Supporting Information

Cobalt-catalyzed Heck-type Reaction of Alkyl Halides with Styrenes:

Yousuke Ikeda, Tomoaki Nakamura, Hideki Yorimitsu, and Koichiro Oshima*

Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan

Instrumentation and Materials

¹H NMR (300 MHz) and ¹³C NMR (75.3 MHz) spectra were taken on a Varian GEMINI 300 spectrometer in CDCl₃ as a solvent, and chemical shifts were given in δ value with tetramethylsilane as an internal standard. IR spectra were determined on a JASCO IR-810 spectrometer. TLC analyses were performed on commercial glass plates bearing a 0.25-mm layer of Merck Silica gel 60F₂₅₄. Silica gel (Wakogel 200 mesh) was used for column chromatography. The analyses were carried out at the Elemental Analysis Center of Kyoto University.

Unless otherwise noted, materials obtained from commercial suppliers were used without further purification. Anhydrous CoCl₂ was purchased from Wako Pure Chemicals and was used after removal of water (vide infra). The ligand dpph was purchased from Tokyo Kasei Kogyo.

Experimental Section

The reaction was quite sensitive to water. Commercially available anhydrous CoCl₂ may contain some water. Completely anhydrous salt is clear blue, whereas purchased CoCl₂ is somewhat reddishblue. Handling CoCl₂ under air as usual also caused low yield. Hence, in each experiment, CoCl₂ was dried in a reaction flask carefully under reduced pressure (0.5 torr) by heating with a hair dryer for 2 min immediately before use.

A Typical Procedure for Cobalt-catalyzed Alkylation of Styrene.

Anhydrous cobalt(II) chloride (6.5 mg, 0.050 mmol) was placed in a 25-mL flask and was heated with a hair dryer in vacuo for 2 min. After the color of cobalt salt became blue, dpph (27 mg, 0.060 mmol) and anhydrous ether (1 mL) were sequentially added under argon. The mixture was stirred for about 30 min. A bright blue mixture was obtained. Bromocyclohexane (0.24 g, 1.5 mmol), styrene (0.10 g, 1.0 mmol), and trimethylsilylmethylmagnesium chloride (1.0 M ether solution, 2.5 mL, 2.5 mmol) were successively added dropwise to the reaction mixture at 0 °C. While the Grignard reagent was being added, the mixture turned brown. After being stirred for 8 h at 20 °C, the reaction mixture was poured into saturated ammonium chloride solution. The products were extracted with ethyl acetate (20 mL × 2). The combined organic layer was dried over Na₂SO₄ and was concentrated. Silica gel column purification (hexane) of the crude product provided **2a** (0.16 g, 0.86 mmol) in 86% yield.

Characterization Data

Spectral data for some compounds (2a, 2e, 4c, 4f, 2c, 2d, 54) were found in the literature. Spectral data of 7 is not described here. After Jones oxidation, the corresponding lactone (7') was analyzed.

(*E*)-β-(1-methylheptyl)styrene (2b): IR (neat) 3026, 2926, 2855, 1493, 1454, 964, 746, 692 cm⁻¹; ¹H NMR (CDCl₃) δ 0.89 (t, J = 6.6 Hz, 3H), 1.08 (d, J = 6.9 Hz, 3H), 1.20–1.42 (m, 10H), 2.20–2.37 (m, 1H), 6.11 (dd, J = 8.0 Hz, 15.9 Hz, 1H), 6.35 (d, J = 15.9 Hz, 1H), 7.16–7.40 (m, 5H); ¹³C NMR (CDCl₃) δ 13.97, 20.56, 22.57, 27.27, 29.37, 31.79, 37.07, 37.18, 126.04, 126.79, 128.00, 128.53, 137.21, 138.12. Found: C, 89.08; H, 11.34%. Calcd for C₁₆H₂₄: C, 88.82; H, 11.18%.

(*E*)-β-methyl-4-chlorostyrene (2f): IR (neat) 3024, 2914, 2872, 1491, 1448, 1402, 1248, 1092, 1013, 964, 843, 808, 781, 683 cm⁻¹; ¹H NMR (CDCl₃) δ 1.83 (d, J = 6.3 Hz, 3H), 6.10–6.25 (m, 1H), 6.31 (d, J = 15.9 Hz, 1H), 7.15–7.30 (m, 4H); ¹³C NMR (CDCl₃) δ 18.32, 126.54, 126.74, 127.09, 128.23, 128.67, 129.98. Found: C, 70.57; H, 6.06%. Calcd for C₉H₉Cl: C, 70.83; H, 5.94%.

(*E*)-β-cyclohexyl-4-methylstyrene (4b): IR (neat) 2924, 2851, 1514, 1448, 966, 843, 797 cm⁻¹; ¹H NMR (CDCl₃) δ 1.09–1.84 (m, 10H), 2.00–2.16 (m, 1H), 2.32 (s, 3H), 6.12 (dd, J = 15.9 Hz, 6.9 Hz, 1H), 6.31 (d, J = 15.9 Hz, 1H), 7.09 (d, J = 8.1 Hz, 2H), 7.24 (d, J = 8.1 Hz, 2H); ¹³C NMR (CDCl₃) δ 20.99, 25.98, 26.12, 32.95, 41.06, 125.91, 127.14, 129.22, 135.41, 135.95, 136.47. Found: C, 89.69; H, 9.88%. Calcd for C₁₅H₂₀: C, 89.94; H, 10.06%.

(*E*)-β-cyclohexyl-3-chlorostyrene (4d): IR (neat) 2924, 2851, 1595, 1564, 1448, 1477, 1427, 1078, 997, 962, 880, 773, 683 cm⁻¹; ¹H NMR (CDCl₃) δ 1.10–1.85 (m, 10H), 2.05–2.20 (m, 1H), 6.18 (dd, J = 15.9 Hz, 6.3 Hz, 1H), 6.28 (d, J = 15.9 Hz, 1H), 7.12–7.22 (m, 3H), 7.33 (s, 1H); ¹³C NMR (CDCl₃) δ 25.89, 26.03, 32.74, 41.05, 124.29, 125.93, 126.15, 126.71, 129.71, 134.49, 138.51, 140.12. Found: C, 76.23; H, 7.62%. Calcd for C₁₄H₁₇Cl: C, 76.18; H, 7.76%.

(*E*)-β-cyclohexyl-2-chlorostyrene (4e): IR (neat) 2924, 2851, 1470, 1443, 1051, 1034, 964, 748 cm⁻¹; ¹H NMR (CDCl₃) δ 1.10–1.90 (m, 10H), 2.10–2.30 (m, 1H), 6.17 (dd, J = 15.9 Hz, 6.9Hz, 1H), 6.74 (d, J = 15.9 Hz, 1H), 7.10–7.35 (m, 4H); ¹³C NMR (CDCl₃) δ 25.89, 26.06, 32.78, 41.27, 123.72, 126.60, 126.76, 127.82, 129.65, 132.78, 136.21, 139.78. Found: C, 76.46; H, 7.85%. Calcd for C₁₄H₁₇Cl: C, 76.18; H, 7.76%.

(*E*)-3-(2-cyclohexylethenyl)-*N*,*N*-dibenzylbenzamide (4h): IR (nujol) 1645, 1601, 1412, 1258, 1013, 966, 864, 748, 733, 702 cm⁻¹; ¹H NMR (CDCl₃) δ 1.10–1.78 (m, 10H), 2.12–2.22 (m, 1H), 4.41 (s, 2H), 4.72 (s, 2H), 6.07 (dd, J = 15.9 Hz, 6.9Hz, 1H), 6.29 (d, J = 15.9 Hz, 1H), 7.10–7.40 (m, 13H), 7.47 (s, 1H); ¹³C NMR (CDCl₃) δ 25.88, 26.04, 32.74, 41.04, 46.93, 51.50, 124.31, 124.89, 126.56, 127.11, 127.36, 127.64, 128.60, 128.67, 128.86, 136.42, 138.20, 138.64, 172.49. Found: C, 84.94; H, 7.70%. Calcd for C₂₉H₃₁NO: C, 85.05; H, 7.63%.

tert-butyl (*E*)-3-(2-cyclohexylethenyl)benzoate (4i): IR (neat) 2976, 2926, 2853, 1715, 1448, 1367, 1298, 1256, 1163, 1111, 966, 750 cm⁻¹; ¹H NMR (CDCl₃) δ 1.08–1.88 (m, 19H), 2.08–2.20 (m, 1H),

6.17 (dd, J = 15.9 Hz, 6.6 Hz, 1H), 6.30 (d, J = 15.9 Hz, 1H), 7.23 (dd, J = 8.1 Hz, 7.5 Hz, 1H), 7.42 (d, J = 8.1 Hz, 1H), 7.73 (d, J = 7.5 Hz, 1H), 7.90 (s, 1H); ¹³C NMR (CDCl₃) δ 25.92, 26.06, 28.12, 32.80, 41.08, 80.96, 126.60, 126.97, 127.70, 128.37, 129.91, 132.31, 138.04, 138.33, 166.04. HRMS calcd for C₁₉H₂₆O₂ (M⁺) 286.1933, found 286.1943.

β-cinnamyl-γ-butyrolactone (7'): IR (neat) 2909, 2849, 1771, 1599, 1479, 1418, 1379, 1171, 1020, 970, 843, 748, 694 cm⁻¹; ¹H NMR (CDCl₃) δ 2.25–2.45 (m, 3H), 2.60–2.80 (m, 2H), 4.03–4.09 (m, 1H), 4.40–4.46 (m, 1H), 6.10 (dt, J = 15.9 Hz, 7.2 Hz, 1H), 6.46 (d, J = 15.9 Hz, 1H), 7.20–7.37 (m, 5H); ¹³C NMR (CDCl₃) δ 33.87, 35.17, 36.35, 72.63, 125.72, 126.18, 127.63, 128.67, 133.10, 136.86, 176.97. HRMS calcd for C₁₃H₁₄O₂ (M⁺) 202.0994, found 202.0990.

¹ Liu, J.-T.; Jang, Y.-J.; Shin, Y.-K.; Hu, S.-R.; Chu, C.-M.; Yao, C.-F. *J. Org. Chem.* **2001**, *66*, 6021–6028.

² Netherton, M. R.; Dai, C.; Neuschuetz, K., Fu, G. C. J. Am. Chem. Soc. **2001**, 123, 10099–10100.

³ Yamada, H.; Takatsuka, T.; Hanafusa, T. J. Org. Chem. **1996**, 61, 722–726.

⁴ Yamamoto, Y.; Yatagai, H.; Maruyama, K. J. Am. Chem. Soc. 1981, 103, 1969–1975.