(Supporting Information)

Macromolecular Chirality Induction on Optically Inactive Poly(4-carboxyphenyl isocyanide) with Chiral Amines: A Dynamic Conformational Transition of Poly(phenyl isocyanide) Derivatives

Masayoshi Ishikawa, Katsuhiro Maeda, and Eiji Yashima* Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan

Figure S-1. CD titrations in the complexation of poly-1 (1 mg/mL) with (1S,2R)-9 (A) and (*R*)-4 (B) in DMSO at ambient temperature (ca. 20 - 25 °C).

Figure S-2. Changes in the CD intensity of the complexes of poly-1 with (R)-6 (A) and (1R,2S)-9 (B) at various temperatures in DMSO with a poly-1 concentration of 1.0 mg/mL; molar ratio of amines to monomeric unit of poly-1 is 20 (6) and 50 (9), respectively.

Figure S-3. Time-dependent ¹H NMR changes of poly-1-Et (10 mg/mL) in CDCl₃ at 30 °C (left). Curve fitting results are also shown (right).

Figure S-4. Time dependent ¹³C NMR spectral changes of poly-1-Et in $CDCl_3$ at 30 °C after 0 (a) and 28 days (b).

