Supporting information

Cross-Modulation of Physico-Chemical Character of Aglycones in Dinucleoside ($3^{\prime} \rightarrow 5^{\prime}$) monophosphates by the Nearest Neighbor Interaction in the Stacked State

S. Acharya, P. Acharya, A. Földesi and J. Chattopadhyaya*
Department of Bioorganic Chemistry, Box 581, Biomedical Center, Uppsala University, S-751 23 Uppsala, Sweden
E-mail: jyoti@bioorgchem.uu.se, Fax:+4618-554495, Tel: +4618-4714577

Table of contents

1. Legends for Figures S1-S5.
2. Figure S1: Plots of aromatic proton chemical shift as a function of pH for compounds 1 - 10 .
3. Figure S2: Hill plot analysis of the pH -dependent chemical shifts of aromatic protons for compounds $\mathbf{1} \mathbf{- 1 0}$ to calculate the pK_{a} of nucleobase.
4. Figure S3: Plots of fraction protonation or deprotonation as a function of pH for compounds 1-10.
5. Figure S4: chamical shift change over the pH-range, $\Delta \delta\left[\delta_{\mathrm{N}}-\delta_{\mathrm{P} / \mathrm{D}}\right.$, in ppm; $\mathrm{N}, \mathrm{P}, \mathrm{D}$ stands for neutral, protonated and deprotonated state], showing a direct evidence for atom $-\pi \sigma$ interaction between the nearest neighbor necleobases.
6. Figure S5: Bar plots showing dimerisation shift of the aromatic protons of compounds 1-6.
7. Table S1: Endocyclic ${ }^{3} J_{\mathrm{HH}}$, percentage population of N-type pseudorotamer (\% N) and corresponding free energy ($\Delta G_{\mathrm{N} /(298 \mathrm{~K})}^{\mathrm{o}}$) and stacking free energy ($\Delta G_{\text {Stacking }}^{\mathrm{o}}$) from ${ }^{1} \mathrm{H}$ NMR at 298 K for $\mathbf{1}-\mathbf{1 0}$ at acidic ($\mathrm{pH}=1.9$), neutral $(\mathrm{pH}=6.6)$ and alkaline ($\mathrm{pH}=10.3$) state.
8. Table S2: Pseudorotational parameters determined by PSEUROT (v5.4) calculations based on ${ }^{1} \mathrm{H}$ NMR derived endocyclic ${ }^{3} J_{\mathrm{HH}}$ at acidic ($\mathrm{pH}=1.9$), neutral ($\mathrm{pH}=6.6$) and alkaline $(\mathrm{pH}=10.3)$ state at 298 K for $\mathbf{1}-\mathbf{1 0}$.
9. Table S3: Dimerisation shift ($\delta_{\mathrm{NpEt}}-\delta_{\mathrm{NpN}}$, in ppm) estimated from ${ }^{1} \mathrm{H}$ chemical shift at 298 K for aromatic protons of monomers, $\mathbf{7 - 1 0}$, in comparison with dimers, $\mathbf{1}-\mathbf{6}$, at acidic $(\mathrm{pH}=1.9)$, neutral $(\mathrm{pH}=6.6)$ and alkaline $(\mathrm{pH}=10.3)$ state.

Legends for Figure S1:

Figure S1a: pH dependant ${ }^{1} \mathrm{H}$ chemical shift of aromatic protons (H8A, H2A, H8G) of ApG within the pH values of $0.03 \leq \mathrm{pH} \leq 7.56$. Chemical shift variations at 63 different pH values $(0.03 \leq \mathrm{pH} \leq 7.56)$ have been measured in an interval of $0.1-0.2 \mathrm{pH}$ units to obtain the sigmoidal curves. pK_{a} values obtained from Hill plot of $\delta \mathrm{H} 8 \mathrm{~A}, \delta \mathrm{H} 2 \mathrm{~A}$ and $\delta H 8 G$ are shown in the respective graphs.

Figure S1b: pH dependant ${ }^{1} \mathrm{H}$ chemical shift of aromatic protons (H8A, H2A, H8G) of ApG within the pH values of $7.56 \leq \mathrm{pH} \leq 11.63$. Chemical shift variations at 30 different pH values $(7.56 \leq \mathrm{pH} \leq 11.63)$ have been measured in an interval of $0.1-0.2 \mathrm{pH}$ units to obtain the sigmoidal curves. pK_{a} values obtained from Hill plot of $\delta \mathrm{H} 8 \mathrm{~A}, \delta \mathrm{H} 2 \mathrm{~A}$ and $\delta H 8 G$ are shown in the respective graphs.

Figure S1c: pH dependant ${ }^{1} \mathrm{H}$ chemical shift of aromatic protons (H8A, H2A, H8G) of GpA within the pH values of $0.12 \leq \mathrm{pH} \leq 7.29$. Chemical shift variations at 61 different pH values $(0.12 \leq \mathrm{pH} \leq 7.29)$ have been measured in an interval of $0.1-0.2 \mathrm{pH}$ units to obtain the sigmoidal curves. pK_{a} values obtained from Hill plot of $\delta \mathrm{H} 8 \mathrm{~A}, \delta \mathrm{H} 2 \mathrm{~A}$ and $\delta H 8 G$ are shown in the respective graphs.

Figure S1d: pH dependant ${ }^{1} \mathrm{H}$ chemical shift of aromatic protons (H8A, H8G) of GpA within the pH values of $6.93 \leq \mathrm{pH} \leq 10.70$. Chemical shift variations at 35 different pH
values ($6.93 \leq \mathrm{pH} \leq 10.70$) have been measured in an interval of $0.1-0.2 \mathrm{pH}$ units to obtain the sigmoidal curves. pK_{a} values obtained from Hill plot of $\delta \mathrm{H} 8 \mathrm{~A}$ and $\delta \mathrm{H} 8 \mathrm{G}$ are shown in the respective graphs. H2A of GpA did not show any significant change in chemical shift with pH hence plot for H 2 A is not shown.

Figure S1e: pH dependant ${ }^{1} \mathrm{H}$ chemical shift of aromatic protons (H6U, H5U, H6C, H 5 C) of CpU within the pH values of $1.87 \leq \mathrm{pH} \leq 6.92$. Chemical shift variations at 35 different pH values $(1.87 \leq \mathrm{pH} \leq 6.92)$ have been measured in an interval of $0.1-0.2 \mathrm{pH}$ units to obtain the sigmoidal curves. pK_{a} values obtained from Hill plot of $\delta \mathrm{H} 6 \mathrm{U}, \delta \mathrm{H} 5 \mathrm{U}$, $\delta \mathrm{H} 6 \mathrm{C}$ and $\delta \mathrm{H} 5 \mathrm{C}$ are shown in the respective graphs.

Figure S1f: pH dependant ${ }^{1} \mathrm{H}$ chemical shift of aromatic protons (H6U, H5U, H6C, H5C) of CpU within the pH values of $6.92 \leq \mathrm{pH} \leq 11.32$. Chemical shift variations at 25 different pH values $(6.92 \leq \mathrm{pH} \leq 11.32)$ have been measured in an interval of $0.1-0.2$ pH units to obtain the sigmoidal curves. pK_{a} values obtained from Hill plot of $\delta \mathrm{H} 6 \mathrm{U}$, $\delta \mathrm{H} 5 \mathrm{U}, \delta \mathrm{H} 6 \mathrm{C}$ and $\delta \mathrm{H} 5 \mathrm{C}$ are shown in the respective graphs.

Figure S1g: pH dependant ${ }^{1} \mathrm{H}$ chemical shift of aromatic protons (H5U, H6C, H5C) of UpC within the pH values of $1.97 \leq \mathrm{pH} \leq 6.79$. Chemical shift variations at 25 different pH values $(1.97 \leq \mathrm{pH} \leq 6.79)$ have been measured in an interval of $0.1-0.2 \mathrm{pH}$ units to obtain the sigmoidal curves. pK_{a} values obtained from Hill plot of $\delta \mathrm{H} 5 \mathrm{U}, \delta \mathrm{H} 6 \mathrm{C}$ and $\delta \mathrm{H} 5 \mathrm{C}$ are shown in the respective graphs. H6U of UpC did not show any significant change in chemical shift with pH hence plot for H6U is not shown.

Figure S1h: pH dependant ${ }^{1} \mathrm{H}$ chemical shift of aromatic protons (H6U, H5U, H6C, H 5 C) of UpC within the pH values of $6.79 \leq \mathrm{pH} \leq 11.42$. Chemical shift variations at 30 different pH values $(6.79 \leq \mathrm{pH} \leq 11.42)$ have been measured in an interval of $0.1-0.2$ pH units to obtain the sigmoidal curves. pK_{a} values obtained from Hill plot of $\delta \mathrm{H} 6 \mathrm{U}$, $\delta \mathrm{H} 5 \mathrm{U}, \delta \mathrm{H} 6 \mathrm{C}$ and $\delta \mathrm{H} 5 \mathrm{C}$ are shown in the respective graphs.

Figure S1i: pH dependant ${ }^{1} \mathrm{H}$ chemical shift of aromatic protons (H8A, H2A, H6U, H5U) of UpA within the pH values of $1.11 \leq \mathrm{pH} \leq 6.98$. Chemical shift variations at 43 different pH values $(1.11 \leq \mathrm{pH} \leq 6.98)$ have been measured in an interval of $0.1-0.2 \mathrm{pH}$ units to obtain the sigmoidal curves. pK_{a} values obtained from Hill plot of $\mathrm{H} 8 \mathrm{~A}, \mathrm{H} 2 \mathrm{~A}$, H6U and H5U are shown in the respective graphs.

Figure $\mathbf{S} \mathbf{1 j}$: pH dependant ${ }^{1} \mathrm{H}$ chemical shift of aromatic protons (H6U, H5U) of UpA within the pH values of $6.6 \leq \mathrm{pH} \leq 11.10$. Chemical shift variations at 47 different pH values $(6.6 \leq \mathrm{pH} \leq 11.10)$ have been measured in an interval of $0.1-0.2 \mathrm{pH}$ units to obtain the sigmoidal curves. pK_{a} values obtained from Hill plot of H 6 U and H 5 U are shown in the respective graphs. H8A and H2A of UpA did not show any significant change in chemical shift with pH hence plots for H 8 A and H 2 A are not shown.

Figure S1k: pH dependant ${ }^{1} \mathrm{H}$ chemical shift of aromatic protons (H8A, H2A, H6U, H 5 U) of ApU within the pH values of $1.35 \leq \mathrm{pH} \leq 6.99$. Chemical shift variations at 36 different pH values $(1.35 \leq \mathrm{pH} \leq 6.99)$ have been measured in an interval of $0.1-0.2 \mathrm{pH}$ units to obtain the sigmoidal curves. pK_{a} values obtained from Hill plot of $\mathrm{H} 8 \mathrm{~A}, \mathrm{H} 2 \mathrm{~A}$, H 6 U and H 5 U are shown in the respective graphs.

Figure 11: pH dependant ${ }^{1} \mathrm{H}$ chemical shift of aromatic protons (H8A,H2A,H6U,H5U) of ApU within the pH values of $6.99 \leq \mathrm{pH} \leq 10.96$. Chemical shift variations at 39 different pH values $(6.99 \leq \mathrm{pH} \leq 10.96$) have been measured in an interval of $0.1-0.2 \mathrm{pH}$ units to obtain the sigmoidal curves in all cases. pK_{a} values obtained from Hill plot of $\mathrm{H} 8 \mathrm{~A}, \mathrm{H} 2 \mathrm{~A}$, H6U and H5U are shown in the respective graphs.

Figure S1m: pH dependant ${ }^{1} \mathrm{H}$ chemical shift of aromatic protons (H8A, H2A) of ApEt within the pH values of $1.62 \leq \mathrm{pH} \leq 6.38$. Chemical shift variations at 18 different pH values ($1.62 \leq \mathrm{pH} \leq 6.38$) have been measured in an interval of $0.1-0.2 \mathrm{pH}$ units to obtain the sigmoidal curves. pK_{a} values obtained from Hill plot of H8A and H2A are shown in the respective graphs.

Figure S1n: pH dependant ${ }^{1} \mathrm{H}$ chemical shift of aromatic proton (H8G) of GpEt within the pH values of $6.89 \leq \mathrm{pH} \leq 11.00$. Chemical shift variations at 15 different pH values ($6.89 \leq \mathrm{pH} \leq 11.0$) have been measured in an interval of $0.1-0.2 \mathrm{pH}$ units to obtain the sigmoidal curve. pK_{a} value obtained from Hill plot of H 8 G is shown in the respective graph.

Figure S10: pH dependant ${ }^{1} \mathrm{H}$ chemical shift of aromatic protons (H6U, H5U) of UpEt within the pH values of $6.65 \leq \mathrm{pH} \leq 11.44$. Chemical shift variations at 23 different pH values $(6.65 \leq \mathrm{pH} \leq 11.44)$ have been measured in an interval of $0.1-0.2 \mathrm{pH}$ units to obtain the sigmoidal curves. pK_{a} values obtained from Hill plot of H 6 U and H 5 U are shown in the respective graphs.

Figure S1p: pH dependant ${ }^{1} \mathrm{H}$ chemical shift of aromatic protons (H6C, H5C) of CpEt within the pH values of $1.66 \leq \mathrm{pH} \leq 6.39$. Chemical shift variations at 22 different pH values ($1.66 \leq \mathrm{pH} \leq 6.39$) have been measured in an interval of $0.1-0.2 \mathrm{pH}$ units to obtain the sigmoidal curves. pK_{a} values obtained from Hill plot of H 6 C and H 5 C are shown in the respective graphs.

Legends for Figure S2:

Figure S2a: The Hill plots for $\delta \mathrm{H} 8 \mathrm{~A}, \delta \mathrm{H} 2 \mathrm{~A}, \delta \mathrm{H} 8 \mathrm{G}$ of ApG in the $0.03 \leq \mathrm{pH} \leq 7.56 . \Delta_{\mathrm{T}}$ for H8A $\quad(0.03 \leq \mathrm{pH} \leq 7.56)=0.297 \mathrm{ppm}$. The plot of $\log \left(\left(\Delta_{\mathrm{T}}-\Delta\right) / \Delta\right)$ vs. pH gave a straight line $(\mathrm{R}=1.00)$ with a slope $=1.34(\sigma=0.04)$ and $\mathrm{pK}_{\mathrm{a}}=2.88(\sigma=0.02) . \Delta_{\mathrm{T}}$ for H2A $(0.03 \leq \mathrm{pH} \leq 7.56)=0.322 \mathrm{ppm}$. The plot of $\log \left(\left(\Delta_{\mathrm{T}}-\Delta\right) / \Delta\right)$ vs. pH gave a straight line $(\mathrm{R}=0.99)$ with a slope $=1.36(\sigma=0.04)$ and $\mathrm{pK}_{\mathrm{a}}=2.83(\sigma=0.02) . \Delta_{\mathrm{T}}$ for H8G $(0.03$ $\leq \mathrm{pH} \leq 7.56)=1.124 \mathrm{ppm}$. The plot of $\log \left(\left(\Delta_{\mathrm{T}}-\Delta\right) / \Delta\right)$ vs. pH gave a straight line $(\mathrm{R}=$ $0.99)$ with a slope $=0.92(\sigma=0.04)$ and $\mathrm{pK}_{\mathrm{a}}=1.64(\sigma=0.02)$. The values of correlation coefficient $\mathrm{R}, \mathrm{pK}_{\mathrm{a}}$ obtained from Hill plot analysis, and the Hill slope values of $\delta \mathrm{H} 8 \mathrm{~A}$, $\delta \mathrm{H} 2 \mathrm{~A}, \delta \mathrm{H} 8 \mathrm{G}$ are shown in the respective graphs.

Figure S2b: The Hill plots for $\delta \mathrm{H} 8 \mathrm{~A}, \delta \mathrm{H} 2 \mathrm{~A}, \delta \mathrm{H} 8 \mathrm{G}$ of ApG in the $7.56 \leq \mathrm{pH} \leq 11.63 . \Delta_{\mathrm{T}}$ for H8A $(7.56 \leq \mathrm{pH} \leq 11.63)=0.009 \mathrm{ppm}$. The plot of $\log \left(\left(\Delta_{\mathrm{T}}-\Delta\right) / \Delta\right)$ vs. pH gave a straight line $(\mathrm{R}=0.99)$ with a slope $=0.97(\sigma=0.04)$ and $\mathrm{pK}_{\mathrm{a}}=9.71(\sigma=0.02) . \Delta_{\mathrm{T}}$ for H2A $(7.56 \leq \mathrm{pH} \leq 11.63)=0.032 \mathrm{ppm}$. The plot of $\log \left(\left(\Delta_{\mathrm{T}}-\Delta\right) / \Delta\right)$ vs. pH gave a straight line $(\mathrm{R}=0.99)$ with a slope $=0.98(\sigma=0.04)$ and $\mathrm{pK}_{\mathrm{a}}=9.65(\sigma=0.02) . \Delta_{\mathrm{T}}$ for H8G $(7.56 \leq \mathrm{pH} \leq 11.63)=0.068 \mathrm{ppm}$. The plot of $\log \left(\left(\Delta_{\mathrm{T}}-\Delta\right) / \Delta\right)$ vs. pH gave a straight line $(\mathrm{R}=1.00)$ with a slope $=0.92(\sigma=0.03)$ and $\mathrm{pK}_{\mathrm{a}}=9.42(\sigma=0.01)$. The values of correlation coefficient $\mathrm{R}, \mathrm{pK}_{\mathrm{a}}$ obtained from Hill plot analysis, and the Hill slope values of $\delta \mathrm{H} 8 \mathrm{~A}, \delta \mathrm{H} 2 \mathrm{~A}, \delta \mathrm{H} 8 \mathrm{G}$ are shown in the respective graphs.

Figure S2c: The Hill plots for $\delta \mathrm{H} 8 \mathrm{~A}, \delta \mathrm{H} 2 \mathrm{~A}, \delta \mathrm{H} 8 \mathrm{G}$ of GpA in the $0.12 \leq \mathrm{pH} \leq 7.29 . \Delta_{\mathrm{T}}$ for H8A $\quad(0.12 \leq \mathrm{pH} \leq 7.29)=0.205 \mathrm{ppm}$. The plot of $\log \left(\left(\Delta_{\mathrm{T}}-\Delta\right) / \Delta\right) \mathrm{vs}$. pH gave a straight line $(\mathrm{R}=0.99)$ with a slope $=1.02(\sigma=0.02)$ and $\mathrm{pK}_{\mathrm{a}}=3.22(\sigma=0.01) . \Delta_{\mathrm{T}}$ for H2A $(0.12 \leq \mathrm{pH} \leq 7.29)=0.301 \mathrm{ppm}$. The plot of $\log \left(\left(\Delta_{\mathrm{T}}-\Delta\right) / \Delta\right)$ vs. pH gave a straight line $(\mathrm{R}=1.00)$ with a slope $=1.26(\sigma=0.02)$ and $\mathrm{pK}_{\mathrm{a}}=2.94(\sigma=0.01) . \Delta_{\mathrm{T}}$ for H8G $(0.12 \leq \mathrm{pH} \leq 7.29)=1.184 \mathrm{ppm}$. The plot of $\log \left(\left(\Delta_{\mathrm{T}}-\Delta\right) / \Delta\right)$ vs. pH gave a straight line $(\mathrm{R}=1.00)$ with a slope $=1.03(\sigma=0.03)$ and $\mathrm{pK}_{\mathrm{a}}=1.68(\sigma=0.01)$. The values of correlation coefficient R , pKa obtained from Hill plot analysis, and the Hill slope values of $\delta \mathrm{H} 8 \mathrm{~A}, \delta \mathrm{H} 2 \mathrm{~A}, \delta \mathrm{H} 8 \mathrm{G}$ are shown in the respective graphs.

Figure S2d: The Hill plots for $\delta \mathrm{H} 8 \mathrm{~A}$ and $\delta \mathrm{H} 8 \mathrm{G}$ of GpA in the $6.93 \leq \mathrm{pH} \leq 10.7 . \Delta_{\mathrm{T}}$ for H8A $(6.93 \leq \mathrm{pH} \leq 10.7)=0.056 \mathrm{ppm}$. The plot of $\log \left(\left(\Delta_{\mathrm{T}}-\Delta\right) / \Delta\right)$ vs. pH gave a straight line $(\mathrm{R}=0.99)$ with a slope $=0.96(\sigma=0.04)$ and $\mathrm{pK}_{\mathrm{a}}=9.16(\sigma=0.02) . \Delta_{\mathrm{T}}$ for H8G $(6.93 \leq \mathrm{pH} \leq 10.7)=0.141 \mathrm{ppm}$. The plot of $\log \left(\left(\Delta_{\mathrm{T}}-\Delta\right) / \Delta\right) \mathrm{vs}$. pH gave a straight line $(\mathrm{R}=0.99)$ with a slope $=1.00(\sigma=0.04)$ and $\mathrm{pK}_{\mathrm{a}}=9.17(\sigma=0.02)$. The values of correlation coefficient $\mathrm{R}, \mathrm{pK}_{\mathrm{a}}$ obtained from Hill plot analysis, and the Hill slope values of $\delta \mathrm{H} 8 \mathrm{~A}, \delta \mathrm{H} 2 \mathrm{~A}, \delta \mathrm{H} 8 \mathrm{G}$ are shown in the respective graphs. H 2 A of GpA did not show any significant change in $\log \left(\left(\Delta_{\mathrm{T}}-\Delta\right) / \Delta\right)$ with pH , hence Hill plot for H 2 A was not done.

Figure S2e: The Hill plots for $\delta \mathrm{H} 6 \mathrm{U}, \delta \mathrm{H} 5 \mathrm{U}, \delta \mathrm{H} 6 \mathrm{C}, \delta \mathrm{H} 5 \mathrm{C}$ of CpU in the $1.87 \leq \mathrm{pH} \leq$ 6.92. Δ_{T} for H6U $(1.87 \leq \mathrm{pH} \leq 6.92)=0.013 \mathrm{ppm}$. The plot of $\log \left(\left(\Delta_{\mathrm{T}}-\Delta\right) / \Delta\right)$ vs. pH gave a straight line $(\mathrm{R}=0.97)$ with a slope $=0.96(\sigma=0.07)$ and $\mathrm{pK}_{\mathrm{a}}=3.48(\sigma=0.03)$. Δ_{T} for H5U $(1.87 \leq \mathrm{pH} \leq 6.92)=0.073 \mathrm{ppm}$. The plot of $\log \left(\left(\Delta_{\mathrm{T}}-\Delta\right) / \Delta\right)$ vs. pH gave a straight line $(\mathrm{R}=0.99)$ with a slope $=1.05(\sigma=0.03)$ and $\mathrm{pK} \mathrm{a}_{\mathrm{a}}=3.58(\sigma=0.02) . \Delta_{\mathrm{T}}$ for $\mathrm{H} 6 \mathrm{C}(1.87 \leq \mathrm{pH} \leq 6.92)=0.289 \mathrm{ppm}$. The plot of $\log \left(\left(\Delta_{\mathrm{T}}-\Delta\right) / \Delta\right)$ vs. pH gave a straight line $(\mathrm{R}=0.99)$ with a slope $=0.99(\sigma=0.03)$ and $\mathrm{pK}_{\mathrm{a}}=3.56(\sigma=0.01) . \Delta_{\mathrm{T}}$ for H5C $(1.87 \leq \mathrm{pH} \leq 6.92)=0.262 \mathrm{ppm}$. The plot of $\log \left(\left(\Delta_{\mathrm{T}}-\Delta\right) / \Delta\right)$ vs. pH gave a straight line $(\mathrm{R}=0.99)$ with a slope $=1.01(\sigma=0.03)$ and $\mathrm{pK}_{\mathrm{a}}=3.58(\sigma=0.01)$. The values of correlation coefficient $\mathrm{R}, \mathrm{pK}_{\mathrm{a}}$ obtained from Hill plot analysis, and the Hill slope values of $\delta \mathrm{H} 6 \mathrm{U}, \delta \mathrm{H} 5 \mathrm{U}, \delta \mathrm{H} 6 \mathrm{C}, \delta \mathrm{H} 5 \mathrm{C}$ are shown in the respective graphs.

Figure S2f: The Hill plots for $\delta \mathrm{H} 6 \mathrm{U}, \delta \mathrm{H} 5 \mathrm{U}, \delta \mathrm{H} 6 \mathrm{C}, \delta \mathrm{H} 5 \mathrm{C}$ of CpU in the $6.92 \leq \mathrm{pH} \leq$ 11.32. Δ_{T} for $\mathrm{H} 6 \mathrm{U}(6.92 \leq \mathrm{pH} \leq 11.32)=0.162 \mathrm{ppm}$. The plot of $\log \left(\left(\Delta_{\mathrm{T}}-\Delta\right) / \Delta\right)$ vs. pH gave a straight line $(\mathrm{R}=0.99)$ with a slope $=1.06(\sigma=0.05)$ and $\mathrm{pK}_{\mathrm{a}}=9.21(\sigma=0.02)$. Δ_{T} for H5U $(6.92 \leq \mathrm{pH} \leq 11.32)=0.059 \mathrm{ppm}$. The plot of $\log \left(\left(\Delta_{\mathrm{T}}-\Delta\right) / \Delta\right)$ vs. pH gave a straight line $(\mathrm{R}=0.99)$ with a slope $=1.01(\sigma=0.05)$ and $\mathrm{pK}_{\mathrm{a}}=9.25(\sigma=0.02) . \Delta_{\mathrm{T}}$ for H6C $(6.92 \leq \mathrm{pH} \leq 11.32)=0.078 \mathrm{ppm}$. The plot of $\log \left(\left(\Delta_{\mathrm{T}}-\Delta\right) / \Delta\right)$ vs. pH gave a straight line $(\mathrm{R}=0.98)$ with a slope $=1.08(\sigma=0.07)$ and $\mathrm{pK}_{\mathrm{a}}=9.18(\sigma=0.03) . \Delta_{\mathrm{T}}$ for H5C $(6.92 \leq \mathrm{pH} \leq 11.32)=0.053 \mathrm{ppm}$. The plot of $\log \left(\left(\Delta_{\mathrm{T}}-\Delta\right) / \Delta\right)$ vs. pH gave a straight line $(\mathrm{R}=0.99)$ with a slope $=1.07(\sigma=0.06)$ and $\mathrm{pK}_{\mathrm{a}}=9.18(\sigma=0.03)$. The values of correlation coefficient $\mathrm{R}, \mathrm{pK}_{\mathrm{a}}$ obtained from Hill plot analysis, and the Hill slope values of $\delta \mathrm{H} 6 \mathrm{U}, \delta \mathrm{H} 5 \mathrm{U}, \delta \mathrm{H} 6 \mathrm{C}, \delta \mathrm{H} 5 \mathrm{C}$ are shown in the respective graphs.

Figure S2g: The Hill plots for $\delta \mathrm{H} 5 \mathrm{U}, \delta \mathrm{H} 6 \mathrm{C}, \delta \mathrm{H} 5 \mathrm{C}$ of UpC in the $1.97 \leq \mathrm{pH} \leq 6.79 . \Delta_{\mathrm{T}}$ for H5U $(1.97 \leq \mathrm{pH} \leq 6.79)=0.033 \mathrm{ppm}$. The plot of $\log \left(\left(\Delta_{\mathrm{T}}-\Delta\right) / \Delta\right) \mathrm{vs}$. pH gave a straight line $(\mathrm{R}=0.99)$ with a slope $=0.82(\sigma=0.04)$ and $\mathrm{pK}_{\mathrm{a}}=3.71(\sigma=0.02) . \Delta_{\mathrm{T}}$ for H6C $(1.97 \leq \mathrm{pH} \leq 6.79)=0.242 \mathrm{ppm}$. The plot of $\log \left(\left(\Delta_{\mathrm{T}}-\Delta\right) / \Delta\right)$ vs. pH gave a straight line $(\mathrm{R}=0.99)$ with a slope $=0.81(\sigma=0.04)$ and $\mathrm{pK}_{\mathrm{a}}=3.71(\sigma=0.02) . \Delta_{\mathrm{T}}$ for H5C $(1.97 \leq \mathrm{pH} \leq 6.79)=0.247 \mathrm{ppm}$. The plot of $\log \left(\left(\Delta_{\mathrm{T}}-\Delta\right) / \Delta\right)$ vs. pH gave a straight line $(\mathrm{R}=0.99)$ with a slope $=0.82(\sigma=0.04)$ and $\mathrm{pK}_{\mathrm{a}}=3.71(\sigma=0.02)$. The values of
correlation coefficient $\mathrm{R}, \mathrm{pK}_{\mathrm{a}}$ obtained from Hill plot analysis, and the Hill slope values of $\delta \mathrm{H} 5 \mathrm{U}, \delta \mathrm{H} 6 \mathrm{C}, \delta \mathrm{H} 5 \mathrm{C}$ are shown in the respective graphs. H6U of UpC did not show any significant change in $\log \left(\left(\Delta_{\mathrm{T}}-\Delta\right) / \Delta\right)$ with pH , hence Hill plot for H6U was not done.

Figure S2h: The Hill plots for $\delta \mathrm{H} 6 \mathrm{U}, \delta \mathrm{H} 5 \mathrm{U}, \delta \mathrm{H} 6 \mathrm{C}, \delta \mathrm{H} 5 \mathrm{C}$ of UpC in the $6.79 \leq \mathrm{pH} \leq$ 11.42. Δ_{T} for $\mathrm{H} 6 \mathrm{U}(6.79 \leq \mathrm{pH} \leq 11.42)=0.244 \mathrm{ppm}$. The plot of $\log \left(\left(\Delta_{\mathrm{T}}-\Delta\right) / \Delta\right)$ vs. pH gave a straight line $(\mathrm{R}=1.00)$ with a slope $=1.16(\sigma=0.02)$ and $\mathrm{pK}_{\mathrm{a}}=9.06(\sigma=0.01)$. Δ_{T} for H5U $(6.79 \leq \mathrm{pH} \leq 11.42)=0.068 \mathrm{ppm}$. The plot of $\log \left(\left(\Delta_{\mathrm{T}}-\Delta\right) / \Delta\right)$ vs. pH gave a straight line $(\mathrm{R}=1.00)$ with a slope $=1.16(\sigma=0.02)$ and $\mathrm{pK}_{\mathrm{a}}=9.04(\sigma=0.01) . \Delta_{\mathrm{T}}$ for H6C $(6.79 \leq \mathrm{pH} \leq 11.42)=0.037 \mathrm{ppm}$. The plot of $\log \left(\left(\Delta_{\mathrm{T}}-\Delta\right) / \Delta\right)$ vs. pH gave a straight line $(\mathrm{R}=0.99)$ with a slope $=1.16(\sigma=0.03)$ and $\mathrm{pK}_{\mathrm{a}}=9.14(\sigma=0.02) . \Delta_{\mathrm{T}}$ for H5C $(6.79 \leq \mathrm{pH} \leq 11.42)=0.021 \mathrm{ppm}$. The plot of $\log \left(\left(\Delta_{\mathrm{T}}-\Delta\right) / \Delta\right)$ vs. pH gave a straight line $(\mathrm{R}=0.99)$ with a slope $=1.17(\sigma=0.03)$ and $\mathrm{pK}_{\mathrm{a}}=9.06(\sigma=0.02)$. The values of correlation coefficient $\mathrm{R}, \mathrm{pK}_{\mathrm{a}}$ obtained from Hill plot analysis, and the Hill slope values of $\delta \mathrm{H} 6 \mathrm{U}, \delta \mathrm{H} 5 \mathrm{U}, \delta \mathrm{H} 6 \mathrm{C}$ and $\delta \mathrm{H} 5 \mathrm{C}$ are shown in the respective graphs.

Figure S2i: The Hill plots for $\delta \mathrm{H} 8 \mathrm{~A}, \delta \mathrm{H} 2 \mathrm{~A}, \delta \mathrm{H} 6 \mathrm{U}, \delta \mathrm{H} 5 \mathrm{U}$ of UpA in the $1.11 \leq \mathrm{pH} \leq$ 6.98. Δ_{T} for H8A $(1.11 \leq \mathrm{pH} \leq 6.98)=0.188 \mathrm{ppm}$. The plot of $\log \left(\left(\Delta_{\mathrm{T}}-\Delta\right) / \Delta\right)$ vs. pH gave a straight line $(\mathrm{R}=1.00)$ with a slope $=1.17(\sigma=0.02)$ and $\mathrm{pK}_{\mathrm{a}}=3.07(\sigma=0.01)$. Δ_{T} for $\mathrm{H} 2 \mathrm{~A} \quad(1.11 \leq \mathrm{pH} \leq 6.98)=0.219 \mathrm{ppm}$. The plot of $\log \left(\left(\Delta_{\mathrm{T}}-\Delta\right) / \Delta\right)$ vs. pH gave a straight line $(\mathrm{R}=1.00)$ with a slope $=1.18(\sigma=0.03)$ and $\mathrm{pK}_{\mathrm{a}}=3.06(\sigma=0.01) . \Delta_{\mathrm{T}}$ for H6U $(1.11 \leq \mathrm{pH} \leq 6.98)=0.094 \mathrm{ppm}$. The plot of $\log \left(\left(\Delta_{\mathrm{T}}-\Delta\right) / \Delta\right)$ vs. pH gave a straight line $(\mathrm{R}=1.00)$ with a slope $=1.27(\sigma=0.02)$ and $\mathrm{pK}_{\mathrm{a}}=3.12(\sigma=0.01) . \Delta_{\mathrm{T}}$ for H5U $(1.11 \leq \mathrm{pH} \leq 6.98)=0.052 \mathrm{ppm}$. The plot of $\log \left(\left(\Delta_{\mathrm{T}}-\Delta\right) / \Delta\right) \mathrm{vs}$. pH gave a straight line $(\mathrm{R}=1.00)$ with a slope $=1.17(\sigma=0.03)$ and $\mathrm{pK}_{\mathrm{a}}=3.01(\sigma=0.01)$. The values of correlation coefficient $\mathrm{R}, \mathrm{pK}_{\mathrm{a}}$ obtained from Hill plot analysis, and the Hill slope values of $\delta \mathrm{H} 8 \mathrm{~A}, \delta \mathrm{H} 2 \mathrm{~A}, \delta \mathrm{H} 6 \mathrm{U}$ and $\delta \mathrm{H} 5 \mathrm{U}$ are shown in the respective graphs.

Figure S2j: The Hill plots for $\delta H 6 \mathrm{U}, \delta \mathrm{H} 5 \mathrm{U}$ of UpA in the $6.6 \leq \mathrm{pH} \leq 11.1 . \Delta_{\mathrm{T}}$ for H 6 U $(6.6 \leq \mathrm{pH} \leq 11.1)=0.226 \mathrm{ppm}$. The plot of $\log \left(\left(\Delta_{\mathrm{T}}-\Delta\right) / \Delta\right)$ vs. pH gave a straight line $(\mathrm{R}$ $=1.00)$ with a slope $=1.07(\sigma=0.02)$ and $\mathrm{pK}_{\mathrm{a}}=9.09(\sigma=0.01) . \Delta_{\mathrm{T}}$ for $\mathrm{H} 5 \mathrm{U}(6.6 \leq \mathrm{pH}$
$\leq 11.1)=0.117 \mathrm{ppm}$. The plot of $\log \left(\left(\Delta_{\mathrm{T}}-\Delta\right) / \Delta\right)$ vs. pH gave a straight line $(\mathrm{R}=1.00)$ with a slope $=1.06(\sigma=0.02)$ and $\mathrm{pK}_{\mathrm{a}}=9.09(\sigma=0.01)$. The values of correlation coefficient $\mathrm{R}, \mathrm{pK}_{\mathrm{a}}$ obtained from Hill plot analysis, and the Hill slope values of $\delta \mathrm{H} 6 \mathrm{U}$, and 8 H 5 U are shown in the respective graphs. H 8 A and H 2 A of UpA did not show any significant change in $\log \left(\left(\Delta_{\mathrm{T}}-\Delta\right) / \Delta\right)$ with pH , hence Hill plots for H 8 A and H 2 A were not done.

Figure S2k: The Hill plots for $\delta \mathrm{H} 8 \mathrm{~A}, \delta \mathrm{H} 2 \mathrm{~A}, \delta \mathrm{H} 6 \mathrm{U}, \delta \mathrm{H} 5 \mathrm{U}$ of ApU in the $1.35 \leq \mathrm{pH} \leq$ 6.99. Δ_{T} for H8A $(1.35 \leq \mathrm{pH} \leq 6.99)=0.216 \mathrm{ppm}$. The plot of $\log \left(\left(\Delta_{\mathrm{T}}-\Delta\right) / \Delta\right) \mathrm{vs}$. pH gave a straight line $(\mathrm{R}=0.98)$ with a slope $=0.97(\sigma=0.05)$ and $\mathrm{pK}_{\mathrm{a}}=2.95(\sigma=0.02)$. Δ_{T} for $\mathrm{H} 2 \mathrm{~A} \quad(1.35 \leq \mathrm{pH} \leq 6.99)=0.242 \mathrm{ppm}$. The plot of $\log \left(\left(\Delta_{\mathrm{T}}-\Delta\right) / \Delta\right)$ vs. pH gave a straight line $(\mathrm{R}=0.98)$ with a slope $=0.96(\sigma=0.06)$ and $\mathrm{pK}_{\mathrm{a}}=2.95(\sigma=0.02) . \Delta_{\mathrm{T}}$ for $\mathrm{H} 6 \mathrm{U}(1.35 \leq \mathrm{pH} \leq 6.99)=0.089 \mathrm{ppm}$. The plot of $\log \left(\left(\Delta_{\mathrm{T}}-\Delta\right) / \Delta\right)$ vs. pH gave a straight line $(\mathrm{R}=0.98)$ with a slope $=0.92(\sigma=0.05)$ and $\mathrm{pK}_{\mathrm{a}}=2.98(\sigma=0.02) . \Delta_{\mathrm{T}}$ for H5U $(1.35 \leq \mathrm{pH} \leq 6.99)=0.159 \mathrm{ppm}$. The plot of $\log \left(\left(\Delta_{\mathrm{T}}-\Delta\right) / \Delta\right)$ vs. pH gave a straight line $(\mathrm{R}=0.98)$ with a slope $=0.96(\sigma=0.05)$ and $\mathrm{pK}_{\mathrm{a}}=2.95(\sigma=0.02)$. The values of correlation coefficient $\mathrm{R}, \mathrm{pK}_{\mathrm{a}}$ obtained from Hill plot analysis, and the Hill slope values of $\delta \mathrm{H} 8 \mathrm{~A}, \delta \mathrm{H} 2 \mathrm{~A}, \delta \mathrm{H} 6 \mathrm{U}$ and $\delta \mathrm{H} 5 \mathrm{U}$ are shown in the respective graphs.

Figure S21: The Hill plots for $\delta \mathrm{H} 8 \mathrm{~A}, \delta \mathrm{H} 2 \mathrm{~A}, \delta \mathrm{H} 6 \mathrm{U}, \delta \mathrm{H} 5 \mathrm{U}$ of ApU in the $6.99 \leq \mathrm{pH} \leq$ 10.96. Δ_{T} for H8A $(6.99 \leq \mathrm{pH} \leq 10.96)=0.021 \mathrm{ppm}$. The plot of $\log \left(\left(\Delta_{\mathrm{T}}-\Delta\right) / \Delta\right)$ vs. pH gave a straight line $(\mathrm{R}=0.99)$ with a slope $=1.04(\sigma=0.03)$ and $\mathrm{pK}_{\mathrm{a}}=9.35(\sigma=0.02)$. Δ_{T} for H2A $(6.99 \leq \mathrm{pH} \leq 10.96)=0.007 \mathrm{ppm}$. The plot of $\log \left(\left(\Delta_{\mathrm{T}}-\Delta\right) / \Delta\right)$ vs. pH gave a straight line $(\mathrm{R}=0.99)$ with a slope $=0.99(\sigma=0.05)$ and $\mathrm{pK}_{\mathrm{a}}=9.33(\sigma=0.02) . \Delta_{\mathrm{T}}$ for H6U $(6.99 \leq \mathrm{pH} \leq 10.96)=0.126 \mathrm{ppm}$. The plot of $\log \left(\left(\Delta_{\mathrm{T}}-\Delta\right) / \Delta\right)$ vs. pH gave a straight line $(\mathrm{R}=0.99)$ with a slope $=0.99(\sigma=0.03)$ and $\mathrm{pK}_{\mathrm{a}}=9.36(\sigma=0.02) . \Delta_{\mathrm{T}}$ for H5U $(6.99 \leq \mathrm{pH} \leq 10.96)=0.017 \mathrm{ppm}$. The plot of $\log \left(\left(\Delta_{\mathrm{T}}-\Delta\right) / \Delta\right)$ vs. pH gave a straight line $(\mathrm{R}=0.99)$ with a slope $=1.13(\sigma=0.04)$ and $\mathrm{pK}_{\mathrm{a}}=9.42(\sigma=0.02)$. The values of correlation coefficient $\mathrm{R}, \mathrm{pK}_{\mathrm{a}}$ obtained from Hill plot analysis, and the Hill slope values of $\delta \mathrm{H} 8 \mathrm{~A}, \delta \mathrm{H} 2 \mathrm{~A}, \delta \mathrm{H} 6 \mathrm{U}$ and $\delta \mathrm{H} 5 \mathrm{U}$ are shown in the respective graphs.

Figure S2m: The Hill plots for $\delta \mathrm{H} 8 \mathrm{~A}, \delta \mathrm{H} 2 \mathrm{~A}$, of ApEt in the $1.62 \leq \mathrm{pH} \leq 6.38 . \Delta_{\mathrm{T}}$ for H8A $(1.62 \leq \mathrm{pH} \leq 6.38)=0.228 \mathrm{ppm}$. The plot of $\log \left(\left(\Delta_{\mathrm{T}}-\Delta\right) / \Delta\right)$ vs. pH gave a straight line $(\mathrm{R}=0.98)$ with a slope $=0.97(\sigma=0.1)$ and $\mathrm{pK}_{\mathrm{a}}=3.11(\sigma=0.04) . \Delta_{\mathrm{T}}$ for H2A $(1.62 \leq \mathrm{pH} \leq 6.38)=0.206 \mathrm{ppm}$. The plot of $\log \left(\left(\Delta_{\mathrm{T}}-\Delta\right) / \Delta\right)$ vs. pH gave a straight line $(\mathrm{R}=0.98)$ with a slope $=0.98(\sigma=0.1)$ and $\mathrm{pK}_{\mathrm{a}}=3.10(\sigma=0.04)$. The values of correlation coefficient $\mathrm{R}, \mathrm{pK}_{\mathrm{a}}$ obtained from Hill plot analysis, and the Hill slope values of $\delta \mathrm{H} 8 \mathrm{~A}$ and $\delta \mathrm{H} 2 \mathrm{~A}$ are shown in the respective graphs.

Figure S2n: The Hill plots for $\delta \mathrm{H} 8 \mathrm{G}$ of GpEt in the $6.98 \leq \mathrm{pH} \leq 11.00 . \Delta_{\mathrm{T}}$ for H8G $(6.98 \leq \mathrm{pH} \leq 11.00)=0.149 \mathrm{ppm}$. The plot of $\log \left(\left(\Delta_{\mathrm{T}}-\Delta\right) / \Delta\right)$ vs. pH gave a straight line $(\mathrm{R}=0.99)$ with a slope $=0.95(\sigma=0.05)$ and $\mathrm{pK}_{\mathrm{a}}=9.25(\sigma=0.02)$. The value of correlation coefficient $\mathrm{R}, \mathrm{pK}_{\mathrm{a}}$ obtained from Hill plot analysis, and the Hill slope values of $\delta \mathrm{H} 8 \mathrm{G}$ is shown in the respective graph.

Figure 20: The Hill plots for $\delta H 6 U, \delta H 5 U$, of $U p E t$ in the $6.65 \leq \mathrm{pH} \leq 11.44$. Δ_{T} for H6U $(6.65 \leq \mathrm{pH} \leq 11.44)=0.198 \mathrm{ppm}$. The plot of $\log \left(\left(\Delta_{\mathrm{T}}-\Delta\right) / \Delta\right)$ vs. pH gave a straight line $(\mathrm{R}=0.99)$ with a slope $=1.03(\sigma=0.05)$ and $\mathrm{pK}_{\mathrm{a}}=9.44(\sigma=0.02) . \Delta_{\mathrm{T}}$ for H5U $(6.65 \leq \mathrm{pH} \leq 11.44)=0.091 \mathrm{ppm}$. The plot of $\log \left(\left(\Delta_{\mathrm{T}}-\Delta\right) / \Delta\right)$ vs. pH gave a straight line $(\mathrm{R}=0.99)$ with a slope $=1.04(\sigma=0.04)$ and $\mathrm{pK}_{\mathrm{a}}=9.43(\sigma=0.02)$. The values of correlation coefficient $\mathrm{R}, \mathrm{pK}_{\mathrm{a}}$ obtained from Hill plot analysis, and the Hill slope values of $\delta \mathrm{H} 6 \mathrm{U}$ and $\delta \mathrm{H} 5 \mathrm{U}$ are shown in the respective graphs.

Figure S2p: The Hill plots for $\delta \mathrm{H} 6 \mathrm{C}, \delta \mathrm{H} 5 \mathrm{C}$, of CpEt in the $1.66 \leq \mathrm{pH} \leq 6.39$. Δ_{T} for H 6 C $(6.65 \leq \mathrm{pH} \leq 11.44)=0.321 \mathrm{ppm}$. The plot of $\log \left(\left(\Delta_{\mathrm{T}}-\Delta\right) / \Delta\right)$ vs. pH gave a straight line $(\mathrm{R}=1.00)$ with a slope $=1.01(\sigma=0.04)$ and $\mathrm{pK}_{\mathrm{a}}=3.83(\sigma=0.02) . \Delta_{\mathrm{T}}$ for $\mathrm{H} 5 \mathrm{C}(1.66 \leq$ $\mathrm{pH} \leq 6.39)=0.190 \mathrm{ppm}$. The plot of $\log \left(\left(\Delta_{\mathrm{T}}-\Delta\right) / \Delta\right)$ vs. pH gave a straight line $(\mathrm{R}=$ $1.00)$ with a slope $=1.02(\sigma=0.04)$ and $\mathrm{pK}_{\mathrm{a}}=3.82(\sigma=0.02)$. The values of correlation coefficient $\mathrm{R}, \mathrm{pK}_{\mathrm{a}}$ obtained from Hill plot analysis, and the Hill slope values of $\delta \mathrm{H} 6 \mathrm{C}$ and $\delta \mathrm{H} 5 \mathrm{C}$ are shown in the respective graphs.

Legends for Figure S3:

Figure S3a: pH dependant fraction protonation $\left(\mathrm{f}_{\mathrm{p}}\right)$ of aromatic protons (H8A, H2A, H 8 G) of ApG within the pH values of $0.3 \leq \mathrm{pH} \leq 7.56$. $\delta_{\text {neutral }}(8.261 \mathrm{ppm})$ of H 8 A is substracted from $\delta_{\text {obs }}$ at each pH values of H8A and divided by the total change $\Delta \delta(0.297$ $\mathrm{ppm})$ in going from neutral to protonated state to get the value of $\mathrm{f}_{\mathrm{p}} . \delta_{\text {neutral }}(8.153 \mathrm{ppm})$ of H 2 A is substracted from $\delta_{\text {obs }}$ at each pH values of H 2 A and divided by the total change $\Delta \delta(0.322)$ in going from neutral to protonated state to get the value of $\mathrm{f}_{\mathrm{p}} . \delta_{\text {neutral }}(7.933$ ppm) of H 8 G is substracted from $\delta_{\text {obs }}$ at each pH values of H 8 G and divided by the total change $\Delta \delta$ (1.124) in going from neutral to protonated state to get the value of $\mathrm{f}_{\mathrm{p}} . \mathrm{pK}_{\mathrm{a}}$ values obtained from Hill plot of $\mathrm{H} 8 \mathrm{~A}, \mathrm{H} 2 \mathrm{~A}$ and H 8 G are shown in the respective graphs.

Figure S3b: pH dependant fraction deprotonation $\left(\mathrm{f}_{\mathrm{D}}\right)$ of aromatic protons $(\mathrm{H} 8 \mathrm{~A}, \mathrm{H} 2 \mathrm{~A}$, H 8 G) of ApG within the pH values of $7.56 \leq \mathrm{pH} \leq 11.63$. $\delta_{\text {neutral }}(8.261 \mathrm{ppm}$) of H 8 A is substracted from $\delta_{\text {obs }}$ at each pH values of H8A and divided by the total change $\Delta \delta(0.009$ $\mathrm{ppm})$ in going from neutral to deprotonated state to get the value of f_{D}. $\delta_{\text {neutral }}$ (8.153 ppm) of H 2 A is substracted from $\delta_{\text {obs }}$ at each pH values of H 2 A and divided by the total change $\Delta \delta(0.032 \mathrm{ppm})$ in going from neutral to deprotonated state to get the value of f_{D}. $\delta_{\text {neutral }}(7.933 \mathrm{ppm})$ of H 8 G is substracted from $\delta_{\text {obs }}$ at each pH values of H8G and divided by the total change $\Delta \delta(0.068 \mathrm{ppm})$ in going from neutral to deprotonated state to get the value of $f_{D} . p K_{a}$ values obtained from Hill plot of H8A, H2A and H8G are shown in the respective graphs.

Figure S3c: pH dependant fraction protonation $\left(\mathrm{f}_{\mathrm{p}}\right)$ of aromatic protons $(\mathrm{H} 8 \mathrm{~A}, \mathrm{H} 2 \mathrm{~A}$, H 8 G) of GpA within the pH values of $0.12 \leq \mathrm{pH} \leq 7.29$. $\delta_{\text {neutral }}(8.344 \mathrm{ppm})$ of H 8 A is substracted from $\delta_{\text {obs }}$ at each pH values of H8A and divided by the total change $\Delta \delta(0.205$ ppm) in going from neutral to protonated state to get the value of f_{p}. $\delta_{\text {neutral }}(8.206 \mathrm{ppm})$ of H 2 A is substracted from $\delta_{\text {obs }}$ at each pH values of H 2 A and divided by the total change $\Delta \delta(0.301 \mathrm{ppm})$ in going from neutral to protonated state to get the value of $\mathrm{f}_{\mathrm{p}} . \delta_{\text {neutral }}$ (7.904 ppm) of H8G is substracted from $\delta_{\text {obs }}$ at each pH values of H8G and divided by the total change $\Delta \delta(1.184 \mathrm{ppm})$ in going from neutral to protonated state to get the value of
$\mathrm{f}_{\mathrm{p}} . \mathrm{pK}_{\mathrm{a}}$ values obtained from Hill plot of $\mathrm{H} 8 \mathrm{~A}, \mathrm{H} 2 \mathrm{~A}$ and H 8 G are shown in the respective graphs.

Figure S3d: pH dependant fraction deprotonation (f_{D}) of aromatic protons (H8A, H8G) of GpA within the pH values of $6.93 \leq \mathrm{pH} \leq 10.70$. $\delta_{\text {neutral }}(8.345 \mathrm{ppm})$ of H 8 A is substracted from $\delta_{\text {obs }}$ at each pH values of H8A and divided by the total change $\Delta \delta(0.056$ $\mathrm{ppm})$ in going from neutral to deprotonated state to get the value of $\mathrm{f}_{\mathrm{D}} . \delta_{\text {neutral }}(7.906$ ppm) of H 8 G is substracted from $\delta_{\text {obs }}$ at each pH values of H 8 G and divided by the total change $\Delta \delta(0.141 \mathrm{ppm})$ in going from neutral to deprotonated state to get the value of f_{D}. pK_{a} values obtained from Hill plot of H8A and H8G are shown in the respective graphs. H2A of GpA did not show any significant change in fraction deprotonation (f_{D}) with pH , hence pH dependant fraction deprotonation (f_{D}) of aromatic proton H2A was not done.

Figure S3e: pH dependant fraction protonation $\left(\mathrm{f}_{\mathrm{p}}\right)$ of aromatic protons (H6U, H5U, $\mathrm{H} 6 \mathrm{C}, \mathrm{H} 5 \mathrm{C}$) of CpU within the pH values of $1.87 \leq \mathrm{pH} \leq 6.92$. $\delta_{\text {neutral }}(\delta 7.930)$ of H 6 U is substracted from $\delta_{\text {obs }}$ at each pH values of H 6 U and divided by the total change $\Delta \delta(0.013$ $\mathrm{ppm})$ in going from neutral to protonated state to get the value of f_{p}. $\delta_{\text {neutral }}(5.816 \mathrm{ppm})$ of H 5 U is substracted from $\delta_{\text {obs }}$ at each pH values of H 5 U and divided by the total change $\Delta \delta(0.073 \mathrm{ppm})$ in going from neutral to protonated state to get the value of $\mathrm{f}_{\mathrm{p}} . \delta_{\text {neutral }}$ (7.902 ppm) of H 6 C is substracted from $\delta_{\text {obs }}$ at each pH values of H 6 C and divided by the total change $\Delta \delta(0.289 \mathrm{ppm})$ in going from neutral to protonated state to get the value of f_{p}. $\delta_{\text {neutral }}(5.969 \mathrm{ppm})$ of H5C is substracted from $\delta_{\text {obs }}$ at each pH values of H5C and divided by the total change $\Delta \delta(0.262 \mathrm{ppm})$ in going from neutral to protonated state to get the value of $f_{p} . \mathrm{pK}_{\mathrm{a}}$ values obtained from Hill plot of H6U, H5U, H6C and H5C are shown in the respective graphs.

Figure S3f: pH dependant fraction deprotonation (f_{D}) of aromatic protons (H6U, H5U, $\mathrm{H} 6 \mathrm{C}, \mathrm{H} 5 \mathrm{C}$) of CpU within the pH values of $6.92 \leq \mathrm{pH} \leq 11.32$. $\delta_{\text {neutral }}$ (7.930 ppm) of H 6 U is substracted from $\delta_{\text {obs }}$ at each pH values of H 6 U and divided by the total change $\Delta \delta(0.162 \mathrm{ppm})$ in going from neutral to deprotonated state to get the value of $\mathrm{f}_{\mathrm{D}} . \delta_{\text {neutral }}$ (5.816 ppm) of H 5 U is substracted from $\delta_{\text {obs }}$ at each pH values of H 5 U and divided by the
total change $\Delta \delta(0.059 \mathrm{ppm})$ in going from neutral to deprotonated state to get the value of f_{D}. $\delta_{\text {neutral }}$ (7.902 ppm) of H 6 C is substracted from $\delta_{\text {obs }}$ at each pH values of H 6 C and divided by the total change $\Delta \delta(0.0 .078 \mathrm{ppm})$ in going from neutral to deprotonated state to get the value of f_{D}. $\delta_{\text {neutral }}\left(5.969 \mathrm{ppm}\right.$) of H 5 C is substracted from $\delta_{\text {obs }}$ at each pH values of H5C and divided by the total change $\Delta \delta(0.053 \mathrm{ppm})$ in going from neutral to deprotonated state to get the value of fraction deprotonation $f_{D} . \mathrm{pK}_{\mathrm{a}}$ values obtained from Hill plot of H6U,H5U, H6C and H5C are shown in the respective graphs.

Figure $\mathbf{S 3 g}$: pH dependant fraction protonation $\left(\mathrm{f}_{\mathrm{p}}\right)$ of aromatic protons $(\mathrm{H} 5 \mathrm{U}, \mathrm{H} 6 \mathrm{C}$, H 5 C) of UpC within the pH values of $1.97 \leq \mathrm{pH} \leq 6.79 . \delta_{\text {neutral }}(5.858 \mathrm{ppm})$ of H 5 U is substracted from $\delta_{\text {obs }}$ at each pH values of H 5 U and divided by the total change $\Delta \delta(0.033 \mathrm{ppm})$ in going from neutral to protonated state to get the value of $\mathrm{f}_{\mathrm{p}} . \delta_{\text {neutral }}$ (7.936 ppm) of H 6 C is substracted from $\delta_{\text {obs }}$ at each pH values of H 6 C and divided by the total change $\Delta \delta(0.242 \mathrm{ppm})$ in going from neutral to protonated state to get the value of f_{p}. $\delta_{\text {neutral }}(6.026 \mathrm{ppm})$ of H5C is substracted from $\delta_{\text {obs }}$ at each pH values of H 5 C and divided by the total change $\Delta \delta(0.247 \mathrm{ppm})$ in going from neutral to protonated state to get the value of $\mathrm{f}_{\mathrm{p}} . \mathrm{pK}_{\mathrm{a}}$ values obtained from Hill plot of $\mathrm{H} 5 \mathrm{U}, \mathrm{H} 6 \mathrm{C}$ and H5C are shown in the respective graphs. H6U of UpA did not show any significant change in fraction protonation (f_{p}) with pH , hence pH dependant fraction protonation (f_{p}) of aromatic proton H2A was not done.

Figure S3h: pH dependant fraction deprotonation (f_{D}) of aromatic protons (H6U, H5U, H6C, H5C) of UpC within the pH values of $6.79 \leq \mathrm{pH} \leq 11.42$. $\delta_{\text {neutral }}$ (7.918 ppm) of H6U is substracted from $\delta_{\text {obs }}$ at each pH values of H6U and divided by the total change $\Delta \delta(0.244 \mathrm{ppm})$ in going from neutral to deprotonated state to get the value of $\mathrm{f}_{\mathrm{D}} . \delta_{\text {neutral }}$ (5.858 ppm) of H 5 U is substracted from $\delta_{\text {obs }}$ at each pH values of H 5 U and divided by the total change $\Delta \delta(0.068 \mathrm{ppm})$ in going from neutral to deprotonated state to get the value of f_{D}. $\delta_{\text {neutral }}(7.936 \mathrm{ppm})$ of H 6 C is substracted from $\delta_{\text {obs }}$ at each pH values of H 6 C and divided by the total change $\Delta \delta(0.037 \mathrm{ppm})$ in going from neutral to deprotonated state to get the value of f_{D}. $\delta_{\text {neutral }}\left(6.026 \mathrm{ppm}\right.$) of H 5 C is substracted from $\delta_{\text {obs }}$ at each pH values of H5C and divided by the total change $\Delta \delta(0.021 \mathrm{ppm})$ in going from neutral to
deprotonated state to get the value of $\mathrm{f}_{\mathrm{D}} . \mathrm{pK}_{\mathrm{a}}$ values obtained from Hill plot of H 6 U , $\mathrm{H} 5 \mathrm{U}, \mathrm{H} 6 \mathrm{C}$ and H 5 C are shown in the respective graphs.

Figure S3i: pH dependant fraction protonation of aromatic protons (H8A, H2A, H6U, H 5 U) of UpA within the pH values of $1.11 \leq \mathrm{pH} \leq 6.60$. $\delta_{\text {neutral }}(8.435 \mathrm{ppm})$ of H 8 A is substracted from $\delta_{\text {obs }}$ at each pH values of H8A and divided by the total change $\Delta \delta(0.188$ $\mathrm{ppm})$ in going from neutral to protonated state to get the value of $\mathrm{f}_{\mathrm{p}} . \boldsymbol{\delta}_{\text {neutral }}(8.256 \mathrm{ppm})$ of H 2 A is substracted from $\delta_{\text {obs }}$ at each pH values of H 5 U and divided by the total change $\Delta \delta(0.219 \mathrm{ppm})$ in going from neutral to protonated state to get the value of $\mathrm{f}_{\mathrm{p}} . \delta_{\text {neutral }}$ (7.748 ppm) of H6U is substracted from $\delta_{\text {obs }}$ at each pH values of H 6 U and divided by the total change $\Delta \delta(0.094 \mathrm{ppm})$ in going from neutral to protonated state to get the value of f_{p}. $\delta_{\text {neutral }}$ (5.785 ppm) of H5U is substracted from $\delta_{\text {obs }}$ at each pH values of H5U and divided by the total change $\Delta \delta(0.052 \mathrm{ppm})$ in going from neutral to protonated state to get the value of $f_{p} . \mathrm{pK}_{\mathrm{a}}$ values obtained from Hill plot of H8A, H2A H6U and H5U are shown in the respective graphs.

Figure S3j: pH dependant fraction deprotonation $\left(\mathrm{f}_{\mathrm{D}}\right)$ of aromatic protons $(\mathrm{H} 6 \mathrm{U}, \mathrm{H} 5 \mathrm{U})$ of UpA within the pH values of $6.60 \leq \mathrm{pH} \leq 11.10$. $\delta_{\text {neutral }}(7.918 \mathrm{ppm})$ of H 6 U is substracted from $\delta_{\text {obs }}$ at each pH values of H6U and divided by the total change $\Delta \delta(0.226$ ppm) in going from neutral to deprotonated state to get the value of f_{D}. $\delta_{\text {neutral }}$ (5.731 ppm) of H5U is substracted from $\delta_{\text {obs }}$ at each pH values of H5U and divided by the total change $\Delta \delta(0.117 \mathrm{ppm})$ in going from neutral to deprotonated state to get the value of f_{D}. $\mathrm{pK} \mathrm{a}_{\mathrm{a}}$ values obtained from Hill plot of H 6 U and H 5 U are shown in the respective graphs. H8A and H2A of UpA did not show any significant change in fraction deprotonation (f_{D}) with pH , hence pH dependant fraction deprotonation (f_{D}) of aromatic protons H8A and H2A were not done.

Figure S3k: pH dependant fraction protonation $\left(\mathrm{f}_{\mathrm{p}}\right)$ of aromatic protons (H8A, H2A, H6U, H5U) of ApU within the pH values of $1.35 \leq \mathrm{pH} \leq 6.99$. $\delta_{\text {neutral }}(8.362 \mathrm{ppm}$) of H8A is substracted from $\delta_{\text {obs }}$ at each pH values of H8A and divided by the total change $\Delta \delta(0.216 \mathrm{ppm})$ in going from neutral to protonated state to get the value of $\mathrm{f}_{\mathrm{p}} . \delta_{\text {neutral }}$
(8.222 ppm) of H 2 A is substracted from $\delta_{\text {obs }}$ at each pH values of H 2 A and divided by the total change $\Delta \delta(0.242 \mathrm{ppm})$ in going from neutral to protonated state to get the value of f_{p}. $\delta_{\text {neutral }}(7.767 \mathrm{ppm})$ of H 6 U is substracted from $\delta_{\text {obs }}$ at each pH values of H 6 U and divided by the total change $\Delta \delta(0.089 \mathrm{ppm})$ in going from neutral to protonated state to get the value of f_{p}. $\delta_{\text {neutral }}\left(5.639 \mathrm{ppm}\right.$) of H 5 U is substracted from $\delta_{\text {obs }}$ at each pH values of H5U and divided by the total change $\Delta \delta(0.159 \mathrm{ppm})$ in going from neutral to protonated state to get the value of $\mathrm{f}_{\mathrm{p}} . \mathrm{pK}_{\mathrm{a}}$ values obtained from Hill plot of $\mathrm{H} 8 \mathrm{~A}, \mathrm{H} 2 \mathrm{~A}$, H6U and H5U are shown in the respective graphs.

Figure S3I: pH dependant fraction deprotonation $\left(\mathrm{f}_{\mathrm{D}}\right)$ of aromatic protons (H8A, H2A, $\mathrm{H} 6 \mathrm{U}, \mathrm{H} 5 \mathrm{U}$) of ApU within the pH values of $6.99 \leq \mathrm{pH} \leq 10.96$. $\delta_{\text {neutral }}(8.362 \mathrm{ppm})$ of H8A is substracted from $\delta_{\text {obs }}$ at each pH values of H8A and divided by the total change $\Delta \delta(0.021 \mathrm{ppm})$ in going from neutral to deprotonated state to get the value of $\mathrm{f}_{\mathrm{D}} . \delta_{\text {neutral }}$ (8.222 ppm) of H 2 A is substracted from $\delta_{\text {obs }}$ at each pH values of H 2 A and divided by the total change $\Delta \delta(0.007 \mathrm{ppm})$ in going from neutral to deprotonated state to get the value of f_{D}. $\delta_{\text {neutral }}(7.767 \mathrm{ppm})$ of H 6 U is substracted from $\delta_{\text {obs }}$ at each pH values of H 6 U and divided by the total change $\Delta \delta(0.126 \mathrm{ppm})$ in going from neutral to deprotonated state to get the value of $\mathrm{f}_{\mathrm{D}} . \delta_{\text {neutral }}\left(5.638 \mathrm{ppm}\right.$) of H 5 U is substracted from $\delta_{\text {obs }}$ at each pH values of H5U and divided by the total change $\Delta \delta(0.017 \mathrm{ppm})$ in going from neutral to deprotonated state to get the value of $\mathrm{f}_{\mathrm{D}} . \mathrm{pK}_{\mathrm{a}}$ values obtained from Hill plot of H8A, $\mathrm{H} 2 \mathrm{~A}, \mathrm{H} 6 \mathrm{U}$ and H 5 U are shown in the respective graphs.

Figure S3m: pH dependant fraction protonation $\left(\mathrm{f}_{\mathrm{p}}\right)$ of aromatic protons (H8A, H2A) of ApEt within the pH values of $1.62 \leq \mathrm{pH} \leq 6.38$. $\delta_{\text {neutral }}(8.354 \mathrm{ppm}$) of H 8 A is substracted from $\delta_{\text {obs }}$ at each pH values of H8A and divided by the total change $\Delta \delta(0.228 \mathrm{ppm})$ in going from neutral to protonated state to get the value of f_{P}. $\delta_{\text {neutral }}(8.270 \mathrm{ppm})$ of H 2 A is substracted from $\delta_{\text {obs }}$ at each pH values of H 2 A and divided by the total change $\Delta \delta(0.206$ ppm) in going from neutral to protonated state to get the value of $f_{p} . \mathrm{pK}_{\mathrm{a}}$ values obtained from Hill plot of H8A and H2A are shown in the respective graphs.

Figure S3n: pH dependant fraction deprotonation (f_{D}) of aromatic proton (H8G) of GpEt within the pH values of $6.89 \leq \mathrm{pH} \leq 11.00$. $\delta_{\text {neutral }}(8.010 \mathrm{ppm})$ of H 8 G is substracted from $\delta_{\text {obs }}$ at each pH values of H 8 G and divided by the total change $\Delta \delta(0.149 \mathrm{ppm})$ in going from neutral to deprotonated state to get the value of $f_{D} . \mathrm{pK}_{a}$ value obtained from Hill plot of H8G is shown in the respective graph.

Figure S30: pH dependant fraction deprotonation $\left(\mathrm{f}_{\mathrm{D}}\right)$ of aromatic protons $(\mathrm{H} 6 \mathrm{U}, \mathrm{H} 5 \mathrm{U})$ of UpEt within the pH values of $6.65 \leq \mathrm{pH} \leq 11.44$. $\delta_{\text {neutral }}$ (7.884 ppm) of H 6 U is substracted from $\delta_{\text {obs }}$ at each pH values of H6U and divided by the total change $\Delta \delta(0.198$ $\mathrm{ppm})$ in going from neutral to deprotonated state to get the value of f_{D}. $\delta_{\text {neutral }}(5.918$ ppm) of H5U is substracted from $\delta_{\text {obs }}$ at each pH values of H5U and divided by the total change $\Delta \delta(0.091 \mathrm{ppm})$ in going from neutral to deprotonated state to get the value of f_{D}. pK_{a} values obtained from Hill plot of H 6 U and H 5 U are shown in the respective graphs.

Figure S3p: pH dependant fraction protonation (f_{p}) of aromatic protons (H6C, H5C) of CpEt within the pH values of $1.66 \leq \mathrm{pH} \leq 6.39$. $\boldsymbol{\delta}_{\text {neutral }}(7.848 \mathrm{ppm})$ of H 6 U is substracted from $\delta_{\text {obs }}$ at each pH values of H6U and divided by the total change $\Delta \delta(0.321 \mathrm{ppm})$ in going from neutral to protonated state to get the value of f_{p}. $\delta_{\text {neutral }}(6.069 \mathrm{ppm})$ of H 5 C is substracted from $\delta_{\text {obs }}$ at each pH values of H5C and divided by the total change $\Delta \delta(0.190$ ppm) in going from neutral to protonated state to get the value of $f_{p} . \mathrm{pK}_{\mathrm{a}}$ values obtained from Hill plot of H 6 C and H 5 C are shown in the respective graphs.

Legends for Figure S4:

Panels (A1) - (E2) show the chamical shift change over the pH-range, $\Delta \delta\left[\delta_{N}-\delta_{P / D}\right.$, in $\mathrm{ppm} ; \mathrm{N}, \mathrm{P}, \mathrm{D}$ stands for neutral, protonated and deprotonated state], as a basis for atom- $\pi \sigma$ interaction ${ }^{12,16}$ between nearest neighbor nucleobases in $\mathbf{1}-\mathbf{6} . \Delta \delta$ corresponds to the relative shielding (upfield shift, $\Delta \delta>0$) or deshielding (downfield shift, $\Delta \delta<0$) as a function of pH (see Figure S 1). $\Delta \delta$ of nucleotide-3'-ethylphosphate and nucleoside have
been used for mimicking 3 '-nucleotidyl unit (Np) and 5'-nucleotidyl unit (pN^{\prime}) for corresponding dinucleotide monophospahte (NpN ').

The electrostatic interaction between the partial charge distribution of a nucleobase (depending upon its pseudoaromatic character) and the π-electron density corresponding to the next base constitutes charge transfer through atom- $\pi \sigma$ interaction ${ }^{12,16,43}$. The protonation/deprotonation at nucleobase changes the conformational characteristics of pentose moieties as well as the partial charge distribution of aglycone (particularly for heteroatoms), in ground state, which in turn, causes a differential electrostatic interaction between neighboring nucleobases.

Panel (A1) shows the pH -dependent $\Delta \delta$ of following aromatic protons of ApG in alkaline range ($\mathrm{pH} \sim 7.0-11.0 ; \mathrm{ApG}^{-}$): H8A and H2A of ApG [(H8A) $\mathrm{pG}^{-}:-0.009 \mathrm{ppm}$ and (H2A) $\left.\mathrm{pG}^{-}:-0.032 \mathrm{ppm}\right]$ and ApEt [no change of (H8A)pEt and (H2A)pEt, as adenosine does not have any deprotonation site]; H8G of ApG [Ap($\underline{\mathbf{H 8 G}}^{-}$): 0.068ppm] and G [$\mathbf{H 8 G}$: 0.138 ppm$]$. Panel (A2) shows the pH -dependent $\Delta \delta$ of following aromatic protons of GpA in alkaline range ($\mathrm{pH} \sim 7.0-11.0$; $\mathrm{G}^{-} \mathrm{pA}$): H8G of GpA [($\left.\mathbf{H 8 G}^{-}\right) \mathrm{pA}$: $0.141 \mathrm{ppm}]$ and $\mathrm{GpEt}\left[\left(\underline{\mathbf{H 8 G}}{ }^{-}\right) \mathrm{pEt}: 0.149 \mathrm{ppm}\right] ; \mathrm{H} 8 \mathrm{~A}$ and H2A of GpA $\left[\mathrm{G}^{-} \mathrm{p}(\underline{\mathbf{H 8 A}}):-\right.$ 0.056 ppm and $\mathrm{G}^{-} \mathrm{p}(\underline{\mathbf{H 2 A}}):-0.004 \mathrm{ppm}$] and A [no change of $\underline{\mathbf{H 8 A}}$ and $\underline{\mathbf{H 2 A}}$ as adenosine does not have any deprotonation site].

Panel (B1) shows the pH -dependent $\Delta \delta$ of following aromatic protons of ApU in acidic range ($\mathrm{pH} \sim 2.0-7.0 ; \mathrm{A}^{\mathrm{H}} \mathrm{pU}$): H8A and H 2 A of $\mathrm{ApU}\left[(\underline{\mathbf{H 8 A}})^{\mathrm{H}+} \mathrm{pA}:-0.216 \mathrm{ppm}\right.$ and $\left.(\underline{\mathbf{H 2 A}})^{\mathrm{H}+} \mathrm{pA}:-0.242 \mathrm{ppm}\right]$ and $\mathrm{ApEt}\left[(\underline{\mathbf{H 8 A}})^{\mathrm{H}+} \mathrm{pEt}:-0.321 \mathrm{ppm}\right.$ and $(\underline{\mathbf{H 2 A}})^{\mathrm{H}+} \mathrm{pEt}:-$ $0.19 \mathrm{ppm}]$; H6U and H5U of $\mathrm{ApU}\left[\mathrm{A}^{\mathrm{H}+} \mathrm{p}(\underline{\mathbf{H 6 U}}):-0.089 \mathrm{ppm}, \mathrm{A}^{\mathrm{H}+} \mathrm{p}(\underline{\mathbf{H 5 U}}):-0.159 \mathrm{ppm}\right]$ and U [no change of $\underline{\mathbf{H 6 U}}$ and $\underline{\mathbf{H 5 U}}$ as uridine does not have any protonation site]. Panel (B2) shows the pH -dependent $\Delta \delta$ of following aromatic protons of ApU in alkaline range $(\mathrm{pH}$ $\left.\sim 7.0-11.0 ; \mathrm{CpU}^{-}\right): \mathrm{H} 8 \mathrm{~A}$ and H 2 A of $\mathrm{ApU}\left[(\underline{\mathbf{H 8 A}}) \mathrm{pU}^{-}: 0.021 \mathrm{ppm}\right.$ and $(\underline{\mathbf{H 2 A}}) \mathrm{pU}^{-}:-$ 0.007 ppm] and ApEt [no change of ($\underline{\mathbf{H 8 A})}$)pEt and ($\underline{\mathbf{H 2 A}}) \mathrm{pEt}$, as adenosine does not have any deprotonation site,]; H 6 U and $\mathrm{H5U}$ of $\mathrm{ApU}\left[\mathrm{Ap}\left(\underline{\mathbf{H 6}}^{-}\right): 0.126 \mathrm{ppm}, \operatorname{Ap}\left(\underline{\mathbf{H 5}}^{-}\right)\right.$: $0.017 \mathrm{ppm}]$ and U [$\underline{\mathbf{H 6 U}}: 0.176 \mathrm{ppm}$ and $\underline{\mathbf{H 5 U}}: 0.084 \mathrm{ppm}]$.
Panel ($\mathbf{C} \mathbf{1}$) shows the pH -dependent $\Delta \delta$ of following aromatic protons of UpA in acidic range $\left(\mathrm{pH} \sim 1.0-7.0 ; \mathrm{UpA}^{\mathrm{H}+}\right): \mathrm{H} 6 \mathrm{U}$ and H 5 U of $\mathrm{UpA}\left[(\underline{\mathbf{H 6 U}}) \mathrm{pA}^{\mathrm{H}}:-0.094 \mathrm{ppm}\right.$, $(\underline{\mathbf{H 5 U}}) \mathrm{pA}^{\mathrm{H}+}:-0.052 \mathrm{ppm}$] and UpEt [no change of $(\underline{\mathbf{H 6 U}}) \mathrm{pEt}$ and $(\underline{\mathbf{H 5 U}}) \mathrm{pEt}$ as uridine
does not have any protonation site]; H8A and H2A of $\mathrm{UpA}\left[\mathrm{Up}(\underline{\mathbf{H 8 A}})^{\mathrm{H}+}:-0.188 \mathrm{ppm}\right.$ and $\left.\mathrm{Up}(\underline{\mathbf{H} 2 \mathbf{A}})^{\mathrm{H}+}:-0.219 \mathrm{ppm}\right]$ and $\mathrm{A}\left[\underline{\mathbf{H} 8 \mathbf{A}}^{\mathrm{H}+}:-0.216 \mathrm{ppm}\right.$ and $\left.\underline{\mathbf{H} 2 A}^{\mathrm{H}+}:-0.198 \mathrm{ppm}\right]$. Panel (C2) shows the pH -dependent $\Delta \delta$ of following aromatic protons of UpA in alkaline range (pH ~ 7.0 - 11.0; $\left.\mathrm{U}^{-} \mathrm{pA}\right): \mathrm{H} 6 \mathrm{U}$ and H 5 U of $\mathrm{UpA}\left[\left(\underline{\mathbf{H 6 U}}^{-}\right) \mathrm{pA}: 0.226 \mathrm{ppm},\left(\underline{\mathbf{H 5 U}}^{-}\right) \mathrm{pA}:-\right.$ $0.117 \mathrm{ppm}]$ and $\mathrm{UpEt}\left[\left(\underline{\mathbf{H 6 U}}^{-}\right) \mathrm{pEt}: 0.198 \mathrm{ppm}\right.$ and $\left.\left(\underline{\mathbf{H 5}}^{-}\right) \mathrm{pEt}: 0.091 \mathrm{ppm}\right] ; \mathrm{H} 8 \mathrm{~A}$ and H2A of UpA [almost no change, $\mathrm{U}^{-} \mathrm{p}(\underline{\mathbf{H 8 A}}):-0.003 \mathrm{ppm}$ and $\mathrm{U}^{-} \mathrm{p}(\underline{\mathbf{H 2 A}}):-0.002 \mathrm{ppm}$] and A [no change of H8A and H2A as adenosine does not have any deprotonation site].

Panel (D1) shows the pH -dependent $\Delta \delta$ of following aromatic protons of UpC in acidic range $\left(\mathrm{pH} \sim 2.0-7.0 ; \mathrm{UpC}^{\mathrm{H}}\right)$: H 6 U and H 5 U of $\mathrm{UpC}\left[(\underline{\mathbf{H 6 U}}) \mathrm{pC}^{\mathrm{H}+}: 0.002 \mathrm{ppm}\right.$, $(\underline{\mathbf{H 5 U}}) \mathrm{pC}^{\mathrm{H}+}:-0.033 \mathrm{ppm}$] and UpEt [no change of $(\underline{\mathbf{H 6 U}}) \mathrm{pEt}$ and $(\underline{\mathbf{H 5 U}}) \mathrm{pEt}$ as uridine does not have any protonation site]; H 6 C and H 5 C of $\mathrm{UpC}\left[\mathrm{Up}(\underline{\mathbf{H 6 C}})^{\mathrm{H}+}:-0.242 \mathrm{ppm}\right.$ and $\left.\mathrm{Up}(\underline{\mathbf{H 5 C}})^{\mathrm{H}+}:-0.247 \mathrm{ppm}\right]$ and C $\left[\underline{\mathbf{H 6 C}}^{\mathrm{H}+}:-0.309 \mathrm{ppm}\right.$ and $\left.\underline{\mathbf{H 5 C}}^{\mathrm{H}+}:-0.19 \mathrm{ppm}\right]$. Panel (D2) shows the pH -dependent $\Delta \delta$ of following aromatic protons of UpC in alkaline range $(\mathrm{pH}$ ~ 7.0 - 11.0; $\left.\mathrm{U}^{-} \mathrm{pC}\right): \mathrm{H} 6 \mathrm{U}$ and H 5 U of $\mathrm{UpC}\left[\left(\mathbf{H 6 U}^{-}\right) \mathrm{pC}: 0.068 \mathrm{ppm},\left(\underline{\mathbf{H 5 U}}{ }^{-}\right) \mathrm{pC}\right.$: $0.033 \mathrm{ppm}]$ and $\mathrm{UpEt}\left[\left(\underline{\mathbf{H 6 U}}^{-}\right) \mathrm{pEt}: 0.198 \mathrm{ppm}\right.$ and $\left.\left(\underline{\mathbf{H 5}}^{-}\right) \mathrm{pEt}: 0.091 \mathrm{ppm}\right] ; \mathrm{H} 6 \mathrm{C}$ and H 5 C of $\mathrm{UpC}\left[\mathrm{U}^{-} \mathrm{p}(\underline{\mathbf{H 6 C}}): 0.037 \mathrm{ppm}\right.$ and $\left.\mathrm{U}^{-} \mathrm{p}(\underline{\mathbf{H 6 C}}):-0.021 \mathrm{ppm}\right]$ and C [no change of $\underline{\mathbf{H 6 C}}$ and $\underline{\mathbf{H C}}$ as cytidine does not have any deprotonation site].

Panel (E1) shows the pH -dependent $\Delta \delta$ of following aromatic protons of CpU in acidic range ($\mathrm{pH} \sim 2.0-7.0$; $\mathrm{C}^{\mathrm{H}} \mathrm{pU}$): H 6 C and H 5 C of $\mathrm{CpU}\left[(\underline{\mathbf{H 6 C}})^{\mathrm{H}+} \mathrm{pU}:-0.289 \mathrm{ppm}\right.$ and $\left.(\underline{\mathbf{H 5 C}})^{\mathrm{H}+} \mathrm{pU}:-0.262 \mathrm{ppm}\right]$ and $\mathrm{CpEt}\left[(\underline{\mathbf{H 6 C}})^{\mathrm{H}+} \mathrm{pEt}:-0.321 \mathrm{ppm}\right.$ and $\left[(\underline{\mathbf{H 5 C}})^{\mathrm{H}+} \mathrm{pEt}:-\right.$ $0.19 \mathrm{ppm}]$; H6U and H5U of $\mathrm{CpU}\left[\mathrm{C}^{\mathrm{H}^{+}} \mathrm{p}(\underline{\mathbf{H 6 U}}): 0.013 \mathrm{ppm}, \mathrm{C}^{\mathrm{H}^{+}} \mathrm{p}(\underline{\mathbf{H 5 U}}):-0.073 \mathrm{ppm}\right]$ and U [no change of $\underline{\mathbf{H 6 U}}$ and $\underline{\mathbf{H 5 U}}$ as uridine does not have any protonation site]. Panel (E2) shows the pH -dependent $\Delta \delta$ of following aromatic protons of CpU in alkaline range $(\mathrm{pH}$ $\left.\sim 7.0-11.0 ; \mathrm{CpU}^{-}\right): \mathrm{H} 6 \mathrm{C}$ and H 5 C of $\mathrm{CpU}\left[(\underline{\mathbf{H 6 C}}) \mathrm{pU}^{-}: 0.078 \mathrm{ppm}\right.$ and $(\underline{\mathbf{H 5 C}}) \mathrm{pU}^{-}$: 0.053 ppm] and CpEt [no change of $(\underline{\mathbf{H 6 C}}) \mathrm{pEt}$ and $(\underline{\mathbf{H 6 C}}) \mathrm{pEt}$, as cytidine does not have any deprotonation site]; H 6 U and H 5 U of $\mathrm{CpU}\left[\mathrm{Cp}\left(\underline{\mathbf{H} 6}^{-}\right): 0.013 \mathrm{ppm}, \mathrm{Cp}\left(\underline{\mathbf{H 5}}^{-}\right)\right.$: $0.073 \mathrm{ppm}]$ and U [$\underline{\mathbf{H 6 U}}: 0.176 \mathrm{ppm}$ and $\underline{\mathbf{H 5 U}}: 0.084 \mathrm{ppm}]$.
${ }^{1} \mathrm{H}$ NMR (at 500 MHz with $\delta_{\mathrm{DSS}}=0.015 \mathrm{ppm}$ as internal standard) for nucleoside adenosine (A), Guanosine (G), Uridine (U) and Cytidine (C) [with sample concentration of 1 mM] have been studied at acidic $(\mathrm{pH}=1.9)$, neutral $(\mathrm{pH}=6.6)$ and alkaline $(\mathrm{pH}=10.3)$ state to compare with the 5^{\prime}-nucleotidyl moieties of dimer, $\mathbf{1}-\mathbf{6}$. The pH -dependent chemical
shifts (δ, in ppm) of aromatic protons are as follows: $\boldsymbol{\delta}_{\mathrm{H} 8 \mathrm{~A}}=8.555($ at $\mathrm{pH}=1.9)$ and 8.339 (at $\mathrm{pH}=6.6) ; \delta_{\mathrm{H} 2 \mathrm{~A}}=8.458($ at $\mathrm{pH}=1.9)$ and $8.260($ at $\mathrm{pH}=6.6)$ for \mathbf{A}. $\boldsymbol{\delta}_{\mathrm{H} 8 \mathrm{G}}=8.591$ (at pH $=1.9), 8.002($ at $\mathrm{pH}=6.6)$ and $7.864($ at $\mathrm{pH}=10.3)$ for $\mathbf{G} . \delta_{\mathrm{H} 5 \mathrm{U}}=5.901$ (at $\left.\mathrm{pH}=6.6\right)$ and 5.817 (at $\mathrm{pH}=10.3) ; \delta_{\mathrm{H} 6 \mathrm{U}}=7.871($ at $\mathrm{pH}=6.6)$ and $7.695($ at $\mathrm{pH}=10.3)$ for $\mathbf{U} . \delta_{\mathrm{H} 5 \mathrm{C}}=$ $6.054($ at $\mathrm{pH}=1.9)$ and $6.244($ at $\mathrm{pH}=6.6) ; \delta_{\mathrm{H} 6 \mathrm{C}}=7.84($ at $\mathrm{pH}=1.9)$ and $8.149($ at $\mathrm{pH}=$ 6.6) for \mathbf{C}.

Legends for Figure S5:

Panels $(\mathbf{A})-(\mathbf{F})$ show the dimerisation $\operatorname{shift}^{31-33}\left(\delta_{\mathrm{NpEt}}-\delta_{\mathrm{NpN}^{\prime}}\right.$, in ppm) of the aromatic protons of 3 ' nucleotidyl unit of $\mathbf{1}-\mathbf{6}$ at neutral $(\mathrm{pH}=6.6)$, acidic $(\mathrm{pH}=1.9)$ and alkaline $(\mathrm{pH}=10.4)$ state. Due to base-base stacking interaction in dinucleoside monophosphates, $\mathbf{1}-\mathbf{6}$, the aromatic protons are shifted upfield compared to their monomeric counterparts, $7 \mathbf{- 1 0}$. [except for $\delta_{\mathrm{H} 8 \mathrm{~A}}$ of ApU at neutral $\mathrm{pH}, \delta_{\mathrm{H} 5 \mathrm{U}}$ of UpA in alkaline pH and δ_{HGU} of UpC as well as $\delta_{\mathrm{H} 6 \mathrm{C}}$ of CpU at both neutral and acidic pH where different partial charges between the nearest neighbor neucleobases cause these aromatic proton to get deshielded on dimerisation.]

Panel (A) shows dimerisation shift for H8A and H2A of ApG compared to H8A and H2A of ApEt at neutral $(\mathrm{pH}=6.6)$, acidic $(\mathrm{pH}=1.9)$ and alkaline $(\mathrm{pH}=10.4)$ state. Panel (\mathbf{B}) shows dimerisation shift for H8G of GpA compared to H8G of GpEt at neutral ($\mathrm{pH}=$ $6.6)$, acidic $(\mathrm{pH}=1.9)$ and alkaline $(\mathrm{pH}=10.4)$ state. Panel (\mathbf{C}) shows dimerisation shift for H8A and H2A of ApU compared to H8A and H2A of ApEt at neutral ($\mathrm{pH}=6.6$), acidic $(\mathrm{pH}=1.9)$ and alkaline $(\mathrm{pH}=10.4)$ state. Panel (\mathbf{D}) shows dimerisation shift for H5U and H6U of UpA compared to H5U and H6U of UpEt at neutral ($\mathrm{pH}=6.6$), acidic $(\mathrm{pH}=1.9)$ and alkaline $(\mathrm{pH}=10.4)$ state. Panel (\mathbf{E}) shows dimerisation shift for H 5 U and H6U of UpC compared to H5U and H6U of UpEt at neutral ($\mathrm{pH}=6.6$), acidic $(\mathrm{pH}=1.9)$ and alkaline $(\mathrm{pH}=10.4)$ state. Panel (\mathbf{F}) shows dimerisation shift for H 5 C and H 6 C of CpU compared to H 5 C and H 6 C of CpEt at neutral $(\mathrm{pH}=6.6)$, acidic $(\mathrm{pH}=1.9)$ and alkaline $(\mathrm{pH}=10.4)$ state. See Table S3 for details.

Figures S1a-S1p

Figure S1a: ApG

Figure S1b: ApG

Figures S1a-S1p

Figure S1c: GpA

Figure S1d : GpA

Figures S1a-S1p
Figure S1e: CpU

Figure S1f: CpU

Figures S1a-S1p
Figure S1g: UpC

Figure S1h : UpC

Figures S1a-S1p

Figure S1i : UpA

Figure S1j : UpA

Figures S1a-S1p

Figure S1k : ApU

Figure S1I : ApU

Figures S1a-S1p
Figure S1m : ApEt

Figure S1n : GpEt

Figure S1o : UpEt

Figure S1p : CpEt

Figures S2a-S2p

Figure S2a: ApG

Figure S2b: ApG

Figures S2a-S2p
Figure S2c: GpA

Figure S2d : GpA

Figures S2a-S2p

Figure S2e: CpU

Figure S2f: CpU

Figures S2a-S2p

Figure S2g: UpC

Figure S2h: UpC

Figures S2a-S2p

Figure S2i : UpA

Figure S2j: UpA

Figures S2a-S2p
Figure S2k : ApU

Figure S2I: ApU

Figures S2a-S2p
Figure S2m : ApEt

Figure S2n : GpEt

Figure S2o : UpEt

Figure S2p: CpEt

Figures S3a-S3p
(3a): ApG

(3b): ApG

Figures S3a-S3p
(3c): GpA

(3d): GpA

Figures S3a-S3p
(3e): CpU

(3f): CpU

Figures S3a-S3p
(3g): UpC

Figures S3a-S3p
(3i): UpA

(3j): UpA

Figures S3a-S3p
(3k): ApU

(3I): ApU

Figures S3a-S3p
(3m): ApEt

(3n): GpEt

(30): UpEt

(3p): CpEt

Figure S4
(C1): $\mathrm{UpA}^{\mathrm{H}+}$

(D1): $\mathrm{UpC}^{\mathrm{H}+}$

(E1): $\mathrm{C}^{\mathrm{H}+} \mathrm{pU}$

(C2): $\mathrm{U}^{-} \mathrm{pA}$

(D2): $\mathrm{U}^{-} \mathrm{pC}$

(E2): CpU^{-}

Figure S4

(A): ApG

(C): ApU

(E): UpC

(B): GpA

(D): UpA

(F): CpU

Figure S5

Table S1. pH -dependent ${ }^{3} J_{\mathrm{HH}}(\pm 0.1)^{\mathrm{a}}$, percentage population of N -type pseudorotamer ${ }^{6}(\% \mathrm{~N})$ and corresponding free energy $\left(\Delta G_{\mathrm{N} /(298 \mathrm{~K})}^{\mathrm{o}}\right)^{\mathrm{b}}$ and Stacking free energy $\left(\Delta \Delta G^{\circ}\right)^{\mathrm{c}}$ from ${ }^{1} \mathrm{H}$ NMR at 298 K for $\mathbf{1}-\mathbf{1 0}$ in $\mathrm{D}_{2} \mathrm{O}$.

Compd.		$\mathrm{pH}=1.9(\pm 0.1)$						$\mathrm{pH}=6.6$ ($\pm 0.1)$						$\mathrm{pH}=10.3(\pm 0.1)$					
		${ }^{3} J_{12}{ }^{\prime}$	${ }^{3} J_{2^{\prime} 3^{\prime}}$	${ }^{3} J^{3} 4^{4}$	$\begin{aligned} & \hline \% \\ & \mathrm{~N} \end{aligned}$	ΔG°	$\Delta \Delta G^{\circ}$	${ }^{3} J_{12}{ }^{\prime}$	${ }^{3} J_{2^{\prime} 3^{\prime}}$	${ }^{3} J^{3} 4^{\prime}$	$\begin{aligned} & \hline \% \\ & \mathrm{~N} \\ & \hline \end{aligned}$	ΔG°	$\Delta \Delta G^{\circ}$	${ }^{3} J_{12} 2^{\prime}$	${ }^{3} J_{2^{\prime 3}}$	${ }^{3} J^{3}{ }^{\prime}$	$\begin{gathered} \hline \% \\ N \end{gathered}$	ΔG°	$\Delta \Delta G^{\circ}$
ApG (1)	Ap	4.4	- ${ }^{\text {h }}$	- ${ }^{\text {h }}$	$51^{\text {g }}$	-0.1	-1.4	4.6	4.6	4.7	54	-0.4	-3.6	5.2	$5.0{ }^{\text {d }}$	4.2	46	0.4	$-2.8{ }^{\text {k }}$
	pG	4.8	5.1	5.1	49	0.1		4.5	5.1	5.3	53	-0.3		4.7	5.3	5.0	49	0.1	
GpA (2)	Gp	4.0	$5.0^{\text {d }}$	5.4	59	-0.9	$-0.9{ }^{\text {k }}$	4.4	5.0	5.3	56	-0.6	-3.2	6.2	$5.0{ }^{\text {d }}$	2.6	25	2.7	-1.7
	pA	4.1	5.2	5.3	56	-0.6		4.5	5.0	5.5	53	-0.3		5.1	5.3	4.7	43	0.7	
ApU (3)	Ap	4.8	5.0	4.7	46	0.4	-0.9	4.2	4.9	5.3	54	-0.4	-3.6	5.2	5.1	5.2	46	0.4	$-2.8{ }^{\text {k }}$
	$\mathrm{p} \mathbf{U}$	3.7	- ${ }^{\text {b }}$	- ${ }^{\text {h }}$	61^{g}	-1.1		3.5	- ${ }^{\text {h }}$	$-^{\text {h }}$	64^{g}	-1.4		3.9	- ${ }^{\text {h }}$	- ${ }^{\text {h }}$	58^{g}	-0.7	
UpA (4)	Up	5.0	5.2	5.0	45	0.5	$-0.3{ }^{\text {k }}$	4.6	5.3	5.4	50	0.0	-0.8	5.5	4.8	5.4	45	0.5	-0.7
	pA	4.6	5.0	5.1	53	-0.3		4.8	5.2	5.0	51	-0.1		5.2	4.8	4.9	47	0.3	
UpC (5)	Up	4.9	5.2	5.2	47	0.3	$-0.5{ }^{\text {k }}$	3.9	5.3	5.7	57	-0.7	-1.5	4.8	5.3	5.5	49	0.1	-1.1
	pC	3.2	- ${ }^{\text {h }}$	- ${ }^{\text {h }}$	$68^{\text {g }}$	-1.8		3.4	5.3	- ${ }^{\text {h }}$	$65^{\text {g }}$	-1.5		3.8	5.4	5.5	59	-0.9	
CpU (6)	Cp	3.8	5.2	6.2	67	-1.7	-1.1	3.5	5.1	6.0	67	-1.7	-1.9	3.5	5.2	6.4	70	-2.1	$-2.3{ }^{\text {k }}$
	$\mathrm{p} \mathbf{U}$	3.7	5.1	- ${ }^{\text {h }}$	61^{g}	-1.1		2.6	5.0	$-^{\text {h }}$	$77^{\text {g }}$	-3.0		2.5	4.9	6.3	78	-3.1	
$\operatorname{ApEt}(7)$		5.7	5.3	3.9	37	1.3	-	6.8	5.3	2.7	21	3.2	-	- ${ }^{\text {e }}$	$-{ }^{\text {e }}$	$-^{\text {e }}$	- ${ }^{\text {e }}$	- ${ }^{\text {e }}$	-
$\operatorname{GpEt}(8)$		- ${ }^{\text {e }}$	- ${ }^{\text {e }}$	$-^{\text {e }}$	$50^{\text {f }}$	$0.0{ }^{\text {f }}$	-	6.5	5.3	3.1	26	2.6	-	7.3	5.3	2.1	14	4.4	-
$\operatorname{UpEt}(\mathbf{9})$		- ${ }^{\text {e }}$	$-{ }^{\text {e }}$	- ${ }^{\text {e }}$	$-{ }^{\text {e }}$	- ${ }^{\text {e }}$	-	5.3	5.3	4.8	42	0.8	-	5.6	5.4	4.6	38	1.2	-
CpEt (10)		4.1	5.2	5.7	56	-0.6	-	4.8	5.3	5.3	48	0.2	-	- ${ }^{\text {e }}$	- ${ }^{\text {e }}$	$-^{\text {e }}$	- ${ }^{\text {e }}$	- ${ }^{\text {e }}$	-

${ }^{a}$ calculated using DAISY simulation program package (supplied by Bruker Spectrospin, Germany) of the experimental ${ }^{1}$ H NMR spectra. ${ }^{b}$ calculated using PSEUROT ${ }^{4-}$ ${ }^{6}$ (see the experimental section for details). The negative $\Delta G_{\mathrm{N} / \mathrm{S}(298 \mathrm{~K})}^{\mathrm{o}}$ implies relatively more N-type conformational population, so more stabilization due to stacking. ${ }^{\text {c }}$
The stacking free energy $\left[\Delta \Delta G^{\circ} \cong \Delta G_{\text {Stacking }}^{\mathrm{o}} \text {, in } \mathrm{kJ} \mathrm{mol}^{-1} \text {] has been calculated by [} \Delta G_{\mathrm{N} / \mathrm{S}(298 \mathrm{~K})}^{\mathrm{o}}\right]_{\text {dimer }}-\left[\Delta G_{\mathrm{N} / \mathrm{S}(298 \mathrm{~K})}^{\mathrm{o}}\right]_{\text {monomer }}$ (see Experimental section for details). ${ }^{\mathrm{d}}$ Due to the spectral overlap with HOD signal at these pH , we have taken values by extrapolation from nearest available pH . ${ }^{\mathrm{e}}$ No NMR experiments have been performed as there is no pronation/deprotonation site at such pH range. ${ }^{\mathrm{f}}$ value for EtpGpEt (see ref. 5) has been used as 5'-ethylphosphate has very little conformational effect on sugar geometry ${ }^{6}$, so can be ignored. ${ }^{g} \% \mathrm{~N}(\pm 3.0)$ has been calculated by $\% \mathrm{~N}=100 *\left(7.9-{ }^{3} J_{1^{\prime} 2^{\prime}}\right) / 6.9$] due to unavailability of all ${ }^{3} J_{\mathrm{HH}}$ no PSEUROT could be performed. ${ }^{\mathrm{h}}$ No simulation of the spectra could be performed due to either spectral overlapping or overlap with HOD signal. ${ }^{\mathrm{k}} \Delta \Delta G^{\circ}$ has been calculated using [$\left.\Delta G_{\mathrm{N} / \mathrm{S}(298 \mathrm{~K})}^{\mathrm{o}}\right]_{\text {monomer }}$ at $\mathrm{pH}=6.6$.

Table S2. PSEUROT (v5.4) calculations ${ }^{\mathrm{a}}$ based on ${ }^{3} J_{\mathrm{HH}}$ at acidic ($\mathrm{pH}=1.9$), neutral $(\mathrm{pH}=6.6)$ and alkaline $(\mathrm{pH}=10.3)$ state for $\mathbf{1}-\mathbf{1 0}$ in $\mathrm{D}_{2} \mathrm{O}$.

Compd.		$\mathrm{pH}=1.9(\pm 0.1)$						$\mathrm{pH}=6.6 \mathbf{(\pm 0 . 1)}$						$\mathrm{pH}=10.3$ (± 0.1)					
		P_{N}	$\left[\Psi_{m}\right]_{\mathrm{N}}$	$P_{\text {S }}$	$\left[\Psi_{m}\right]_{\mathrm{S}}$	\%S	$\mathrm{rms}^{\text {d }}$	$P_{\text {N }}$	$\left[\Psi_{m}\right]_{\mathrm{N}}$	$P_{\text {S }}$	[$\left.\Psi_{m}\right]_{\mathrm{S}}$	\%S	$\mathrm{rms}^{\text {d }}$	P_{N}	$\left[\Psi_{m}\right]_{\mathrm{N}}$	$P_{\text {S }}$	$\left[\Psi_{m}\right]_{\mathrm{S}}$	\%S	$\mathrm{rms}^{\text {d }}$
ApG (1)	Ap	${ }^{\text {b }}$	$-{ }^{\text {b }}$	- ${ }^{\text {b }}$	- ${ }^{\text {b }}$	$-{ }^{\text {b }}$	$-{ }^{\text {b }}$	-15	40	141	40	46	± 0.1	-15	40	141	40	54	± 0.1
	pG	-11	39	131	39	51	± 0.1	-11	39	131	39	47	± 0.1	-11	39	131	39	51	± 0.1
GpA(2)	Gp	34	36	175	36	41	± 0.1	34	36	175	36	44	± 0.1	34	36	175	36	75	± 0.1
	pA	7	36	138	36	45	± 0.1	7	36	138	36	47	± 0.1	7	36	138	36	57	± 0.1
ApU (3)	Ap	5	37	139	37	54	± 0.1	5	37	139	37	46	± 0.1	5	37	139	37	54	± 0.1
	$\mathrm{p} \mathbf{U}$	- ${ }^{\text {b }}$	- ${ }^{\text {b }}$	- b	- ${ }^{\text {b }}$	- b	- ${ }^{\text {b }}$	- ${ }^{\text {b }}$	- ${ }^{\text {b }}$	- b	- ${ }^{\text {b }}$	- ${ }^{\text {b }}$	- ${ }^{\text {b }}$						
UpA (4)	Up	15	37	135	37	55	± 0.1	15	37	135	37	50	± 0.1	15	37	135	37	55	± 0.1
	pA	-16	41	131	41	47	± 0.1	-16	41	131	41	49	± 0.1	-16	41	131	41	53	± 0.1
UpC (5)	Up	15	36	135	36	53	± 0.1	15	36	135	36	43	± 0.1	15	36	135	36	51	± 0.1
	pC	- ${ }^{\text {b }}$	- b	- b	$-{ }^{\text {b }}$	- ${ }^{\text {b }}$	- b												
CpU (6)	Cp	39	35	180	37	33	± 0.1	39	35	180	37	33	± 0.1	39	35	180	37	30	± 0.1
	$\mathrm{p} \mathbf{U}$	- b	- b	- ${ }^{\text {b }}$	- b	- ${ }^{\text {b }}$	$-{ }^{\text {b }}$	- b	- ${ }^{\text {b }}$	- ${ }^{\text {b }}$	- ${ }^{\text {b }}$	$-^{\text {b }}$	- ${ }^{\text {b }}$	- ${ }^{\text {b }}$	- ${ }^{\text {b }}$	$-{ }^{\text {b }}$	- ${ }^{\text {b }}$	$-{ }^{\text {b }}$	- ${ }^{\text {b }}$
$\mathrm{ApEt}(7)$		23	35	152	35	63	± 0.1	23	35	152	35	79	± 0.1	$-^{\text {c }}$	- ${ }^{\text {c }}$	$-^{\text {c }}$	- ${ }^{\text {c }}$	- ${ }^{\text {c }}$	- ${ }^{\text {c }}$
GpEt (8)		- ${ }^{\text {c }}$	$-{ }^{\text {c }}$	- ${ }^{\text {c }}$	23	35	154	35	74	± 0.1	23	35	154	35	86	± 0.1			
UpEt (9)		$-^{\text {c }}$	$-{ }^{\text {c }}$	$-^{\text {c }}$	$-{ }^{\text {c }}$	- ${ }^{\text {c }}$	$-{ }^{\text {c }}$	10	37	135	37	58	± 0.1	10	37	135	37	62	± 0.1
CpEt (10)		13	36	134	36	44	± 0.1	13	36	134	36	52	± 0.1	$-^{\text {c }}$	- ${ }^{\text {c }}$				

${ }^{\text {a }} \mathrm{pH}$-dependent ${ }^{3} J_{\mathrm{HH}}$ at 298 K . See the experimental section for details of PSEUROT methodology. Geometries of the pentose moieties have been defined by puckering amplitudes and pseudorotational angle ${ }^{6}$ for N-type (P_{N} and $\left[\Psi_{m}\right]_{\mathrm{N}}$) and S-type conformer (P_{S} and [$\left.\Psi_{m}\right]_{\mathrm{S}}$). During several PSEUROT optimizations [$\left.\Psi_{m}\right]_{\mathrm{N}}$ and $\left[\Psi_{m}\right]_{\mathrm{S}}$ were initially kept fixed to identical values in the range from 27° to 45° for $\mathbf{1 - 1 0}$ and surveyed the conformational hyperspace for N - and S-type pseudorotamers, in 1° steps. For 7 -9 at neutral and alkaline $\mathrm{pH}, P_{\mathrm{N}}$ and $\left[\Psi_{m}\right]_{\mathrm{N}}$ (minor conformers, mole fraction $\leq 70 \%$) were kept fixed. ${ }^{\text {b }}$ Due to the non-availability of endocyclic ${ }^{3} J_{\mathrm{HH}}$, PSEUROT could not be performed. ${ }^{\mathrm{c}}$ No NMR experiments have been performed (See Table S1). ${ }^{\mathrm{d}}$ The overall rms of the PSEUROT calculations. The error estimates have been assessed in terms of $\Delta J_{\max }$ and r.m.s. (see experimental section for details) having $\Delta J_{\max }$ and r.m.s. values ≤ 0.4 and $\leq 0.3 \mathrm{~Hz}$ respectively.

Table S3. ${ }^{1} \mathrm{H}$ chemical shifts ${ }^{\mathrm{a}}$ as well as the dimerisation shifts ${ }^{\mathrm{b}}$ (shown in parenthesis) for aromatic protons of compounds $\mathbf{1} \mathbf{- 1 0}$ at three different pHs as specified below.

Compd.		pH=1.9 (± 0.1)				$\mathrm{pH}=6.6$ ($\pm 0.1)$				$\mathbf{p H}=10.3$ (\pm 0.1)			
		¢H8	¢H2	סH5	8H6	סH8	¢ H 2	8H5	8H6	8H8	8H2	8H5	8H6
ApG (1)	Ap	$\begin{gathered} 8.526 \\ (\mathbf{0 . 0 5 2})^{\mathrm{b}} \end{gathered}$	$\begin{gathered} 8.436 \\ (\mathbf{0 . 0 3 6})^{\text {b }} \end{gathered}$	-	-	$\begin{gathered} 8.262 \\ (\mathbf{0 . 0 9 2})^{\mathrm{b}} \end{gathered}$	$\begin{gathered} 8.153 \\ (\mathbf{0 . 1 1 7})^{\mathrm{b}} \end{gathered}$	-	-	$\begin{gathered} 8.268 \\ (\mathbf{0 . 0 8 6})^{\text {b,c }} \end{gathered}$	$\begin{gathered} 8.180 \\ (\mathbf{0 . 0 9})^{\mathrm{b}, \mathrm{c}} \end{gathered}$	-	-
	pG	8.626	-	-	-	7.942	-	-	-	7.868	-	-	-
GpA (2)	Gp	$\begin{gathered} 8.382 \\ (\mathbf{0 . 1 3 2})^{\mathrm{b}} \end{gathered}$	-	-	-	$\begin{gathered} 7.913 \\ (\mathbf{0 . 0 9 7})^{\mathrm{b}} \end{gathered}$	-	-	-	$\begin{gathered} 7.775 \\ (\mathbf{0} .09)^{\text {b }} \\ \hline \end{gathered}$	-	-	-
	pA	8.544	8.456	-	-	8.344	8.206	-	-	8.399	8.210	-	-
ApU (3)	Ap	$\begin{gathered} 8.567 \\ (\mathbf{0 . 0 1 1})^{b} \end{gathered}$	$\begin{gathered} 8.449 \\ (\mathbf{0 . 0 2 3})^{\mathrm{b}} \end{gathered}$	-	-	$\begin{gathered} 8.362 \\ (-\mathbf{0 . 0 0 8})^{\text {b }} \end{gathered}$	$\begin{gathered} 8.222 \\ (\mathbf{0 . 0 4 8})^{\mathrm{b}} \\ \hline \end{gathered}$	-	-	$\begin{gathered} 8.342 \\ (\mathbf{0 . 0 1 2})^{\mathrm{b}, \mathrm{c}} \end{gathered}$	$\begin{gathered} 8.228 \\ (\mathbf{0 . 0 4 2})^{\mathrm{b}, \mathrm{c}} \end{gathered}$	-	-
	$\mathrm{p} \mathbf{U}$	-	-	5.789	7.853	-	-	5.638	7.767	-	-	5.653	7.649
UpA (4)	Up	-	-	$\begin{gathered} 5.831 \\ (\mathbf{0 . 0 8 7})^{\mathrm{b}, \mathrm{c}} \end{gathered}$	$\begin{gathered} 7.833 \\ (\mathbf{0 . 0 5 1})^{\mathrm{b}, \mathrm{c}} \end{gathered}$	-	-	$\begin{gathered} 5.731 \\ (\mathbf{0 . 1 8 7})^{b} \\ \hline \end{gathered}$	$\begin{gathered} 7.751 \\ (\mathbf{0 . 1 3 3})^{\mathrm{b}} \end{gathered}$	-	-	$\begin{gathered} 5.843 \\ (-\mathbf{0 . 0 0 5})^{\mathrm{b}} \end{gathered}$	$\begin{gathered} 7.534 \\ (\mathbf{0 . 1 7 7})^{b} \end{gathered}$
	pA	8.604	8.451	-	-	8.435	8.256	-	-	8.438	8.258	-	-
UpC (5)	Up	-	-	$\begin{gathered} 5.891 \\ (\mathbf{0 . 0 2 7})^{\mathrm{b}, \mathrm{c}} \end{gathered}$	$\begin{gathered} 7.916 \\ (-\mathbf{0 . 0 3 2})^{\mathrm{b}, \mathrm{c}} \end{gathered}$	-	-	$\begin{gathered} 5.858 \\ (\mathbf{0 . 0 6})^{\mathrm{b}} \end{gathered}$	$\begin{gathered} 7.919 \\ (-\mathbf{0 . 0 3 5})^{\mathrm{b}} \\ \hline \end{gathered}$	-	-	$\begin{gathered} 5.794 \\ (\mathbf{0 . 0 4 4})^{\mathrm{b}} \end{gathered}$	$\begin{gathered} 7.689 \\ (\mathbf{0 . 0 2 2})^{\mathrm{b}} \end{gathered}$
	pC	-	-	6.273	8.178	-	-	6.024	7.935	-	-	6.046	7.901
CpU (6)	Cp	-	-	$\begin{gathered} 6.231 \\ (\mathbf{0 . 0 2 7})^{\mathrm{b}} \end{gathered}$	$\begin{gathered} 8.191 \\ (-\mathbf{0 . 0 2 2})^{\mathrm{b}} \\ \hline \end{gathered}$	-	-	$\begin{gathered} 5.970 \\ (\mathbf{0 . 0 9 9})^{\mathrm{b}} \end{gathered}$	$\begin{gathered} 7.902 \\ (-\mathbf{0 . 0 5 4})^{\mathrm{b}} \end{gathered}$	-	-	$\begin{gathered} 5.924 \\ (\mathbf{0 . 1 4 5})^{\mathrm{b}, \mathrm{c}} \end{gathered}$	$\begin{gathered} 7.836 \\ (\mathbf{0 . 0 1 2})^{\mathrm{b}, \mathrm{c}} \end{gathered}$
	$\mathrm{p} \mathbf{U}$	-	-	5.889	7.917	-	-	5.816	7.930	-	-	5.767	7.792
ApEt (7)		8.578	8.472	-	-	8.354	8.270	-	-	-	-	-	-
$\operatorname{GpEt}(\mathbf{8})$		8.514	-	-	-	8.010	-	-	-	7.865	-	-	-
UpEt (9)		-	-	-	-	-	-	5.918	7.884	-	-	5.838	7.711
CpEt (10)		-	-	6.258	8.169	-	-	6.069	7.848	-	-	-	-

${ }^{\mathrm{a}}$ In ppm. ${ }^{\mathrm{b}}$ The values in parenthesis with bold, indicate the dimerisation shifts ($\delta_{\mathrm{NpEt}}-\delta_{\mathrm{NpN}}$) of the corresponding protons (See Figure S5). ${ }^{\mathrm{c}}$ dimerisation shifts ($\delta_{\mathrm{NpEt}}-\delta_{\mathrm{NPN}}$) at this pH have been calculated using δ_{NpEt} of neutral pH assuming that there will be no change of chemical shift over the pH due to the absence of any protonation/deprotonation site at that particular pH range.

