<br>A18<br>A19<br>A20<br>A21<br>A22<br>A23<br>A24                                    | $\begin{array}{c} 113.23394\\ 108.2498\\ 108.23234\\ 121.15722\\ 123.14424\\ 114.12773\\ 119.17522\\ 116.14609\\ 121.48891\\ 146.10246\\ 146.98971\\ 90.31198\\ 112.36749\\ 35.10283\\ 110.03427\\ 119.82911\\ 122.75859\\ 118.95156\\ 120.00438\\ 118.63279 \end{array}$                                                     |
| A5<br>A6<br>A7<br>A8<br>A9<br>A10<br>A11<br>A12<br>A13<br>A14<br>A15<br>A16<br>A17<br>A18<br>A19<br>A20<br>A21<br>A22<br>A23                                           | $\begin{array}{c} 113.23394\\ 108.2498\\ 108.23234\\ 121.15722\\ 123.14424\\ 114.12773\\ 119.17522\\ 116.14609\\ 121.48891\\ 146.10246\\ 146.98971\\ 90.31198\\ 112.36749\\ 35.10283\\ 110.03427\\ 119.82911\\ 122.75859\\ 118.95156\\ 120.00438\\ \end{array}$                                                               |
| A5<br>A6<br>A7<br>A8<br>A9<br>A10<br>A11<br>A12<br>A13<br>A14<br>A15<br>A16<br>A17<br>A18<br>A19<br>A20<br>A21<br>A22<br>A23<br>A24<br>A25                             | $\begin{array}{c} 113.23394\\ 108.2498\\ 108.23234\\ 121.15722\\ 123.14424\\ 114.12773\\ 119.17522\\ 116.14609\\ 121.48891\\ 146.10246\\ 146.98971\\ 90.31198\\ 112.36749\\ 35.10283\\ 110.03427\\ 119.82911\\ 122.75859\\ 118.95156\\ 120.00438\\ 118.63279\\ 123.49792\end{array}$                                          |
| A5<br>A6<br>A7<br>A8<br>A9<br>A10<br>A11<br>A12<br>A13<br>A14<br>A15<br>A16<br>A17<br>A18<br>A19<br>A20<br>A21<br>A22<br>A23<br>A24<br>A25<br>A26                      | 113.23394<br>108.2498<br>108.23234<br>121.15722<br>123.14424<br>114.12773<br>119.17522<br>116.14609<br>121.48891<br>146.10246<br>146.98971<br>90.31198<br>112.36749<br>35.10283<br>110.03427<br>119.82911<br>122.75859<br>118.95156<br>120.00438<br>118.63279<br>123.49792<br>117.77938                                       |
| A5<br>A6<br>A7<br>A8<br>A9<br>A10<br>A11<br>A12<br>A13<br>A14<br>A15<br>A16<br>A17<br>A18<br>A19<br>A20<br>A21<br>A22<br>A23<br>A24<br>A25                             | $\begin{array}{c} 113.23394\\ 108.2498\\ 108.23234\\ 121.15722\\ 123.14424\\ 114.12773\\ 119.17522\\ 116.14609\\ 121.48891\\ 146.10246\\ 146.98971\\ 90.31198\\ 112.36749\\ 35.10283\\ 110.03427\\ 119.82911\\ 122.75859\\ 118.95156\\ 120.00438\\ 118.63279\\ 123.49792\end{array}$                                          |
| A5<br>A6<br>A7<br>A8<br>A9<br>A10<br>A11<br>A12<br>A13<br>A14<br>A15<br>A16<br>A17<br>A18<br>A19<br>A20<br>A21<br>A22<br>A23<br>A24<br>A25<br>A26<br>A27               | 113.23394<br>108.2498<br>108.23234<br>121.15722<br>123.14424<br>114.12773<br>119.17522<br>116.14609<br>121.48891<br>146.10246<br>146.98971<br>90.31198<br>112.36749<br>35.10283<br>110.03427<br>119.82911<br>122.75859<br>118.95156<br>120.00438<br>118.63279<br>123.49792<br>117.77938<br>116.41702                          |
| A5<br>A6<br>A7<br>A8<br>A9<br>A10<br>A11<br>A12<br>A13<br>A14<br>A15<br>A16<br>A17<br>A18<br>A19<br>A20<br>A21<br>A22<br>A23<br>A24<br>A25<br>A26<br>A27<br>A28        | 113.23394<br>108.2498<br>108.23234<br>121.15722<br>123.14424<br>114.12773<br>119.17522<br>116.14609<br>121.48891<br>146.10246<br>146.98971<br>90.31198<br>112.36749<br>35.10283<br>110.03427<br>119.82911<br>122.75859<br>118.95156<br>120.00438<br>118.63279<br>123.49792<br>117.77938<br>116.41702<br>121.9508              |
| A5<br>A6<br>A7<br>A8<br>A9<br>A10<br>A11<br>A12<br>A13<br>A14<br>A15<br>A16<br>A17<br>A18<br>A19<br>A20<br>A21<br>A22<br>A23<br>A24<br>A25<br>A26<br>A27<br>A28<br>A29 | 113.23394<br>108.2498<br>108.23234<br>121.15722<br>123.14424<br>114.12773<br>119.17522<br>116.14609<br>121.48891<br>146.10246<br>146.98971<br>90.31198<br>112.36749<br>35.10283<br>110.03427<br>119.82911<br>122.75859<br>118.95156<br>120.00438<br>118.63279<br>123.49792<br>117.77938<br>116.41702<br>121.9508<br>117.12898 |
| A5<br>A6<br>A7<br>A8<br>A9<br>A10<br>A11<br>A12<br>A13<br>A14<br>A15<br>A16<br>A17<br>A18<br>A19<br>A20<br>A21<br>A22<br>A23<br>A24<br>A25<br>A26<br>A27<br>A28        | 113.23394<br>108.2498<br>108.23234<br>121.15722<br>123.14424<br>114.12773<br>119.17522<br>116.14609<br>121.48891<br>146.10246<br>146.98971<br>90.31198<br>112.36749<br>35.10283<br>110.03427<br>119.82911<br>122.75859<br>118.95156<br>120.00438<br>118.63279<br>123.49792<br>117.77938<br>116.41702<br>121.9508              |
| A5<br>A6<br>A7<br>A8<br>A9<br>A10<br>A11<br>A12<br>A13<br>A14<br>A15<br>A16<br>A17<br>A18<br>A19<br>A20<br>A21<br>A22<br>A23<br>A24<br>A25<br>A26<br>A27<br>A28<br>A29 | 113.23394<br>108.2498<br>108.23234<br>121.15722<br>123.14424<br>114.12773<br>119.17522<br>116.14609<br>121.48891<br>146.10246<br>146.98971<br>90.31198<br>112.36749<br>35.10283<br>110.03427<br>119.82911<br>122.75859<br>118.95156<br>120.00438<br>118.63279<br>123.49792<br>117.77938<br>116.41702<br>121.9508<br>117.12898 |

| A32                              | 111.63737                                                                |
|----------------------------------|--------------------------------------------------------------------------|
|                                  |                                                                          |
| A33                              | 106.14158                                                                |
| A34                              | 108.32793                                                                |
|                                  |                                                                          |
| A35                              | 109.40145                                                                |
|                                  | 110 (2105                                                                |
| A36                              | 112.63195                                                                |
| A37                              | 111.32942                                                                |
|                                  |                                                                          |
| A38                              | 109.19633                                                                |
|                                  |                                                                          |
| A39                              | 111.19055                                                                |
| A40                              | 110.77232                                                                |
|                                  |                                                                          |
| A41                              | 109.45774                                                                |
| A42                              | 109.47194                                                                |
|                                  |                                                                          |
| A43                              | 109.24995                                                                |
| A44                              | 109.6469                                                                 |
| A44                              |                                                                          |
| A45                              | 109.32544                                                                |
| -                                |                                                                          |
| A46                              | 108.55464                                                                |
| A47                              | 109.06709                                                                |
|                                  |                                                                          |
| A48                              | 121.22349                                                                |
| A49                              | 120 00212                                                                |
| -                                | 120.99213                                                                |
| A50                              | 118.65008                                                                |
|                                  |                                                                          |
| A51                              | 107.99163                                                                |
| A52                              | 112.33078                                                                |
|                                  |                                                                          |
| A53                              | 110.16859                                                                |
| A54                              | 111.12335                                                                |
|                                  |                                                                          |
| A55                              | 107.79737                                                                |
|                                  |                                                                          |
| A56                              | 109.09485                                                                |
| A57                              | 108.38429                                                                |
|                                  |                                                                          |
| A58                              | 109.77108                                                                |
| A59                              | 111.22957                                                                |
|                                  |                                                                          |
| A60                              | 109.93512                                                                |
| A61                              | 104.3915                                                                 |
|                                  |                                                                          |
| A62                              | 91.61034                                                                 |
|                                  |                                                                          |
| A63                              | 144.68439                                                                |
| A64                              | 90.01697                                                                 |
|                                  |                                                                          |
| A65                              | 144.30072                                                                |
| A66                              | 117.62067                                                                |
|                                  |                                                                          |
| A67                              | 110.01124                                                                |
| A68                              | 107.0382                                                                 |
|                                  |                                                                          |
| A69                              | 110.48987                                                                |
|                                  |                                                                          |
| A70                              | 127.17575                                                                |
| A71                              | 110.77438                                                                |
|                                  |                                                                          |
| A72                              | 110.32411                                                                |
| A73                              | 109.28869                                                                |
|                                  |                                                                          |
| A74                              | 117.90664                                                                |
| A75                              | 111.90703                                                                |
|                                  |                                                                          |
| A76                              | 111.90925                                                                |
|                                  |                                                                          |
| A77                              | 104.98726                                                                |
| D1                               | -174.97216                                                               |
|                                  |                                                                          |
| D2                               |                                                                          |
| $D_{2}$                          | 172.92094                                                                |
|                                  |                                                                          |
| D3                               | -57.19889                                                                |
|                                  |                                                                          |
| D3<br>D4                         | -57.19889<br>59.89443                                                    |
| D3<br>D4<br>D5                   | -57.19889<br>59.89443<br>-179.02921                                      |
| D3<br>D4                         | -57.19889<br>59.89443                                                    |
| D3<br>D4<br>D5<br>D6             | -57.19889<br>59.89443<br>-179.02921<br>-62.01234                         |
| D3<br>D4<br>D5<br>D6<br>D7       | -57.19889<br>59.89443<br>-179.02921<br>-62.01234<br>-43.70959            |
| D3<br>D4<br>D5<br>D6<br>D7       | -57.19889<br>59.89443<br>-179.02921<br>-62.01234<br>-43.70959            |
| D3<br>D4<br>D5<br>D6<br>D7<br>D8 | -57.19889<br>59.89443<br>-179.02921<br>-62.01234<br>-43.70959<br>3.33987 |
| D3<br>D4<br>D5<br>D6<br>D7       | -57.19889<br>59.89443<br>-179.02921<br>-62.01234<br>-43.70959            |
| D3<br>D4<br>D5<br>D6<br>D7<br>D8 | -57.19889<br>59.89443<br>-179.02921<br>-62.01234<br>-43.70959<br>3.33987 |

| D11 | 158.16273  |
|-----|------------|
|     |            |
| D12 | -6.73402   |
| D13 | -115.98529 |
|     |            |
| D14 | 112.87055  |
| D15 | -134.24379 |
|     |            |
| D16 | 115.71943  |
| D17 | -7.16314   |
| D18 | 120.09487  |
|     |            |
| D19 | 114.57599  |
| D20 | 179.88701  |
|     |            |
| D21 | 178.35154  |
| D22 | -179.67675 |
|     |            |
| D23 | 1.10892    |
| D24 | -0.48953   |
|     |            |
| D25 | -1.28705   |
| D26 | -179.23457 |
|     |            |
| D27 | -177.33593 |
| D28 | -179.95149 |
| D29 | -50.84911  |
|     |            |
| D30 | -170.8978  |
| D31 | -62.63932  |
|     |            |
| D32 | 56.80967   |
| D33 | -173.62152 |
|     |            |
| D34 | -54.23142  |
| D35 | 67.57077   |
|     |            |
| D36 | 56.97602   |
| D37 | 176.23957  |
|     |            |
| D38 | -65.31227  |
| D39 | -56.82477  |
| D40 | -175.9341  |
|     |            |
| D41 | 64.0879    |
| D42 | 93.0285    |
|     |            |
| D43 | -149.37133 |
| D44 | 61.94659   |
|     |            |
| D45 | -55.59575  |
| D46 | -119.5129  |
| D47 | -0.38606   |
|     |            |
| D48 | 0.31102    |
| D49 | 179.53152  |
|     |            |
| D50 | -176.48374 |
| D51 | 61.13493   |
|     |            |
| D52 | -60.08847  |
| D53 | 57.84253   |
| D54 | 177.09801  |
|     |            |
| D55 | -179.2681  |
| D56 | 68.2336    |
|     |            |
| D57 | -177.92236 |
| D58 | -57.68025  |
|     |            |
| D59 | 62.70808   |
| D60 | -3.05731   |
|     |            |
| D61 | -117.3486  |
| D62 | 6.99653    |
|     | 115.55696  |
| D63 |            |
| D64 | -6.28774   |
| D65 | -4.32683   |
|     |            |
| D66 | -122.99338 |
|     |            |

| -3.00875   |
|------------|
| 116.57464  |
| 170.83295  |
| -107.78505 |
| 14.62921   |
| 133.33393  |
| -179.81204 |
| -61.34278  |
| 61.34813   |
| -179.99249 |
|            |

| Z-matrix for the catalyst-imine complex (includ | ing hydrogens); Figure 2b-c of the main |
|-------------------------------------------------|-----------------------------------------|
| text:                                           |                                         |

| 0 1 |    |          |    |            |    |             |
|-----|----|----------|----|------------|----|-------------|
| С   |    |          |    |            |    |             |
| Ν   | 1  | 1.455100 |    |            |    |             |
| С   | 2  | 1.307659 | 1  | 120.326986 |    |             |
| 0   | 3  | 1.217380 | 2  | 124.951408 | 1  | 0.150436    |
| С   | 3  | 1.537574 | 2  | 113.113208 | 1  | -179.982473 |
| С   | 5  | 1.547259 | 3  | 111.304327 | 2  | 121.863903  |
| Ν   | 5  | 1.464335 | 3  | 110.818912 | 2  | -115.964654 |
| С   | 6  | 1.537108 | 5  | 110.094633 | 3  | 61.342520   |
| С   | 6  | 1.530865 | 5  | 109.663057 | 3  | -178.541730 |
| С   | 6  | 1.533359 | 5  | 109.590417 | 3  | -58.870713  |
| С   | 7  | 1.315610 | 5  | 120.314565 | 3  | -10.053245  |
| 0   | 11 | 1.215877 | 7  | 120.721550 | 5  | -0.005474   |
| Ν   | 11 | 1.319129 | 7  | 119.034418 | 5  | -179.990229 |
| С   | 13 | 1.466249 | 11 | 122.751257 | 7  | 179.840369  |
| Н   | 7  | 1.011999 | 5  | 119.597747 | 3  | 169.883662  |
| Ν   | 13 | 2.904829 | 11 | 100.906104 | 7  | -0.019423   |
| С   | 14 | 2.503556 | 13 | 144.236575 | 11 | -125.366467 |
| С   | 14 | 2.493638 | 13 | 144.759766 | 11 | 115.671826  |
| С   | 18 | 1.531964 | 14 | 90.072562  | 13 | 124.005363  |
| С   | 14 | 1.529160 | 13 | 109.292019 | 11 | 115.369939  |
| С   | 14 | 1.529334 | 13 | 109.066819 | 11 | -124.952615 |
| С   | 1  | 1.436670 | 2  | 112.630728 | 3  | 176.434088  |
| С   | 22 | 1.405807 | 1  | 120.034799 | 2  | 179.997704  |
| С   | 23 | 1.404255 | 22 | 119.919026 | 1  | 179.993126  |
| С   | 24 | 1.404425 | 23 | 120.015986 | 22 | -0.009202   |
| С   | 25 | 1.404770 | 24 | 120.046423 | 23 | -0.081602   |
| С   | 22 | 1.403141 | 1  | 119.944134 | 2  | -0.069812   |
| Ν   | 21 | 1.431013 | 14 | 108.705660 | 13 | 60.147439   |
| С   | 28 | 1.339587 | 21 | 119.989678 | 14 | -119.783391 |
| С   | 29 | 1.320516 | 28 | 122.036228 | 21 | 179.957090  |
| С   | 30 | 1.404100 | 29 | 120.429102 | 28 | 179.974290  |
| С   | 31 | 1.405305 | 30 | 119.940692 | 29 | 179.950946  |
| С   | 32 | 1.404137 | 31 | 120.067753 | 30 | 0.112073    |
| С   | 33 | 1.403600 | 32 | 119.956263 | 31 | -0.108519   |
| С   | 34 | 1.404311 | 33 | 120.046419 | 32 | 0.101346    |
| 0   | 32 | 1.392087 | 31 | 119.942920 | 30 | 179.960959  |
| 0   | 35 | 1.391273 | 34 | 120.038204 | 33 | 179.995640  |
| С   | 36 | 1.315207 | 32 | 106.044677 | 31 | -179.949661 |
| 0   | 38 | 1.207858 | 36 | 119.918747 | 32 | 0.134995    |
| С   | 38 | 1.448154 | 36 | 118.521426 | 32 | -179.912822 |
| С   | 40 | 1.544513 | 38 | 107.343896 | 36 | -179.762586 |

| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | С | 40 | 1.542914 38 | 110.411370 | 36 61.565281  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|----|-------------|------------|---------------|
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C | 40 | 1.543116 38 | 110.761871 | 36 -59.246233 |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |    |             |            |               |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |    |             |            |               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |    |             |            |               |
| H   13   1.013096   11   118.574677   7   -0.038520     C   16   1.471633   13   117.445992   11   -101.842503     C   48   1.530919   16   119.998372   13   154.970391     C   51   2.771308   16   153.003071   13   138.431560     C   51   1.387154   48   119.979739   16   -0.081275     C   51   1.387154   48   119.957641   16   179.957536     C   53   1.385803   51   59.990805   54   0.017075     C   50   1.531473   16   109.436884   13   25.604244     C   58   1.332800   50   119.960560   16   -179.702030     H   1   B1   2   A1   3   D1     H   8   B3   6   A3   5   D3     H   8   B4   6   A4   5   D4     H   8   B5   6   A5   D6 <td></td> <td></td> <td></td> <td></td> <td></td> |   |    |             |            |               |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |    |             |            |               |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |    |             |            |               |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |    |             |            |               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |    |             |            |               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |    |             |            |               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |    |             |            |               |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |    |             |            |               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |    |             |            |               |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |    |             |            |               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |    |             |            |               |
| H1B12A13D1H5B23A22D2H8B36A35D3H8B46A45D4H8B56A55D5H9B66A65D6H9B76A75D7H9B86A85D8H10B106A105D10H10B116A115D11H14B1213A1211D12H17B1314A1313D13H17B1414A1413D14H18B1514A1513D16H19B1718A1714D17H19B1818A1814D18H20B2014A2013D20H23B2222A221D22H24B2323A2322D23H25B2424A2423D24H26B2525A2524D25H27B2622A261D26H29B2728A2721D27H33B2932A29D28                                                                                                                                                                                                                                                                                                                                                                           |   |    |             |            |               |
| H5B23A22D2H8B36A35D3H8B46A45D4H8B56A55D5H9B66A65D7H9B76A75D7H9B86A85D8H10B106A105D10H10B116A115D11H14B1213A1211D12H17B1314A1313D13H17B1414A1413D16H19B1718A1714D17H19B1718A1814D18H20B1914A1913D19H20B2014A2013D20H21B2114A2113D21H23B2222A221D22H24B2323A2322D23H25B2424A2423D24H26B2555A2524D25H27B2622A261D26H29B2728A2721D27H31B2830A28<                                                                                                                                                                                                                                                                                                                                                                       |   |    |             |            |               |
| H8B36A35D3H8B46A45D4H8B56A55D5H9B66A65D6H9B76A75D7H9B86A85D8H10B96A95D9H10B106A105D10H10B116A115D11H14B1213A1211D12H17B1314A1313D13H17B1414A1413D14H18B1514A1513D16H19B1718A1714D17H19B1818A1814D18H20B2014A2013D20H21B2114A2113D21H23B2222A221D22H24B2323A2322D23H25B2424A2423D24H26B2525A2524D25H27B2622A261D26H29B2728A2721D27H31B2830A28                                                                                                                                                                                                                                                                                                                                                                       |   |    |             |            |               |
| H8B46A45D4H8B56A55D5H9B66A65D6H9B76A75D7H9B86A85D8H10B96A95D9H10B106A105D10H10B116A115D11H14B1213A1211D12H17B1314A1313D13H17B1414A1413D14H18B1514A1513D15H18B1614A1613D16H19B1718A1714D17H19B1818A1814D18H20B2014A2013D20H21B2114A2113D21H23B2222A221D22H24B2323A2322D23H25B2424A2423D24H26B2525A2524D25H27B2622A261D26H29B2728A2721D27H31B2830A2                                                                                                                                                                                                                                                                                                                                                                  |   |    |             |            |               |
| H8B56A55D5H9B66A65D6H9B76A75D7H9B86A85D8H10B96A95D9H10B106A105D10H10B116A115D11H14B1213A1211D12H17B1314A1313D13H17B1314A1513D16H18B1514A1613D16H19B1718A1714D17H19B1818A1814D18H20B2014A2013D20H21B2114A2113D21H23B2222A221D22H24B2323A2322D23H25B2424A2423D24H26B2525A2524D25H27B2622A261D26H29B2728A2721D27H31B2830A2829D28H33B2932A2931D29H37B3035                                                                                                                                                                                                                                                                                                                                                              |   |    |             |            |               |
| H9B76A75D7H9B86A85D8H10B96A95D9H10B106A105D10H10B116A115D11H14B1213A1211D12H17B1314A1313D13H17B1414A1413D14H18B1514A1513D15H18B1614A1613D16H19B1718A1714D17H19B1818A1814D18H20B2014A2013D20H21B2114A2113D21H23B2222A221D22H24B2323A2322D23H25B2424A2423D24H26B2525A2524D25H27B2622A261D26H33B2932A2931D29H33B2932A2933D31H41B3340A3338D32H42B3640A3638D36H42B36 <td>Н</td> <td></td> <td>B5 6</td> <td></td> <td>D5</td>                                                                                                                                                                                                                                                                                           | Н |    | B5 6        |            | D5            |
| H9B86A85D8H10B96A95D9H10B106A105D10H10B116A115D11H14B1213A1211D12H17B1314A1313D13H17B1414A1413D14H18B1514A1513D15H18B1614A1613D16H19B1718A1714D17H19B1818A1814D18H20B2014A2013D20H21B2114A2113D21H23B2222A221D22H24B2323A2322D23H25B2424A2423D24H26B2525A2524D25H27B2622A261D26H29B2728A2721D27H31B2830A2829D28H33B2932A2931D29H37B3035A3034D30H41B31<40                                                                                                                                                                                                                                                                                                                                                           | Н | 9  | B6 6        | A6 5       | D6            |
| H10B96A95D9H10B106A105D10H10B116A115D11H14B1213A1211D12H17B1314A1313D13H17B1414A1413D14H18B1514A1513D15H18B1614A1613D16H19B1718A1714D17H19B1818A1814D18H20B2014A2013D20H21B2114A2113D21H23B2222A221D22H24B2323A2322D23H25B2424A2423D24H26B2525A2524D25H27B2622A261D26H29B2728A2721D27H31B2830A2829D28H33B2932A2931D29H37B3035A3034D30H41B3140A3138D31H41B3340A3338D33H42 <td>Н</td> <td>9</td> <td>B7 6</td> <td>A7 5</td> <td>D7</td>                                                                                                                                                                                                                                                                             | Н | 9  | B7 6        | A7 5       | D7            |
| H10B106A105D10H10B116A115D11H14B1213A1211D12H17B1314A1313D13H17B1414A1413D14H18B1514A1513D15H18B1614A1613D16H19B1718A1714D17H19B1818A1814D18H20B1914A1913D19H20B2014A2013D20H21B2114A2113D21H23B2222A221D22H24B2323A2322D23H25B2424A2423D24H26B2525A2524D25H27B2622A261D26H29B2728A2721D27H31B2830A2829D28H33B2932A2931D29H37B3035A3034D30H41B3140A3138D31H41B3340A3338D33H4                                                                                                                                                                                                                                                                                                                                       | Н | 9  | B8 6        |            | D8            |
| H10B116A115D11H14B1213A1211D12H17B1314A1313D13H17B1414A1413D14H18B1514A1513D15H18B1614A1613D16H19B1718A1714D17H19B1818A1814D18H20B1914A1913D19H20B2014A2013D20H21B2114A2113D21H23B2222A221D22H24B2323A2322D23H25B2424A2423D24H26B2525A2524D25H27B2622A261D26H29B2728A2721D27H31B2830A2829D28H33B2932A2931D29H37B3035A3034D30H41B3140A3138D31H41B3340A3338D33H42B3440A3438D34H <td< td=""><td>Н</td><td>10</td><td>B9 6</td><td></td><td></td></td<>                                                                                                                                                                                                                                                                | Н | 10 | B9 6        |            |               |
| H14B1213A1211D12H17B1314A1313D13H17B1414A1413D14H18B1514A1513D15H18B1614A1613D16H19B1718A1714D17H19B1818A1814D18H20B1914A1913D19H20B2014A2013D20H21B2114A2113D21H23B2222A221D22H24B2323A2322D23H25B2424A2423D24H26B2525A2524D25H27B2622A261D26H29B2728A2721D27H31B2830A2829D28H33B2932A2931D29H37B3035A3034D30H41B3140A3138D31H41B3340A3338D33H42B3540A3538D35H42B3640A3638D36H<                                                                                                                                                                                                                                                                                                                                   |   |    |             |            | D10           |
| H17B1314A1313D13H17B1414A1413D14H18B1514A1513D15H18B1614A1613D16H19B1718A1714D17H19B1818A1814D18H20B1914A1913D19H20B2014A2013D20H21B2114A2113D21H23B2222A221D22H24B2323A2322D23H25B2424A2423D24H26B2525A2524D25H27B2622A261D26H29B2728A2721D27H31B2830A2829D28H33B2932A2931D29H37B3035A3034D30H41B3140A3138D31H41B3340A3338D33H42B3540A3538D35H42B3640A3638D36H43B3740A3738D37 <td></td> <td></td> <td></td> <td></td> <td>D11</td>                                                                                                                                                                                                                                                                                |   |    |             |            | D11           |
| H17B1414A1413D14H18B1514A1513D15H18B1614A1613D16H19B1718A1714D17H19B1818A1814D18H20B2014A2013D20H21B2114A2113D21H23B2222A221D22H24B2323A2322D23H25B2424A2423D24H26B2525A2524D25H27B2622A261D26H29B2728A2721D27H31B2830A2829D28H33B2932A2931D29H37B3035A3034D30H41B3140A3138D31H41B3340A3338D33H42B3640A3638D36H42B3640A3638D36H43B3740A3738D37                                                                                                                                                                                                                                                                                                                                                                     |   |    |             |            |               |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |    |             |            |               |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |    |             |            |               |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |    |             |            |               |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |    |             |            |               |
| H20B1914A1913D19H20B2014A2013D20H21B2114A2113D21H23B2222A221D22H24B2323A2322D23H25B2424A2423D24H26B2525A2524D25H27B2622A261D26H29B2728A2721D27H31B2830A2829D28H33B2932A2931D29H37B3035A3034D30H41B3140A3138D31H41B3340A3338D33H42B3440A3438D34H42B3540A3638D35H43B3740A3738D37                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |    |             |            |               |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |    |             |            |               |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |    |             |            |               |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |    |             |            |               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |    |             |            |               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |    |             |            |               |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |    |             |            |               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |    |             |            |               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |    |             |            |               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |    |             |            |               |
| H33B2932A2931D29H37B3035A3034D30H41B3140A3138D31H41B3240A3238D32H41B3340A3338D33H42B3440A3438D34H42B3540A3538D35H42B3640A3638D36H43B3740A3738D37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |    |             |            |               |
| H37B3035A3034D30H41B3140A3138D31H41B3240A3238D32H41B3340A3338D33H42B3440A3438D34H42B3540A3538D35H42B3640A3638D36H43B3740A3738D37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |    |             |            |               |
| H41B3240A3238D32H41B3340A3338D33H42B3440A3438D34H42B3540A3538D35H42B3640A3638D36H43B3740A3738D37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Н | 37 | B30 35      | A30 34     | D30           |
| H41B3340A3338D33H42B3440A3438D34H42B3540A3538D35H42B3640A3638D36H43B3740A3738D37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Н | 41 | B31 40      | A31 38     | D31           |
| H42B3440A3438D34H42B3540A3538D35H42B3640A3638D36H43B3740A3738D37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Н | 41 | B32 40      | A32 38     | D32           |
| H42B3540A3538D35H42B3640A3638D36H43B3740A3738D37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |    | B33 40      |            | D33           |
| H42B3640A3638D36H43B3740A3738D37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |    |             |            |               |
| H 43 B37 40 A37 38 D37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |    |             |            |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |    |             |            |               |
| H 43 B38 40 A38 38 D38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |    |             |            |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Н | 43 | B38 40      | A38 38     | D38           |

| Н | 43 | B39 40 | A39 38 | D39 |
|---|----|--------|--------|-----|
| Н | 45 | B40 44 | A40 34 | D40 |
| Н | 45 | B41 44 | A41 34 | D41 |
| Н | 45 | B42 44 | A42 34 | D42 |
| Н | 46 | B43 44 | A43 34 | D43 |
| Н | 46 | B44 44 | A44 34 | D44 |
| Н | 46 | B45 44 | A45 34 | D45 |
| Н | 47 | B46 44 | A46 34 | D46 |
| Н | 47 | B47 44 | A47 34 | D47 |
| Н | 47 | B48 44 | A48 34 | D48 |
| Н | 50 | B49 16 | A49 13 | D49 |
| Н | 50 | B50 16 | A50 13 | D50 |
| Н | 52 | B51 48 | A51 16 | D51 |
| Н | 52 | B52 48 | A52 16 | D52 |
| Н | 52 | B53 48 | A53 16 | D53 |
| Н | 53 | B54 57 | A54 54 | D54 |
| Н | 54 | B55 51 | A55 48 | D55 |
| Н | 55 | B56 51 | A56 48 | D56 |
| Н | 56 | B57 55 | A57 51 | D57 |
| Н | 57 | B58 53 | A58 51 | D58 |
| Н | 58 | B59 50 | A59 16 | D59 |
| Н | 59 | B60 58 | A60 50 | D60 |
| Н | 59 | B61 58 | A61 50 | D61 |
|   |    |        |        |     |

| <b>D</b> 1 | 1 070000 |
|------------|----------|
| B1         | 1.070000 |
| B2         | 1.070000 |
| B3         | 1.070000 |
| B4         | 1.070000 |
| B5         | 1.070000 |
| B6         | 1.070000 |
| B7         | 1.070000 |
| B8         | 1.070000 |
| B9         | 1.070000 |
| B10        | 1.070000 |
| B11        | 1.070000 |
| B12        | 1.070000 |
| B13        | 1.070000 |
| B14        | 1.070000 |
| B15        | 1.070000 |
| B16        | 1.070000 |
| B17        | 1.070000 |
| B18        | 1.070000 |
| B19        | 1.070000 |
| B20        | 1.070000 |
| B21        | 1.070000 |
| B22        | 1.070000 |
| B23        | 1.070000 |
| B24        | 1.070000 |
| B25        | 1.070000 |
| B26        | 1.070000 |
| B27        | 1.070000 |
| B28        | 1.070000 |
| B29        | 1.070000 |
| B30        | 0.960000 |
| B31        | 1.070000 |
| B32        | 1.070000 |
|            |          |

| B33<br>B34<br>B35 | 1.070000<br>1.070000<br>1.070000 |
|-------------------|----------------------------------|
| B36               | 1.070000                         |
| B37               | 1.070000                         |
| B38               | 1.070000                         |
| B39<br>B40        | 1.070000                         |
| в40<br>B41        | 1.070000<br>1.070000             |
| B41<br>B42        | 1.070000                         |
| B43               | 1.070000                         |
| B44               | 1.070000                         |
| B45               | 1.070000                         |
| B46               | 1.070000                         |
| B47<br>B48        | 1.070000<br>1.070000             |
| B40<br>B49        | 1.070000                         |
| B50               | 1.070000                         |
| B51               | 1.070000                         |
| B52               | 1.070000                         |
| B53               | 1.070000                         |
| B54<br>B55        | 1.070000<br>1.070000             |
| B56               | 1.070000                         |
| B57               | 1.070000                         |
| B58               | 1.070000                         |
| B59               | 1.070000                         |
| B60               | 1.070000                         |
| B61               | 1.070000                         |
| A1<br>A2          | 123.684636<br>107.311453         |
| A3                | 109.471221                       |
| A4                | 109.471221                       |
| A5                | 109.471221                       |
| A6                | 109.471221                       |
| A7                | 109.471221                       |
| A8<br>A9          | 109.471221<br>109.471221         |
| A9<br>A10         | 109.471221                       |
| A11               | 109.471221                       |
| A12               | 109.866854                       |
| A13               | 141.765216                       |
| A14               | 85.675338                        |
| A15<br>A16        | 85.029188<br>142.112676          |
| A10<br>A17        | 106.813008                       |
| A18               | 106.813008                       |
| A19               | 106.852493                       |
| A20               | 106.852493                       |
| A21               | 109.971157                       |
| A22               | 120.040487<br>119.992007         |
| A23<br>A24        | 119.992007                       |
| A25               | 120.041946                       |
| A26               | 119.959342                       |
| A27               | 118.981886                       |
|                   |                                  |

| A28        | 120.029654  |
|------------|-------------|
|            |             |
| A29        | 120.021868  |
| A30        | 109.471221  |
| A31        | 109.471221  |
| A32        | 109.471221  |
| A33        | 109.471221  |
|            | 109.471221  |
| A34        |             |
| A35        | 109.471221  |
| A36        | 109.471221  |
| A37        | 109.471221  |
| A38        | 109.471221  |
| A39        | 109.471221  |
| A40        | 109.471221  |
|            |             |
| A41        | 109.471221  |
| A42        | 109.471221  |
| A43        | 109.471221  |
| A44        | 109.471221  |
| A45        | 109.471221  |
| A46        | 109.471221  |
|            |             |
| A47        | 109.471221  |
| A48        | 109.471221  |
| A49        | 106.785975  |
| A50        | 106.785975  |
| A51        | 109.471221  |
| A52        | 109.471221  |
|            |             |
| A53        | 109.471221  |
| A54        | 119.991139  |
| A55        | 120.045682  |
| A56        | 120.009257  |
| A57        | 120.007307  |
| A58        | 119.977930  |
|            |             |
| A59        | 120.019720  |
| A60        | 120.000000  |
| A61        | 120.000000  |
| D1         | -3.565912   |
| D2         | 3.118839    |
| D3         | 180.000000  |
| D4         | 60.000000   |
|            |             |
| D5         | -60.000000  |
| D6         | -180.000000 |
| D7         | 60.000000   |
| D8         | -60.000000  |
| D9         | 180.000000  |
| D10        | -60.000000  |
| D10<br>D11 |             |
|            | 60.000000   |
| D12        | -4.723939   |
| D13        | -7.064176   |
| D14        | 128.516025  |
| D15        | -129.103199 |
| D16        | 5.765422    |
| D10<br>D17 | -84.663267  |
|            |             |
| D18        | 145.771523  |
| D19        | 64.507789   |
| D20        | -65.108182  |
| D21        | -60.026839  |
| D22        | -0.006874   |
|            | 0.000071    |

| D23 | 179.990798  |
|-----|-------------|
| D24 | 179.918398  |
| D25 | -179.879157 |
| D26 | 0.046110    |
| D27 | -0.042910   |
| D28 | -0.049054   |
| D29 | 179.891481  |
| D30 | -10.884943  |
| D31 | -180.000000 |
| D32 | -60.000000  |
| D33 | 60.000000   |
| D34 | -180.000000 |
| D35 | 60.000000   |
| D36 | -60.000000  |
| D37 | 180.000000  |
| D38 | -60.000000  |
| D39 | 60.000000   |
| D40 | 0.000000    |
| D41 | 120.000000  |
| D42 | -120.000000 |
| D43 | 0.000000    |
| D44 | -120.000000 |
| D45 | 120.000000  |
| D46 | -180.000000 |
| D47 | -60.000000  |
| D48 | 60.000000   |
| D49 | 140.838962  |
| D50 | -89.630475  |
| D51 | 179.999998  |
| D52 | -60.000000  |
| D53 | 60.000000   |
| D54 | 179.954276  |
| D55 | 0.013566    |
| D56 | -0.010802   |
| D57 | 179.960425  |
| D58 | 179.982915  |
| D59 | 0.297970    |
| D60 | -0.000001   |
| D61 | 180.000000  |
|     |             |

### Notes and References

<sup>(1) (</sup>a) Larrow, J. F.; Jacobsen, E. N.; Gao, Y.; Hong, Y.; Nie, X.; Zepp, C. M. J. Org. Chem. **1994**, 59, 1939; (b) Larrow, J.F.; Jacobsen, E.N. Org. Synth. **1997**, vol. 75, 1.

 <sup>(2) (</sup>a) Sigman, M.S.; Jacobsen, E.N. J. Am. Chem. Soc. 1998, 120, 4901; (b) Sigman, M.S.; Vachal, P.; Jacobsen, E.N. Angew. Chem. Int. Ed. 2000, 39, 1279; (c) Vachal, P.; Jacobsen, E.N. Org. Lett. 2000, 2, 867.

<sup>(3)</sup> Cappon, J.J.; Witters, K.D.; Baart, J.; Verdegem, P.J.E.; Hoek, A.C. Recl. Trav. Chim. Pays-Bas 1994; 113; 318.

<sup>(4) (</sup>a) Su, J.T.; Vachal, P.; Jacobsen, E.N. *Adv. Synth. Catal.* **2001**, *343*, 197; (b) Su, J.T.; Vachal, P.; Jacobsen, E.N. *Org Synth.*, submitted.

<sup>(5)</sup> The procedure for the thiourea formation is based on: Wenzel, A.; Jacobsen, E.N. *Unpublished results*.

- (6) Gaussian 98 (version 5.4), M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, P. Salvador, J. J. Dannenberg, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, and J. A. Pople, Gaussian, Inc., Pittsburgh PA, 2001.
- (7) Koradi, R.; Billeter, M.; Wüthrich, K. *J Mol Graphics* **1996**, *14*, 51: MOLMOL: a program for display and analysis of macromolecular structures.