Supporting Information

The First General Method for Z-Selecive Olefination of Acylsilanes via Ynolate Anions Providing Multisubstituted Alkenes.

Mitsuru Shindo, ${ }^{*} \uparrow, \ddagger$ Kenji Matsumoto, ${ }^{\dagger}$ Seiji Mori, ${ }^{〔}$ and Kozo Shishido ${ }^{\dagger}$
Institute for Medicinal Resources, University of Tokushima, Sho-machi 1, Tokushima 770-8505, Japan, PRESTO, Japan Science and Technology Corporation, and Department of Environmental Sciences, Ibaraki University, Mito, Ibaraki 310-8512, Japan

EXPERIMENTAL

Materials. Tetrahydrofuran was freshly distilled from sodium benzophenone ketyl. tertButyllithium, purchased from Kanto Chemical Co., Inc., was titrated with diphenylacetic acid. Acetyltrimethylsilane was purchased from Aldrich. (Phenylacetyl)trimethylsilane, ${ }^{1}$ (tertbutyl)dimethyl(phenylacetyl)silane, ${ }^{1} \quad$ 1-trimethylsilyl-5-hexenone, ${ }^{1} \quad 1$-(tert-butyldimethylsilyl)-5hexenone, ${ }^{1} \quad 1$-(tert-butyldimethylsilyl)-4-(1,3-dioxan-2-yl)-butan-1-one, ${ }^{1}$ 1-(tert-butyldimethylsilyl)-5-(2-methoxy-ethoxymethoxy)-pentan-1-one, and benzoyltrimethylsilane ${ }^{2}$ were prepared according to the references.
General Procedures. ${ }^{1} \mathrm{H}$-NMR were measured in CDCl_{3} solution and referenced to TMS $(0.00$ ppm) using AL400 (400 MHz) and JEOL AL300 $(300 \mathrm{MHz})$ spectrometers, unless otherwise noted. ${ }^{13} \mathrm{C}$-NMR were measured in CDCl_{3} solution and referenced to CDCl_{3} (77.0 ppm) using AL400 spectrometers (100 MHz) and JEOL AL300 $(75 \mathrm{MHz})$. IR spectra were recorded on JASCO FT/IR-410 spectrometer . Mass spectra were obtained on a JEOL GX303 and GCMS (JMS-AM SUN 200). Column chromatography was performed on silica gel (Kanto Chemical Co.). Thinlayer chromatography was performed on precoated plates (0.25 mm , silica gel Merck Kieselgel 60 F_{245}). Melting points were measured with a Büchi 535 melting point apparatus and are uncorrected. All reactions were performed in oven-dried glassware under positive pressure of argon, unless otherwise noted. Reaction mixtures were stirred magnetically. Solutions of alkyllithium reagents were transferred by syringe or cannula and were introduced into reaction vessels through rubber The stereochemistry was determined by nOe experiments as shown in S9, otherwise noted.

Representative Procedure of olefination of acylsilanes (preparation of ynolates by lithium-halogen exchange using t-butyllithium): (Z)-Methyl 2-methyl-3-trimethylsilyl-2-butenoate (3a, Table 1, Entry 1).
To a solution of ethyl 2, 2-dibromopropionate ($260 \mathrm{mg}, 1.0 \mathrm{mmol}$) in THF (6 mL), cooled to $-78^{\circ} \mathrm{C}$ under argon, was added dropwise a solution of tert-butyllithium ($2.92 \mathrm{~mL}, 4.0 \mathrm{mmol}, 1.37 \mathrm{M}$ in pentane). The yellow solution was stirred for 3 h at $-78^{\circ} \mathrm{C}$ and allowed to warm to $0^{\circ} \mathrm{C}$. After 30 min, the resulting colorless reaction mixture was warm to room temperature and then a solution of acetyltrimethylsilane ($93 \mathrm{mg}, 0.80 \mathrm{mmol}$) in THF (2 mL) was added. After 1.5 h , methyl iodide $(0.62 \mathrm{~mL}, 10 \mathrm{mmol})$ and HMPA ($1.7 \mathrm{~mL}, 10 \mathrm{mmol}$) were added. After 17 h , a saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (10 mL) was added and the resulting mixture was extracted with ethyl acetate. The organic phase was washed with water, a saturated NaHCO_{3} solution, brine, dried over MgSO_{4}, filtered and concentrated to afford a yellow oil, which was chromatographed over silica gel (5\% ethyl acetate in hexane) to yield 120 mg (80%) of the ester as a pale yellow oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 0.13(\mathrm{~s}, 9 \mathrm{H}), 1.84(\mathrm{q}, J=1.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.93(\mathrm{q}, J=1.0 \mathrm{~Hz}, 3 \mathrm{H})$,
3.72 (s, 3H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta:-0.1$ (q), 16.0 (q), 195 (q), 51.4 (q), 136.8 (s), 149.3 (s), 170.0 (s). IR (Neat): $1718 \mathrm{~cm}^{-1}$. MS (EI) $m / z 186\left(\mathrm{M}^{+}\right), 185\left(\mathrm{M}^{+}-1\right), 171\left(\mathrm{M}^{+}-\mathrm{Me}\right.$, 100\%). HRMS (EI) calcd for $\mathrm{C}_{8} \mathrm{H}_{15} \mathrm{O}_{2} \mathrm{Si}\left(\mathrm{M}^{+}-1\right)$ 171.0841, found: 171.0853.
Representative Procedure of olefination of acylsilanes (preparation of y nolates by reductive lithiation using lithium and catalytic naphthalene): (Z)-Methyl 2-butyl-3-trimethylsilyl-2-butenoate (3b, Table 1, Entry 3). To a solution of naphtalene ($64 \mathrm{mg}, 0.50$ mmol) in THF (3 mL) was added lithium ($34 \mathrm{mg}, 4.9 \mathrm{mmol}$) at room temperature under argon. After 15 min , to the deep green solution was added a solution of ethyl 2,2-dibromohexanoate (302 $\mathrm{mg}, 1.0 \mathrm{mmol})$ in THF (2 ml) at $-78^{\circ} \mathrm{C}$. After stirring for 40 min at $-78^{\circ} \mathrm{C}$, the solution was stirred for 3 h at $-50^{\circ} \mathrm{C}$ and allowed to warm to $0^{\circ} \mathrm{C}$. After 30 min , the resulting reaction mixture was warm to room temperature and 1,2-dibromoethane was added until being colorless and then a solution of acetyltrimethylsilane ($93 \mathrm{mg}, 0.80 \mathrm{mmol}$) in THF (2 mL) was added. After 1 h , methyl iodide ($0.62 \mathrm{~mL}, 10 \mathrm{mmol}$) and HMPA $(1.7 \mathrm{~mL}, 10 \mathrm{mmol})$ were added. After 16 h , a saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (10 mL) was added and the resulting mixture was extracted with ethyl acetate. The organic phase was washed with water, a saturated NaHCO_{3} solution, brine, dried over MgSO_{4}, filtered and concentrated to afford a red oil, which was chromatographed over silica gel (3\% ethyl acetate in hexane) to yield 167 mg (91%) of the ester as a pale yellow oil.
(Z)-Methyl 2-butyl-3-trimethylsilyl-2-butenoate (3b): Pale yellow oil. ${ }^{1}$ H-NMR (400
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 0.11(\mathrm{~s}, 9 \mathrm{H}), 0.91(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.24-1.38(\mathrm{~m}, 4 \mathrm{H}), 1.84(\mathrm{~s}, 3 \mathrm{H}), 2.37(\mathrm{t}$,
$J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}) . \quad{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta:-0.2(\mathrm{q}), 14.0(\mathrm{q}), 18.8(\mathrm{q}), 22.8$
(t), 29.9 (t), 30.9 (t), 51.3 (q), 142.1 (s$), 147.1$ (s$), 170.3$ (s$). \quad$ IR (Neat): $1717 \mathrm{~cm}^{-1} . \quad$ MS (EI) $m / z 228\left(\mathrm{M}^{+}\right), 213\left(\mathrm{M}^{+}-\mathrm{Me}, 100 \%\right)$. HRMS (EI) calcd for $\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{Si}$ 228.1546, found: 228.1592.
(Z)-Methyl 3-trimethylsilyl-2-phenyl-2-butenoate (3c): Pale yellow oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 0.22(\mathrm{~s}, 9 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 7.14(\mathrm{dd}, J=1.5 \mathrm{~Hz}, 6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.28$ (t, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{dd}, J=6.8 \mathrm{~Hz}, 7.6 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta:-0.4(\mathrm{q})$, 21.0 (q), 51.8 (q), 127.0 (d), 128.0 (d), 129.0 (d), 138.2 (s), 142.5 (s), 150.9 (s$), 169.0$ (s$). \quad$ IR (Neat): $1718 \mathrm{~cm}^{-1}$. MS (EI) $\mathrm{m} / \mathrm{z} 248\left(\mathrm{M}^{+}\right), 233\left(\mathrm{M}^{+}-\mathrm{Me}, 100 \%\right)$ HRMS (EI) calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{Si} 248.1233$, found: 248.1239.
(Z)-Methyl 2-methyl-3-trimethylsilyl-4-phenyl-2-butenoate (3d): Colorless oil. ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) $\delta: 0.05(\mathrm{~s}, 9 \mathrm{H}), 1.97(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~s}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 7.06-7.10(\mathrm{~m}$, 2H), 7.15-7.20 (m, 1H), 7.24-7.29 (m, 2H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 0.3$ (q), 16.4 (q), 38.2 (t), 51.6 (q), 125.9 (d), 128.1 (d), 128.3 (d), 138.7 (s), 139.5 (s), 150.6 (s), 170.0 (s$). \quad$ IR (Neat): $1717 \mathrm{~cm}^{-1}$. MS (EI) $m / z 247\left(\mathrm{M}^{+}-\mathrm{Me}, 100 \%\right)$. HRMS (EI) calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{Si}$ 262.1389, found: 262.1361.
(Z)-Methyl 2-butyl-3-trimethylsilyl-4-phenyl-2-butenoate (3e): Colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 0.01(\mathrm{~s}, 9 \mathrm{H}), 0.85(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.23-1.39(\mathrm{~m}, 4 \mathrm{H}), 2.38(\mathrm{t}, J=$ $7.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.68(\mathrm{~s}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 7.06-7.10(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.24-7.29(\mathrm{~m}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 0.3(\mathrm{q}), 13.9(\mathrm{q}), 22.8(\mathrm{t}), 30.4(\mathrm{t}), 31.4(\mathrm{t}), 37.6(\mathrm{t}), 51.5$ (q), 125.9 (d), 128.2 (d), 128.3 (d), 139.3 (s), 144.9 (s), 170.3 (s$). \quad$ IR (Neat): $1715 \mathrm{~cm}^{-1} . \quad$ MS (EI) $\mathrm{m} / \mathrm{z} 289\left(\mathrm{M}^{+}-\mathrm{Me}\right), 89$ (100\%). HRMS (EI) calcd for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{Si}$ 304.1859, found: 304.1913.
(Z)-Methyl 2-isopropyl-3-trimethylsilyl-4-phenyl-2-butenoate (3f): Colorless oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta:-0.02(\mathrm{~s}, 9 \mathrm{H}), 1.08(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}), 2.95$ (septet, $J=6.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.64(\mathrm{~s}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 7.11-7.14(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.30(\mathrm{~m}, 2 \mathrm{H})$. ${ }^{13}$ C-NMR (100 MHz, CDCl_{3}) $\delta:-0.1$ (q), 21.0 (q), 29.5 (d), 35.9 (t), 50.9 (q), 125.9 (d), 128.2 (d), 128.2 (d), 138.8 (s), 139.2 (s), 150.9 (s), 170.4 (s). IR (Neat): $1725 \mathrm{~cm}^{-1}$. MS (EI) m/z 275 $\left(\mathrm{M}^{+}-\mathrm{Me}\right), 89(100 \%) . \quad$ HRMS (EI) calcd for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{Si} 290.1702$, found: 290.1705. (Z)-Methyl 3-trimethylsilyl-2,4-diphenyl-2-butenoate (3g): Colorless needles. (mp. 69.8-71.0 ${ }^{\circ} \mathrm{C}$, recrystallized from hexane) ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 0.08(\mathrm{~S}, 9 \mathrm{H}), 3.53(\mathrm{~s}$, $2 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 7.04-7.09(\mathrm{~m}, 2 \mathrm{H}), 7.14-7.32(\mathrm{~m}, 10 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 0.4$
(q), 39.4 (t), 52.0 (q), 125.9 (d), 127.3 (d), 128.1 (d), 128.6 (d), 137.9 (s), 139.6 (s), 144.8 (s), 152.1 (s), $169.2(\mathrm{~s}) . \quad \mathrm{IR}\left(\mathrm{CHCl}_{3}\right): 1713 \mathrm{~cm}^{-1}$. MS (EI) m/z $324\left(\mathrm{M}^{+}\right), 309\left(\mathrm{M}^{+}-\mathrm{Me}\right), 220(100 \%)$. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{Si}: \mathrm{C}, 74.03 ; \mathrm{H}, 7.45$. Found: C, 74.08; H, 7.55.
(Z)-Methyl 3-(tert-butyldimethylsilyl)-2-methyl-4-phenyl-2-butenoate (3h): Colorless oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $\delta:-0.03(\mathrm{~s}, 6 \mathrm{H}), 0.93(\mathrm{~s}, 9 \mathrm{H}), 1.85(\mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{~s}$, $2 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 7.09-7.13(\mathrm{~m}, 2 \mathrm{H}), 7.14-7.19(\mathrm{~m}, 1 \mathrm{H}), 7.24-7.29(\mathrm{~m}, 2 \mathrm{H}){ }^{13} \mathrm{C}-\mathrm{NMR}(100$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta:-4.0(\mathrm{q}), 18.2$ (q), 18.4 (q), 27.7 (q), 38.0 (t), 51.6 (q), 125.6 (d), 127.8 (d), 128.3 (d), $139.0(\mathrm{~s}), 140.8(\mathrm{~s}), 142.9(\mathrm{~s}), 171.2(\mathrm{~s})$. IR (Neat): $1732 \mathrm{~cm}^{-1} . \quad$ MS (EI) $\mathrm{m} / \mathrm{z} 289$ $\left(\mathrm{M}^{+}-\mathrm{Me}\right), 247\left(\mathrm{M}^{+}-\mathrm{CMe}_{3}, \quad 100 \%\right)$. HRMS (EI) calcd for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{Si}$ 304.1859, found: 304.1898.
(Z)-Methyl 2,3-bis(trimethylsilyl)-4-phenyl-2-butenoate (3i): Pale yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta:-0.07(\mathrm{~s}, 9 \mathrm{H}), 0.18(\mathrm{~s}, 9 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{~s}, 2 \mathrm{H}), 7.11-7.22(\mathrm{~m}$, $3 \mathrm{H}), 7.24-7.34(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 0.1(\mathrm{q}), 0.3(\mathrm{q}), 42.3$ (t), $51.0(\mathrm{q})$, 126.2 (d), 128.1 (d), 129.0 (d), 138.9 (s), 150.8 (s), 158.7 (s), 173.1 (s). IR (Neat): $1714 \mathrm{~cm}^{-1}$. MS (EI) m/z $320\left(\mathrm{M}^{+}\right), 305\left(\mathrm{M}^{+}-\mathrm{Me}\right), 73$ (TMS, 100\%). HRMS (EI) calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{Si}$ 320.1596, found: 320.1622. The stereochemistry is speculated because clear nOe has not been detected.
(Z)-Methyl 2-methyl-3-trimethylsilyl-octa-2,7-dienoate (3j): Colorless oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 0.15(\mathrm{~s}, 9 \mathrm{H}), 1.34-1.43(\mathrm{~m}, 2 \mathrm{H}), 1.94(\mathrm{~s}, 3 \mathrm{H}), 2.07-2.14(\mathrm{~m}, 2 \mathrm{H}), 2.24-$ $2.31(\mathrm{~m}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 4.96-5.01(\mathrm{~m}, 1 \mathrm{H}), 5.01-5.07(\mathrm{~m}, 1 \mathrm{H}), 5.82(\mathrm{ddt}, J=6.8 \mathrm{~Hz}, 10.3$ $\mathrm{Hz}, 17.1 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 0.5(\mathrm{q}), 15.7(\mathrm{q}), 28.2(\mathrm{t}), 32.7(\mathrm{t}), 34.0(\mathrm{t})$, 51.4 (q), 114.8 (t), 136.9 (s$), 138.1$ (d), 153.5 (s), 170.0 (s$)$. IR (Neat): $1716 \mathrm{~cm}^{-1}$. MS (EI) $m / z 225\left(\mathrm{M}^{+}-\mathrm{Me}\right), 73$ (TMS, 100\%). HRMS (EI) calcd for $\mathrm{C}_{13} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{Si}$ 240.1546, found: 240.1560.
(Z)-Methyl 3-trimethylsilyl-2-phenyl-octa-2,7-dienoate (3k): ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta: 0.24(\mathrm{~s}, 9 \mathrm{H}), 1.26-1.35(\mathrm{~m}, 2 \mathrm{H}), 1.80-1.87(\mathrm{~m}, 2 \mathrm{H}), 2.04-2.11(\mathrm{~m}, 2 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H})$, $4.83(\mathrm{ddt}, J=1.0 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 10.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{ddt}, J=2.0 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 17.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.58$ (ddt, $J=6.6 \mathrm{~Hz}, 10.3 \mathrm{~Hz}, 17.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.11-7.15(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.38(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(100$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 0.4$ (q), $29.0(\mathrm{t}), 33.6$ (t$), 33.8(\mathrm{t}), 51.8(\mathrm{q}), 114.6$ (t$), 127.0$ (d), 128.0 (d), 128.9 (d), 138.0 (d), 138.3 (s), 142.9 (s), 155.9 (s), 168.9 (s). IR (Neat): $1715 \mathrm{~cm}^{-1}$. MS (EI) m/z $302\left(\mathrm{M}^{+}\right), 287\left(\mathrm{M}^{+}-\mathrm{Me}\right), 41\left(\mathrm{CH}_{2}=\mathrm{CHCH}_{2}, 100 \%\right) \quad \mathrm{HRMS}(\mathrm{EI})$ calcd for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{Si} 302.1702$,
found: 302.1715 .
(Z)-Methyl 3-(tert-butyldimethylsilyl)-2-methyl-octa-2,7-dienoate (31): ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (400 MHz, CDCl_{3}) $\delta: 0.05(\mathrm{~s}, 6 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 1.35-1.44(\mathrm{~m}, 2 \mathrm{H}), 1.94(\mathrm{~s}, 3 \mathrm{H}), 2.05-2.12(\mathrm{~m}$, $2 \mathrm{H}), 2.14-2.20(\mathrm{~m}, 2 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 4.98(\mathrm{ddt}, J=1.0 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 10.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{ddt}, J=$ $1.7 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 17.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.81$ (ddt, $J=6.8 \mathrm{~Hz}, 10.3 \mathrm{~Hz}, 17.1 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) ~ \delta: ~-3.9(\mathrm{q}), 17.2(\mathrm{q}), 18.2(\mathrm{~s}), 27.8(\mathrm{q}), 28.0(\mathrm{t}), 32.8(\mathrm{t}), 34.3(\mathrm{t}), 51.4(\mathrm{q}), 114.9(\mathrm{t})$, 138.1 (d), 140.0 (s), 143.5 (s), 171.4 (s). IR (Neat): $1731 \mathrm{~cm}^{-1} . \quad$ MS (EI) $m / z 282\left(\mathrm{M}^{+}\right), 281$ $\left(\mathrm{M}^{+}-1\right), 267\left(\mathrm{M}^{+}-\mathrm{Me}\right), 225\left(\mathrm{M}^{+}-\mathrm{Bu}, 100 \%\right)$. HRMS (EI) calcd for $\mathrm{C}_{16} \mathrm{H}_{29} \mathrm{O}_{2} \mathrm{Si}\left(\mathrm{M}^{+}-1\right)$ 281.1937, found: 281.1933.
(Z)-Methyl 3-(tert-butyldimethylsilyl)-6-(1,3-dioxan-2-yl)-2-methyl-2-hexenoate (3m): Colorless oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 0.06(\mathrm{~s}, 6 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 1.39-1.48(\mathrm{~m}$, $2 \mathrm{H}), 1.68(\mathrm{dt}, J=4.6 \mathrm{~Hz}, 7.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.95(\mathrm{~s}, 3 \mathrm{H}), 2.18-2.24(\mathrm{~m}, 2 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.82-3.89$ $(\mathrm{m}, 2 \mathrm{H}), 3.92-3.98(\mathrm{~m}, 2 \mathrm{H}), 4.85(\mathrm{t}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta:-4.0(\mathrm{q})$, 17.3 (q), 18.2 (s), 23.3 (t), 27.8 (q), 33.2 (t), 34.1 (t), 51.4 (q), 64.9 (t), 104.2 (d), 140.2 (s), 143.4 (s), 171.4 (s). IR (Neat): $1731 \mathrm{~cm}^{-1}$. MS (EI) $m / z 328\left(\mathrm{M}^{+}\right), 313\left(\mathrm{M}^{+}-\mathrm{Me}\right), 271\left(\mathrm{M}^{+}-\mathrm{Bu}\right)$, $89(100 \%)$. HRMS (EI) calcd for $\mathrm{C}_{17} \mathrm{H}_{32} \mathrm{O}_{4} \mathrm{Si} 328.2070$, found: 328.2069.
(Z)-Methyl 3-(tert-butyldimethylsilyl)-7-(2-methoxy-ethoxymethoxy)-2-methyl-2heptenoate (3n): Colorless oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 0.05(\mathrm{~s}, 6 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H})$, 1.33-1.42 (m, 2H), 1.62 (quin, $J=6.8 \mathrm{~Hz}), 1.94(\mathrm{~s}, 3 \mathrm{H}), 2.15-2.21(\mathrm{~m}, 2 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H})$, 3.53-3.58 (m, 4H), 3.66-3.71 (m, 5H), 4.72 (s, 2H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta:-4.0(\mathrm{q})$, $17.2(\mathrm{q}), 18.2(\mathrm{~s}), 25.5(\mathrm{t}), 27.8(\mathrm{q}), 30.2(\mathrm{t}), 33.1(\mathrm{t}), 51.4(\mathrm{q}), 59.0(\mathrm{q}), 66.7(\mathrm{t}), 67.6(\mathrm{t}), 71.8(\mathrm{t})$, $95.5(\mathrm{t}), 140.0(\mathrm{~s}), 143.4(\mathrm{~s}), 171.4(\mathrm{~s})$. IR (Neat): $1729 \mathrm{~cm}^{-1}$. MS (FAB) m/z $397\left(\mathrm{M}^{+}+\mathrm{Na}\right.$, 100%). HRMS (FAB) calcd for $\mathrm{C}_{19} \mathrm{H}_{38} \mathrm{O}_{5} \mathrm{SiNa} 397.2386$, found: 397.2374. (Z)-Methyl 2-methyl-3-trimethylsilyl-3-phenylacrylate (3o): Pale yellow oil. ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) $\delta: 0.02(\mathrm{~s}, 9 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 6.84-6.87(\mathrm{~m}, 2 \mathrm{H}), 7.16-$ $7.21(\mathrm{~m}, 1 \mathrm{H}), 7.28-7.33(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 0.0(\mathrm{q}), 18.0(\mathrm{q}), 51.6(\mathrm{q})$, 125.5 (d), 126.1 (d), 128.1 (d), 138.3 (s), 144.0 (s), 155.4 (s), 169.9 (s). IR (Neat): $1722 \mathrm{~cm}^{-1}$. MS (EI) $m / z 248\left(\mathrm{M}^{+}\right), 233\left(\mathrm{M}^{+}-\mathrm{Me}, 100 \%\right)$. HRMS (EI) calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{Si} 248.1233$, found: 248.1230.
(Z)-2-Methyl-3-trimethylsilyl-4-phenyl-2-buten-1-ol (5): To a solution of (Z)-methyl 2-
methyl-3-trimethylsilyl-4-phenyl-2-butenoate ($990 \mathrm{mg}, 3.8 \mathrm{mmol}$) in THF (20 mL), cooled to -78 ${ }^{\circ} \mathrm{C}$ under argon, was added dropwise a solution of diisobutylaluminium hydride ($11.9 \mathrm{~mL}, 11.3$ mmol, 0.95 M in hexane). After stirred for 20 min at $0{ }^{\circ} \mathrm{C}$, diethyl ether and water were successively added at $0{ }^{\circ} \mathrm{C}$. After stirring for 2 h , the mixture was filtered through celite pad. The filtrate was dried over MgSO_{4}, filtered and concentrated. The resulting residue was chromatographed over silica gel (15% ethyl acetate in hexane) to yield 779 mg (88%) of the alcohol as a colorless oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 0.08(\mathrm{~s}, 9 \mathrm{H}), 1.48(\mathrm{br}, 1 \mathrm{H}), 1.86(\mathrm{~s}, 3 \mathrm{H}), 3.57(\mathrm{~s}, 2 \mathrm{H}), 4.28(\mathrm{~s}$, $2 \mathrm{H})$, 7.08-7.11 (m, 2H), 7.13-7.20 (m, 1H), 7.23-7.29 (m, 2H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta:$ 1.2 (q), 17.1 (q), 37.5 (t), 67.4 (t), 125.6 (d), 128.0 (d), 128.1 (d), 136.2 (s), 140.2 (s), 147.8 (s).IR (Neat): $3335 \mathrm{~cm}^{-1} . \quad$ MS (EI) $m / z 234\left(\mathrm{M}^{+}\right), 219\left(\mathrm{M}^{+}-\mathrm{Me}\right), 75$ (100\%). HRMS (EI) calcd for $\mathrm{C}_{14} \mathrm{H}_{22}$ OSi 234.1440, found: 234.1438.
(\boldsymbol{E})-2-Methyl-4-phenyl-2-buten-1-ol (6) ${ }^{3}$: A solution of (Z)-2-methyl-3-trimethylsilyl-4-phenyl-2-buten-1-ol ($47 \mathrm{mg}, 0.20 \mathrm{mmol}$) and $\mathrm{pTsOH} \cdot \mathrm{H}_{2} \mathrm{O}(9.2 \mathrm{mg}, 0.048 \mathrm{mmol})$ in THF$\mathrm{CH}_{3} \mathrm{CN}-\mathrm{H}_{2} \mathrm{O}$ (3:3:1, 2 mL) was refluxed for 118 h under argon. The reaction mixture was poured into a saturated NaHCO_{3} solution and extracted with ethyl acetate. The organic phase was washed with brine, dried over MgSO_{4}, filtered and concentrated. The resulting residue was chromatographed over silica gel (10% ethyl acetate in hexane) to yield 20 mg (60%) of alcohol as a pale yellow oil and $6.9 \mathrm{mg}(15 \%)$ of (Z)-2-methyl-3-trimethylsilyl-4-phenyl-2-buten-1-ol. Colorless oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 1.48(\mathrm{br}, 1 \mathrm{H}), 1.79(\mathrm{~s}, 3 \mathrm{H}), 3.41(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.06(\mathrm{~s}, 2 \mathrm{H}), 5.63(\mathrm{tq}$, $J=1.4 \mathrm{~Hz}, 7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.08-7.11(\mathrm{~m}, 2 \mathrm{H}), 7.19(\mathrm{~m}, 3 \mathrm{H}), 7.29(\mathrm{~m}, 2 \mathrm{H}) . \quad$ IR (Neat): $3334 \mathrm{~cm}^{-}$ ${ }^{1}, 1603 \mathrm{~cm}^{-1}, 1494 \mathrm{~cm}^{-1}, 1453 \mathrm{~cm}^{-1}, 698 \mathrm{~cm}^{-1}$. MS (EI) m/z $162\left(\mathrm{M}^{+}\right), 129\left(\mathrm{M}^{+}-\mathrm{Me}-\mathrm{H}_{2} \mathrm{O}\right.$, 100%).
(Z)-3-Benzyl-2-methyl-hexa-2,5-dien-1-ol (7): To a suspension of copper (I) iodide (57 $\mathrm{mg}, 0.30 \mathrm{mmol})$ in THF $(0.8 \mathrm{~mL})$, cooled to $0{ }^{\circ} \mathrm{C}$ under argon, was added a solution of lithium tert-butoxide ($0.30 \mathrm{ml}, 0.30 \mathrm{mmol}, 1.0 \mathrm{M}$ in THF). After stirred for 20 min at room temperature, a solution of (Z)-2-methyl-3-trimethylsilyl-4-phenyl-2-buten-1-ol ($47 \mathrm{mg}, 0.20 \mathrm{mmol}$) and allyl bromide ($73 \mathrm{mg}, 0.60 \mathrm{mmol}$) in THF (1.5 mL) was added dropwise. After stirring for 1 h , a saturated NaHCO_{3} solution was added and the resulting mixture was extracted with ethyl acetate. The organic phase was washed with a saturated NaHCO_{3} solution, brine, dried over MgSO_{4}, filtered and concentrated. The resulting crude mixture was dissolved in THF (3 mL) and a solution of tetrabutylammonium fluoride ($0.22 \mathrm{~mL}, 0.22 \mathrm{mmol}, 1.0 \mathrm{M}$ in THF) was added at $0^{\circ} \mathrm{C}$. After stirring for 25 min at $0{ }^{\circ} \mathrm{C}$, a saturated NaHCO_{3} solution was added and the resulting mixture was extracted with ethyl acetate. The organic phase was washed with brine, dried over MgSO_{4}, filtered and concentrated. The resulting residue was chromatographed over silica gel (15% ethyl acetate in
hexane) to yield 36 mg (89%) of alcohol as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 1.44-1.58(\mathrm{br}, 1 \mathrm{H}), 1.93(\mathrm{~s}, 3 \mathrm{H}), 2.81(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.45(\mathrm{~s}$, $2 H), 4.20(\mathrm{~s}, 2 \mathrm{H}), 4.96-5.03(\mathrm{~m}, 2 \mathrm{H}), 5.68-5.78(\mathrm{~m}, 1 \mathrm{H}), 7.13-7.22(\mathrm{~m}, 3 \mathrm{H}), 7.25-7.30(\mathrm{~m}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 17.0$ (q), 35.8 (t$), 37.9$ (t$), 63.7$ (t), 115.1 (t$), 125.9$ (d), 128.3 (d), 128.5 (d), 131.6 (s), 133.2 (s), 136.8 (d), 139.7 (s). IR (Neat): $3334 \mathrm{~cm}^{-1}, 1494 \mathrm{~cm}^{-}$ ${ }^{1}, 1453 \mathrm{~cm}^{-1}, 997 \mathrm{~cm}^{-1}, 701 \mathrm{~cm}^{-1}$. MS (EI) $m / z 202\left(\mathrm{M}^{+}\right), 184\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}\right), 91\left(\mathrm{PhCH}_{2}, 100 \%\right)$. HRMS (EI) calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}$ 202.1358, found: 202.1386.
(Z)-3-Iodo-2-methyl-4-phenyl-2-buten-1-ol (8): To a solution of silver trifluoroacetate ($486 \mathrm{mg}, 2.2 \mathrm{mmol}$) and iodine ($558 \mathrm{mg}, 2.2 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, cooled to $0{ }^{\circ} \mathrm{C}$ under argon, was added dropwise a solution of (Z)-2-methyl-3-trimethylsilyl-4-phenyl-2-buten-1-ol ($469 \mathrm{mg}, 2.0$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. After stirred for 3 h at $0{ }^{\circ} \mathrm{C}$, a saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution was added and the resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic phase was washed with a saturated NaHCO_{3} solution, brine, dried over MgSO_{4}, filtered and concentrated. The resulting residue was chromatographed over silica gel (10% ethyl acetate in hexane) to yield $184 \mathrm{mg}(47 \%)$ of iodide as a pale yellow oil and $77 \mathrm{mg}(16 \%)$ of (Z)-2-methyl-3-trimethylsilyl-4-phenyl-2-buten-1-ol.

Colorless oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 1.52-1.68(\mathrm{br}, 1 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}), 4.02(\mathrm{~s}, 2 \mathrm{H})$, $4.32(\mathrm{~s}, 2 \mathrm{H}), 7.19(\mathrm{dd}, J=1.5 \mathrm{~Hz}, 6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.24-7.34(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ ס: 16.8 (q), 47.3 (t), 73.4 (t), 101.4 (s), 126.6 (d), 128.4 (d), 128.4 (d), 138.0 (s), 139.8 (s). IR (Neat): $3335 \mathrm{~cm}^{-1}, 1494 \mathrm{~cm}^{-1}, 1453 \mathrm{~cm}^{-1}, 1009 \mathrm{~cm}^{-1}, 697 \mathrm{~cm}^{-1}$. MS (EI) $\mathrm{m} / \mathrm{z} 288\left(\mathrm{M}^{+}\right), 128(\mathrm{HI}$, 100%). HRMS (EI) calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{IO} 288.0011$, found: 288.0013.
(Z)-3-Benzyl-2-methyl-penta-2,4-dien-1-ol (9): To a suspension of bis(acetonitrile)dichloropalladium (II) $\left(6.3 \mathrm{mg}, 9.0 \times 10^{-3} \mathrm{mmol}\right)$ in $\mathrm{DMF}(1 \mathrm{~mL})$ was added successively a solution of (Z)-3-iodo-2-methyl-4-phenyl-2-buten-1-ol ($29 \mathrm{mg}, 0.10 \mathrm{mmol}$) in THF $(0.5 \mathrm{~mL})$ and a solution of tributhylvinyltin ($38 \mathrm{mg}, 0.12 \mathrm{mmol}$) in THF (0.5 mL) under argon. After stirring for 12 h at room temperature, the reaction mixture was heated to $80^{\circ} \mathrm{C}$. After 58 h , a $10 \% \mathrm{NH}_{4} \mathrm{OH}$ solution was added and the resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic phase was washed with brine, dried over MgSO_{4}, filtered and concentrated. The resulting residue was chromatographed over silica gel (20% ethyl acetate in hexane) to yield 21 mg of mixture of diene (79%) and (Z)-3-iodo-2-methyl-4-phenyl-2-buten-1-ol (21%).

Colorless oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 1.46(\mathrm{br}, 1 \mathrm{H}), 1.92(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{~s}, 2 \mathrm{H}), 4.38(\mathrm{~s}$, $2 \mathrm{H}), 5.07(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{dd}, J=11.0 \mathrm{~Hz}, 17.1 \mathrm{~Hz})$, 7.13-7.20 (m, 3H), 7.23-7.39 (m, 2H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 18.2$ (q), $34.2(\mathrm{t}), 63.0$
(t), 114.7 (t), 125.7 (d), 127.7 (d), 128.2 (d), 133.3 (d), 133.4 (s), 135.7 (s), 139.6 (s). IR (Neat): $3334 \mathrm{~cm}^{-1} . \quad$ MS (EI) $m / z 188\left(\mathrm{M}^{+}\right), 170\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}\right), 91\left(\mathrm{PhCH}_{2}, 100 \%\right)$. HRMS (EI) calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}$ 188.1201, found: 188.1189.
Ethyl 4-benzyl-6-hydroxy-5-methyl-hexa-2,4-dienoate (10): A solution of (Z)-3-iodo-2-methyl-4-phenyl-2-buten-1-ol ($29 \mathrm{mg}, 0.10 \mathrm{mmol}$), ethyl acrylate ($0.027 \mathrm{~mL}, 0.25 \mathrm{mmol}$), bis(triphenylphosphine)dichloropalladium (II) $\left(6.3 \mathrm{mg}, 9.0 \times 10^{-3} \mathrm{mmol}\right)$ and triethylamine $(0.028$ $\mathrm{mL}, 0.20 \mathrm{mmol}$) in DMF (2 mL) was heated to $100^{\circ} \mathrm{C}$ for 3 h under argon. After cooling, the reaction mixture was extracted with ethyl acetate. The organic phase was washed with a saturated NaHCO_{3} solution and brine, dried over MgSO_{4}, filtered and concentrated. The resulting residue was chromatographed over silica gel (20% ethyl acetate in hexane) to yield 16 mg (60%) of diene as a colorless oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 1.26(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.71(\mathrm{br}, 1 \mathrm{H}), 2.00(\mathrm{~s}$, $3 \mathrm{H}), 3.70(\mathrm{~s}, 2 \mathrm{H}), 4.16(\mathrm{q}, ~ J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~s}, 2 \mathrm{H}), 5.84(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.10-7.13$ $(\mathrm{m}, 2 \mathrm{H}), 7.15-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.24-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.90(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(100$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 14.3$ (q), 18.5 (q), 34.4 (t), 60.4 (t), 62.6 (t), 118.5 (d), 126.0 (d), 127.6 (d), 128.5 (d), 131.3 (s), 138.5 (s), 140.9 (d), 144.9 (s), 167.5 (s). IR (Neat): $3418 \mathrm{~cm}^{-1}, 1713 \mathrm{~cm}^{-}$ ${ }^{1}, 1621 \mathrm{~cm}^{-1}$. MS (EI) $m / z 260\left(\mathrm{M}^{+}\right), 91\left(\mathrm{PhCH}_{2}, 100 \%\right)$. HRMS (EI) calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{3}$ 260.1412, found: 260.1395.

NOE experiments

3a

3d

3b

3 e

3c

$3 f$

5g

3j

31

3n

3h

3k

30

Computational Details

All calculations were performed using Gaussian 98 (Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.;
Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Baboul, A. G.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 98, Revision A.7; Gaussian, Inc.: Pittsburgh, PA, 1998.) at the B3LYP hybrid functional (Becke, A. D. J. Chem. Phys. 1993, 98, 5648-5652. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B, 1988, 37, 785-789.) with the $6-31 G^{*}$ basis set (Hehre, W. J.; Radom, L.; Schleyer, P. v. R.; Pople, J. A. Ab Initio Molecular Orbital Theory; John Wiley; New York, 1986. References cited therein.). Stationary points were optimized without any symmetry assumption unless noted otherwise. Natural charges (Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88, 899-926. NBO Version 3.1 in Gaussian 98 package implemented by Glendening, E. D.; Reed, A. E.; Carpenter, J. E.; Weinhold, F.) were calculated at the same level as the level for geometry optimizations. The Boys localization procedure (Boys, S. F. Quantum Theory of Atoms, Molecules, and the Solid State; (Ed.: P. O. Lowdin) Academic Press: New York, USA, 1968, p.253-262. Haddon, R. C.; Williams, G. R. J. Chem. Phys. Lett. 1976, 42, 453-455.) was performed to obtain localized MOs from the occupied B3LYP/6-31G* Kohn-Sham MOs (Kohn, W.; Sham, L. J. Phys. Rev. 1965, 140, A1133-A1138.) for B3LYP/6-31G* geometries.

The stationary points of the ring-opening reaction of lithium 3,4-dimethyl-4-silanyl-4 H -oxet-2-olate are shown in Figure 1.

Cartesian coordinates of representative stationary points

4	8	0	-0.434270	-1.173894	0.347552
5	6	0	0.561931	-0.054223	0.426050
6	14	0	1.907175	-0.418020	-0.882946
7	1	0	1.257772	-0.797167	-2.164366
8	1	0	2.748173	0.793423	-1.104521
9	1	0	2.814586	-1.524542	-0.455943
10	6	0	1.063187	0.100672	1.854839
11	1	0	1.663664	-0.759280	2.175554
12	1	0	1.688900	0.998162	1.937727
13	1	0	0.212534	0.215524	2.537065
14	3	0	-1.940272	-2.209097	0.013649
15	8	0	-2.570833	-0.553783	-0.407153
16	1	0	0.115849	2.695030	-1.072339
17	1	0	-1.590018	2.649676	-0.615373
18	1	0	-0.353803	2.954629	0.610717

TS1 (inward TS of ring-opening of lithium 3,4-dimethyl-4-silanyl-4H-oxet-2-olate) $\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-643.402303258$ A.U.
Value of imaginary frequency $=-473.5607 \mathrm{~cm}^{-1}$

Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)		
			X	Y	Z
1	6	0	1.034721	2.174646	-0.685044
2	6	0	0.562975	0.805105	-0.310303
3	6	0	1.275309	-0.338774	-0.010252
4	8	0	0.370890	-1.120024	0.724226
5	3	0	1.885943	-2.214024	0.859308
6	8	0	2.448336	-0.808024	-0.163224
7	6	0	-0.718204	0.384884	0.251082
8	6	0	-1.384533	1.201203	1.329782
9	1	0	-0.656687	1.722785	1.959508
10	1	0	-2.036770	0.586238	1.958762
11	1	0	-2.024381	1.956242	0.848361
12	14	0	-1.803091	-0.841454	-0.711408
13	1	0	-2.542929	-1.771166	0.190061
14	1	0	-2.841270	-0.044304	-1.440319
15	1	0	-1.020256	-1.592787	-1.719784
16	1	0	0.558923	2.565672	-1.595791
17	1	0	0.859455	2.916963	0.109926
18	1	0	2.113942	2.144779	-0.868551

TS2 (outward TS of ring-opening of lithium 3,4-dimethyl-4-silanyl-4H-oxet-2-olate) $\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-643.395533505$ A.U.
Value of imaginary frequency $=-551.4459 \mathrm{~cm}^{-1}$

Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)		
			X	Y	Z
1	6	0	-0.324562	2.265402	0.381148
2	6	0	-0.419114	0.773635	0.447247
3	6	0	-1.433441	-0.044900	-0.034746
4	8	0	-0.825981	-1.252256	-0.342239
5	3	0	-2.490487	-1.584276	-1.096057
6	8	0	-2.662949	0.079235	-0.335112
7	6	0	0.651688	-0.205799	0.413497

8	14	0	2.121122	0.019702	-0.799907
9	1	0	3.252654	0.740122	-0.146602
10	1	0	2.613530	-1.320341	-1.215349
11	1	0	1.687597	0.785224	-1.994912
12	6	0	0.886809	-1.159840	1.559189
13	1	0	1.326076	-2.111949	1.240854
14	1	0	1.601398	-0.678345	2.246450
15	1	0	-0.038098	-1.339377	2.115004
16	1	0	-0.037737	2.728066	1.336152
17	1	0	0.410643	2.607480	-0.367905
18	1	0	-1.297151	2.679288	0.093977

PD1 (product leading from TS1)
$\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-643.497122049$ A.U.

Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)		
			X	Y	Z
1	6	0	0.776828	2.268166	0.000189
2	6	0	0.260763	0.850412	0.000184
3	6	0	1.317762	-0.200281	0.000467
4	8	0	0.962129	-1.438796	0.000675
5	3	0	2.796788	-1.732369	-0.002296
6	8	0	2.552557	0.112270	-0.000041
7	6	0	-1.029944	0.440230	-0.000092
8	6	0	-2.206427	1.388852	-0.000490
9	1	0	-2.845173	1.208810	0.874102
10	1	0	-2.844476	1.208872	-0.875616
11	1	0	-1.924669	2.445148	-0.000334
12	14	0	-1.502239	-1.411664	0.000094
13	1	0	-1.185410	-2.164492	1.242020
14	1	0	-3.006530	-1.343026	-0.000609
15	1	0	-1.184595	-2.165060	-1.241312
16	1	0	1.412926	2.443949	-0.874932
17	1	0	-0.023777	3.009620	-0.000758
18	1	0	1.411296	2.444521	0.876402

PD2 (product leading from TS2)
$\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-643.487909111 \quad$ A.U.

Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)		
			X	Y	Z
1	6	0	0.018061	-1.935693	0.144008
2	6	0	0.184617	-0.434710	0.054423
3	6	0	1.630936	-0.009471	0.020695
4	8	0	2.005693	1.138522	0.443008
5	3	0	3.687445	0.502332	-0.013600
6	8	0	2.489525	-0.850923	-0.419500
7	6	0	-0.852336	0.431651	-0.037628
8	14	0	-2.642307	-0.190789	0.009111
9	1	0	-2.948505	-0.972969	1.239456
10	1	0	-3.547915	0.990223	-0.017921
11	1	0	-2.979914	-1.048670	-1.162381
12	6	0	-0.718057	1.933175	-0.203825
13	1	0	-1.394200	2.294432	-0.989601
14	1	0	-1.017954	2.448401	0.719596

15	1	0	0.302190	2.239334	-0.431178
16	1	0	0.548399	-2.337932	1.015805
17	1	0	-1.030159	-2.239029	0.219614
18	1	0	0.456948	-2.420233	-0.734244

references

1) Mandai, T.; Yamaguchi, M.; Nakayama, Y.; Otera, J.; Kawada, M. Tetrahedron Lett. 1985, 26, 2675-2676.
2) Brook, A. G.; Peddle, G. J. D. Can. J. Chem. 1963, 41, 2351-2356.
3) Jung, M. E.; D'Amico, D. C. J. Am. Chem. Soc. 1995, 117, 7379-7388.

