Dynamic Kinetic Resolution via Dual-Function Catalysis of Modified Cinchona Alkaloids: Asymmetric Synthesis of α-Hydroxy Carboxylic Acids

Liang Tang and Li Deng*
Department of Chemistry
Brandeis University
Waltham, Massachusetts 02454-9110

Supporting Information

General Information. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR were recorded on Varian instruments (400 MHz and 100 MHz , respectively) and internally referenced to a tetramethylsilane signal. Data for ${ }^{1} \mathrm{H}$ NMR are reported as chemical shift (ppm), multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, t $=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet), coupling constant (Hz), integration. Data for ${ }^{13} \mathrm{C}$ NMR are reported as chemical shift form tetramethylsilane with the solvent as the internal standard). Infrared spectra were recorded on a Perkin Elmer FT-IR Spectrometer and reported in frequency of absorption. Low-resolution mass spectra for all the new compounds done by either $20 \mathrm{eV}, \mathrm{CH}_{4} / \mathrm{CI}$ or $\mathrm{NH}_{3} / \mathrm{CI}$ were recorded on a Hewlett-Packard 5989A GC/MS, and exact mass spectra on a VG 7070 high resolution mass spectrometer. Specific rotations were measured on a Jasco Digital Polarometer.

Liquid chromatography was performed on EM Science silica gel $60\left(\mathrm{SiO}_{2}, 230-\right.$ 400 mesh). Thin layer chromatography was performed on EM Science 0.25 mm silica gel $60 \mathrm{~F}_{254}$ plates. Gas chromatography (GC) analysis was performed on a Hewlett Packard 6890 series instrument using the columns indicated. High performance liquid chromatography (HPLC) analysis was performed on a Hewlett-Packard 1100 series instrument using the columns indicated.

Mandelic acid, 4-chloromandelic acid, 4-bromomandelic acid, 4-trifluoromethyl mandelic acid, 2-hydroxycaproic acid and 2-hydroxy-3-methylbutyric acid were purchased from Aldrich (Milwaukee) and used without further purification. Phenyllactic acid and 3,4-difluoromandelic acid were purchased from Lancaster. Diphosgene and 2chloromandelic acid were purchased from Alfa Aesar. 4-Isopropylmandelic acid, 1napthaleneglycolic acid, 4-fluoromandelic acid and 2-methylmandelic acid were prepared from corresponding benzaldehyde according to a literature procedure. ${ }^{1}$ 2-Hydroxy-4phenylbutyric acid was prepared from benzaldehyde and pyruvic acid according to literature procedure. ${ }^{2,3,4}$ All reactions were conducted in flame-dried glassware under N_{2} atmosphere. $4 \AA$ molecular sieves were flame-dried under reduced pressure (0.2 mmHg) immediately prior to use. Diethyl ether and tetrahydrofuran (THF) were distilled from sodium ketyl benzophenone immediately prior to use. Ethanol, allyl alcohol and n propanol were freshly distilled from calcium hydride.

[^0]
General Procedure for Preparations of 5-Substituted 1,3-Dioxolane-2,4-Diones

To a solution of α-hydroxy acid (10.0 mmol) in anhydrous THF (10 mL), diphosgene ($12.0 \mathrm{mmol}, 1.5 \mathrm{~mL}$) was added in one portion via a syringe. The resulting mixture was treated with activated charcoal ($\sim 30 \mathrm{mg}$). The reaction mixture was stirred for 8 hours at room temperature. The mixture was filtered through celite, the filtrate was concentrated and the resulting residue was subjected to vacuum $(\sim 0.2 \mathrm{mmHg})$ for $1-2 \mathrm{~h}$ to give the desired 5-Substituted 1,3-Dioxolane-2, 4-Diones in 90-100 \% yield.

This product was obtained as a white solid in quantitative yield from the corresponding racemic hydroxy acid. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.02$ $(\mathrm{s}, 1 \mathrm{H}), 7.40-7.46(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 80.40,126.11$, 129.22, 129.53, 130.78, 147.96, 165.28; IR $\left(\mathrm{CHCl}_{3}\right)$ v 3096, 1900, 1817, $1495,1245,1067 \mathrm{~cm}^{-1}$.

This product was obtained as a white solid in quantitative yield from the corresponding racemic hydroxy acid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 6.01(\mathrm{~s}, 1 \mathrm{H}), 7.37-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.48(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 79.60,127.38,127.56,129.77,137.02$, $147.80,164.94 \mathrm{~cm}^{-1}$; IR $\left(\mathrm{CHCl}_{3}\right)$ v $3048,2989,1899,1816,1485$, 1270, 1241, 1171, $1042 \mathrm{~cm}^{-1}$; HRMS (DEI) exact mass calcd for $\left(\mathrm{C}_{9} \mathrm{H}_{5} \mathrm{O}_{4} \mathrm{Cl}^{+}\right)$requires $\mathrm{m} / \mathrm{z} 211.9876$, found $\mathrm{m} / \mathrm{z} 211.9881$.

Br O This product was obtained as a white solid in quantitative yield from the corresponding racemic hydroxy acid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 6.00(\mathrm{~s}, 1 \mathrm{H}), 7.29-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.60-7.63(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 79.98,125.42,127.77,127.90,128.35$, 132.96, 148.14, 165.28; IR $\left(\mathrm{CHCl}_{3}\right)$ v 3053, 2987, 1900, 1816, 1491, 1265, 1243, $1073 \mathrm{~cm}^{-1}$; HRMS (DEI) exact mass calcd for $\left(\mathrm{C}_{9} \mathrm{H}_{5} \mathrm{O}_{4} \mathrm{Br}^{+}\right)$requires m / z 255.9371, found $\mathrm{m} / \mathrm{z} 255.9382$.

This product was obtained as a white solid in quantitative yield from the corresponding racemic hydroxy acid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.01(\mathrm{~s}, 1 \mathrm{H}), 7.15-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.46(\mathrm{~m}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 79.75,116.81(\mathrm{~d}, J=23 \mathrm{~Hz}), 125.05,128.32(\mathrm{~d}, J=8$
$\mathrm{Hz}), 147.69,163.92(\mathrm{~d}, J=236 \mathrm{~Hz}), 165.24$; IR $\left(\mathrm{CHCl}_{3}\right)$ v 3056, 1899, 1812, 1514, 1265, $1235 \mathrm{~cm}^{-1}$; HRMS (DEI) exact mass calcd for $\left(\mathrm{C}_{9} \mathrm{H}_{5} \mathrm{O}_{4} \mathrm{~F}^{+}\right)$requires m / z 196.0172, found $\mathrm{m} / \mathrm{z} 196.0167$.

This product was obtained as a white solid in quantitative yield from the corresponding racemic hydroxy acid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 6.10(\mathrm{~s}, 1 \mathrm{H}), 6.62(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 79.19,123.39(\mathrm{q}, J=271 \mathrm{~Hz}), 126.16,126.55(\mathrm{q}, J=$ $3.8 \mathrm{~Hz}), 132.82,132.91(\mathrm{q}, J=33.4 \mathrm{~Hz}), 147.40,164.52 ; \mathrm{IR}\left(\mathrm{CHCl}_{3}\right)$ v 3057, 1902, 1816, 1329, 1265, $1069 \mathrm{~cm}^{-1}$; HRMS (DEI) exact mass calcd for $\left(\mathrm{C}_{10} \mathrm{H}_{5} \mathrm{O}_{4} \mathrm{~F}_{3}{ }^{+}\right)$requires $\mathrm{m} / \mathrm{z} 246.0140$, found $\mathrm{m} / \mathrm{z} 246.0147$.

This product was obtained as a white solid in quantitative yield from the corresponding racemic hydroxy acid. 1 H NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 1.26(\mathrm{~d}, 6 \mathrm{H}, J=6.4 \mathrm{~Hz}), 2.90-3.01(\mathrm{~m}, 1 \mathrm{H}), 5.98(\mathrm{~s}, 1 \mathrm{H})$, 7.33-7.35 (m, 4H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 23.73,33.99$, 80.60, 126.39, 126.56, 127.65, 152.04, 165.49; IR $\left(\mathrm{CHCl}_{3}\right)$ v 3040, 2964, 1897, 1812, 1265, $1066 \mathrm{~cm}^{-1}$; HRMS (CI) exact mass calcd for $\left(\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{4}{ }^{+}\right)$requires $\mathrm{m} / \mathrm{z} 220.0736$, found $\mathrm{m} / \mathrm{z} 220.0734$.

This product was obtained as a pale yellow solid in quantitative yield from the corresponding racemic hydroxy acid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 5.99(\mathrm{~s}, 1 \mathrm{H}), 7.22-7.35(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 78.79,115.59(\mathrm{~d}, J=19.8 \mathrm{~Hz}), 118.75(\mathrm{~d}, J=17.5 \mathrm{~Hz})$, 122.40 (dd, $J=7.6,4.6 \mathrm{~Hz}$), 125.83 (dd, $J=5.4,4.5 \mathrm{~Hz}$), 147.32 , $150.88(\mathrm{dd}, J=250,12.2 \mathrm{~Hz}), 157.79(\mathrm{dd}, J=250,9.8 \mathrm{~Hz}), 164.55$; IR $\left(\mathrm{CHCl}_{3}\right) \vee 3053$, 2987, 1897, 1815, 1518, 1421, $1265 \mathrm{~cm}^{-1}$.

This product was obtained as a white solid in quantitative yield from the corresponding racemic hydroxy acid. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 6.76(\mathrm{~s}, 1 \mathrm{H}), 7.51-7.70(\mathrm{~m}, 4 \mathrm{H}), 7.92-8.02(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 78.88,122.37,124.89,125.08,126.92,127.89$, $129.26,130.31,131.82,133.97,148.07,165.16$; IR $\left(\mathrm{CHCl}_{3}\right)$ v 3053, 1896, 1816, 1265, $1078 \mathrm{~cm}^{-1}$; HRMS (DEI) exact mass calcd for $\left(\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{O}_{4}{ }^{+}\right)$requires m / z 228.0422, found $\mathrm{m} / \mathrm{z} 228.0414$.

This product was obtained as a white solid in quantitative yield from the corresponding racemic hydroxy acid. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $6.18(\mathrm{~s}, 1 \mathrm{H}), 7.38-7.54(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 79.63$, $127.20,127.78,130.91,130.97,132.77,134.13,147.91,164.65$; IR $\left(\mathrm{CHCl}_{3}\right)$ v 3054, 2986, 1899, 1816, 1298, 1264, 1068, $1031 \mathrm{~cm}^{-1}$; HRMS (DEI) exact mass calcd for $\left(\mathrm{C}_{9} \mathrm{H}_{5} \mathrm{O}_{4} \mathrm{Cl}^{+}\right)$requires m / z 211.9876, found $\mathrm{m} / \mathrm{z} 211.9879$.

This product was obtained as a white solid in 95% yield from the corresponding racemic hydroxy acid. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $2.47(\mathrm{~s}, 3 \mathrm{H}), 6.22(\mathrm{~s}, 1 \mathrm{H}), 7.25-7.34(\mathrm{~m}, 3 \mathrm{H}), 7.37-7.43(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 19.14,79.28,126.60,126.94,127.67$, $131.00,131.66,136.99,148.17,165.46 ;$ IR $\left(\mathrm{CHCl}_{3}\right)$ v 3054, 2986,

1896, 1813, 1464, 1421, 1263, 1069, $1024 \mathrm{~cm}^{-1}$.

This product was obtained as a white solid in quantitative yield from corresponding racemic hydroxy acid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 3.23-3.41 (m, 2H), $5.31(\mathrm{t}, 1 \mathrm{H}, J=4.8 \mathrm{~Hz}), 7.22-7.36(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 36.41,79.86,128.40,129.15,129.65$, 131.48, 147.76, 166.28; IR $\left(\mathrm{CHCl}_{3}\right)$ v 3056, 2987, 1888, 1808, 1455, 1340, 1266, $1078 \mathrm{~cm}^{-1}$; HRMS (EI) exact mass calcd for $\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{O}_{4}{ }^{+}\right)$requires m / z 192.0422, found $\mathrm{m} / \mathrm{z} 192.0419$.

21

This product was obtained as a white solid in quantitative yield from corresponding racemic hydroxy acid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}) $\delta 2.22-2.42(\mathrm{~m}, 2 \mathrm{H}), 2.78-2.94(\mathrm{~m}, 2 \mathrm{H}), 4.97(\mathrm{dd}, 1 \mathrm{H}, J=$ 8.0, 5.0 Hz), $7.18-7.36(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $30.11,32.35,78.40,127.02,128.51,128.91,138.08,148.11$, 167.04; IR $\left(\mathrm{CHCl}_{3}\right)$ 3054, 2986, 1892, 1812, 1496, 1330, 1239, $1066 \mathrm{~cm}^{-1}$; HRMS exact mass calcd for $\left(\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{O}_{4}^{+}\right)$requires $\mathrm{m} / \mathrm{z} 207.0657$, found m / z 207.0655.

This product was obtained as a colorless liquid in 92% yield from corresponding racemic hydroxy acid. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 0.95 (t, $3 \mathrm{H}, J=7.2 \mathrm{~Hz}$), 1.36-1.58 (m, 4H), 1.90-2.12 (m, 2H), 5.06 (dd, $1 \mathrm{H}, \mathrm{J}=7.6,4.8 \mathrm{~Hz}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.58,21.88$, 25.95, 30.46, 79.72, 148.25, 167.14; IR $\left(\mathrm{CHCl}_{3}\right)$ v 2936, 2856, 1895, $1265,1067 \mathrm{~cm}^{-1}$; HRMS (DEI) exact mass calcd for $\left(\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{O}_{4}^{+}\right)$requires $\mathrm{m} / \mathrm{z} 159.0657$, found m / z 159.0652.

This product was obtained as a colorless liquid in 90% yield from corresponding racemic hydroxy acid. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.09$ (d, $3 \mathrm{H}, J=7.2 \mathrm{~Hz}$), $1.16(\mathrm{~d}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}), 2.32-2.42(\mathrm{~m}, 1 \mathrm{H}), 4.90(\mathrm{~d}, 1 \mathrm{H}$, $J=4.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 15.97,17.41,30.58,84.01$, 148.40, 166.39; IR $\left(\mathrm{CHCl}_{3}\right) \vee 2974,1889,1817,1468,1253,1028 \mathrm{~cm}^{-1}$; HRMS $\left(\mathrm{CH}_{4} / \mathrm{CI}\right)$ exact mass calcd for $\left(\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{O}_{4}{ }^{+}\right)$requires $\mathrm{m} / \mathrm{z} 145.0501$, found m / z 145.0500 .

General Procedure for Modified Cinchona Alkaloid-Catalyzed Dynamic Kinetic Resolution of 5-Aryl-1,3-Dioxolane-2,4-Diones.

A mixture of 5-aryl-1,3-dioxolane-2,4-diones $(1.0 \mathrm{mmol})$ and $4 \AA$ molecular sieves (100 mg) in anhydrous diethyl ether $(50 \mathrm{~mL})$ was stirred at room temperature for 15 minutes, then cooled to the temperature indicated in Table 2, afterwhich the modified cinchona alkaloid $(0.1 \mathrm{mmol}),(\mathrm{DHQD})_{2} \mathrm{AQN}$, was added to the mixture. The resulting mixture was stirred for another 5 minutes and then ethanol (1.5 eq.) was added dropwise over 10 minutes via a syringe. The resulting reaction mixture was stirred at that temperature for $8-24$ hours. $\mathrm{HCl}(1 \mathrm{~N}, 5.0 \mathrm{~mL})$ was added to the mixture dropwise. The resulting mixture was allowed to warm to room temperature. The organic phase was collected, washed with aqueous $\mathrm{HCl}(1 \mathrm{~N}, 2 \times 5.0 \mathrm{~mL})$ and the aqueous phase was extract with ether ($2 \times 5.0 \mathrm{~mL}$). ${ }^{5}$ The combined organic phase was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was subjected to column chromatography to give the final product.

Determination of Absolute Configurations of α-Hydroxy Acids $\mathbf{1}$, α-Hydroxy Esters 3

The absolute configuration of $\mathbf{3 a}, \mathbf{3 b}, \mathbf{3 k}, \mathbf{3 m}$ and $\mathbf{1 k} \mathbf{- 1} \mathbf{n}$ were determined by comparing their optical rotation value with the literature value. The absolute configuration of $\mathbf{3 c}, \mathbf{3 d}, \mathbf{3 e}, \mathbf{3 f}, \mathbf{3 g}, \mathbf{3 h}, \mathbf{3 i}, \mathbf{3 j}, \mathbf{3 1}$ and $\mathbf{3 m}$ were assigned by analogy.

(R)-Ethyl-mandelate (3a):

This product was obtained as a white solid in 71% yield after purification by silica gel chromatography (hexanes:ethyl acetate $=$ $4: 1$) and 95% ee as determined by HPLC analysis [Daicel chiralpak OD, Hexanes:IPA, 20:1, $1.0 \mathrm{~mL} / \mathrm{min}, \lambda 220 \mathrm{~nm}, \mathrm{t}$ (major) $=17.18 \mathrm{~min}, \mathrm{t}$ $($ minor $)=9.23 \mathrm{~min}] .[\alpha]_{\mathrm{D}}{ }^{25}-123^{\circ}\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$; $\left(\right.$ Literature, ${ }^{6}[\alpha]_{\mathrm{D}}{ }^{25}-125.4^{\circ}(\mathrm{c}=1.0$, $\left.\mathrm{CHCl}_{3}\right)$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.22(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}), 3.55(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=4.8 \mathrm{~Hz})$, 4.10-4.30 (m, 2H), $5.15(\mathrm{~d}, 1 \mathrm{H}, J=4.8 \mathrm{~Hz}), 7.29-7.44(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 13.96,62.16,72.82,126.47,128.33,128.50,138.38,173.62$; $\operatorname{IR}\left(\mathrm{CHCl}_{3}\right) \mathrm{v}$ $3515,3065,2985,1740,1453,1250,1066 \mathrm{~cm}^{-1}$.

(R)-Ethyl-4-chloromandelate (3b):

This product was obtained as a colorless oil in 70% yield after purification by silica gel chromatography (hexanes:ethyl acetate $=4: 1$) and 96% ee as determined by HPLC analysis [Daicel chiralpak OD, Hexanes:IPA, 20:1, $1.0 \mathrm{~mL} / \mathrm{min}, \lambda 220$ nm, t (major) $=10.54 \mathrm{~min}, \mathrm{t}($ minor $)=8.94 \mathrm{~min}] . \quad[\alpha]_{\mathrm{D}}{ }^{25}-91.3^{\circ}\left(\mathrm{c}=1.2, \mathrm{CHCl}_{3}\right)$. (Literature, ${ }^{7}[\alpha]_{\mathrm{D}}{ }^{25}-14.7^{\circ}\left(\mathrm{c}=1, \mathrm{CHCl}_{3}\right)$, for 8% ee); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $1.23(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}), 4.16-4.28(\mathrm{~m}, 2 \mathrm{H}), 5.14(\mathrm{~s}, 1 \mathrm{H}), 7.32-7.40(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR

[^1]($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.99,62.48,72.14,127.86,128.70,134.25,136.83,173.29$; IR $\left(\mathrm{CHCl}_{3}\right) \vee 3518,3055,2986,1730,1493,1421,1266,1184,1092 \mathrm{~cm}^{-1}$.

(R)-Ethyl-4-bromomandelate (3c):
This product was obtained as a colorless oil in 80% yield after purification by silica gel chromatography (hexanes:ethyl acetate $=4: 1$) and 96% ee as determined by HPLC analysis [Daicel chiralpak OD, Hexanes:IPA, 20:1, $1.0 \mathrm{~mL} / \mathrm{min}, \lambda 220$ $\mathrm{nm}, \mathrm{t}($ major $)=11.52 \mathrm{~min}, \mathrm{t}($ minor $)=9.89 \mathrm{~min}] .[\alpha]_{\mathrm{D}}{ }^{25}-77.8^{\circ}\left(\mathrm{c}=1.4, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.22(\mathrm{t}, 3 \mathrm{H}, J=8.0 \mathrm{~Hz}), 3.61(\mathrm{~s}, 2 \mathrm{H}), 4.14-4.28(\mathrm{~m}, 2 \mathrm{H}), 5.11$ $(\mathrm{s}, 1 \mathrm{H}), 7.29-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.49(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.96$, $62.43,72.17,122.36,128.16,131.60,137.33,173.15$; $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right)$ v 3514, 3054, 2985, 1732, 1487, 1267, $1073 \mathrm{~cm}^{-1}$.

(R)-Ethyl-4-fluoromandelate (3d):

This product was obtained as a yellow oil in 65% yield after purification by silica gel chromatography (hexanes:ethyl acetate $=2: 1$) and 95% ee as determined by HPLC analysis [Daicel chiralpak OD, Hexanes:IPA, 20:1, $1.0 \mathrm{~mL} / \mathrm{min}, \lambda 220$ $\mathrm{nm}, \mathrm{t}($ major $)=11.04 \mathrm{~min}, \mathrm{t}($ minor $)=8.83 \mathrm{~min}] .[\alpha]_{\mathrm{D}}{ }^{25}-102.3^{\circ}\left(\mathrm{c}=1.1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.22(\mathrm{t}, 3 \mathrm{H}, J=7.6 \mathrm{~Hz}), 3.58(\mathrm{~d}, 1 \mathrm{H}, J=5.2 \mathrm{~Hz}), 4.15-4.26$ $(\mathrm{m}, 2 \mathrm{H}), 5.14(\mathrm{~d}, 1 \mathrm{H}, J=5.6 \mathrm{~Hz}), 7.02-7.07(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.42(\mathrm{~m}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.96,62.33,72.14,115.43(\mathrm{~d}, J=22 \mathrm{~Hz}), 128.24(\mathrm{~d}, J=8.3 \mathrm{~Hz}), 134.60$ $(\mathrm{d}, J=3 \mathrm{~Hz}), 162.68(\mathrm{~d}, J=245 \mathrm{~Hz}), 173.48$; $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right)$ v 3509, 3055, 2985, 1731, 1604, 1509, 1265, $1082 \mathrm{~cm}^{-1}$.

(R)-Ethyl-4-trifluoromethylmandelate (3e):
This product was obtained as a yellow solid in 85% yield after purification by silica gel chromatography (hexanes:ethyl acetate $=8: 1$) and 93% ee as determined by HPLC analysis [Daicel chiralpak OD, Hexanes:IPA, 50:1, $1.0 \mathrm{~mL} / \mathrm{min}, \lambda 220 \mathrm{~nm}, \mathrm{t}$ (major) $=15.90 \mathrm{~min}, \mathrm{t}($ minor $)=13.66 \mathrm{~min}] .[\alpha]_{\mathrm{D}}{ }^{25}-53.7^{\circ}(\mathrm{c}=$ $\left.1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.24(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}), 3.61(\mathrm{~d}, 1 \mathrm{H}, J=4.8$ $\mathrm{Hz}), 4.15-4.32(\mathrm{~m}, 2 \mathrm{H}), 5.26(\mathrm{~d}, 1 \mathrm{H}, J=4.8 \mathrm{~Hz}), 7.58(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}), 7.63(\mathrm{~d}, 2 \mathrm{H}, J$ $=8.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.99,62.67,72.23,123.97(\mathrm{q}, J=271 \mathrm{~Hz}$), $125.44(\mathrm{q}, J=3.8 \mathrm{~Hz}), 126.82,130.52(\mathrm{q}, J=31.9 \mathrm{~Hz}), 142.14,172.96$; $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right) v$ $3517,3053,2987,1725,1422,1329,1266,1194,1066 \mathrm{~cm}^{-1}$; HRMS exact mass calcd for $\left(\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{3} \mathrm{~F}_{3}{ }^{+}\right)$requires $\mathrm{m} / \mathrm{z} 249.0739$, found $\mathrm{m} / \mathrm{z} 249.0733$.

(R)-Ethyl-4-isopropylmandelate (3f):

This product was obtained as a yellow oil in 66% yield after purification by silica gel chromatography (hexanes:ethyl acetate $=4: 1$) and 91% ee as determined by HPLC analysis [Daicel chiralpak OD, Hexanes:IPA, 20:1, $1.0 \mathrm{~mL} / \mathrm{min}, \lambda$ $220 \mathrm{~nm}, \mathrm{t}$ (major) $=10.58 \mathrm{~min}, \mathrm{t}($ minor $)=8.18 \mathrm{~min}]$.
$[\alpha]_{\mathrm{D}}{ }^{25}-56.0^{\circ}\left(\mathrm{c}=1.2, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.24(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H})$, 2.92-2.98 (m, 1H), $3.39(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.12-4.26(\mathrm{~m}, 2 \mathrm{H}), 5.13(\mathrm{~s}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.03,23.90$, $33.82,62.12,72.73,126.47,126.66,135.80,149.12,173.79$; $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right)$ v 3516, 3053, $2969,1724,1604,1512,1421,1266 \mathrm{~cm}^{-1}$.

(R)-Ethyl-3,4-difluoromandelate ($\mathbf{3 g}$):

This product was obtained as a yellow oil in 65% yield after purification by silica gel chromatography (hexanes:ethyl acetate $=4: 1$) and 94% ee as determined by HPLC analysis [Daicel chiralpak, OD, Hexanes:IPA, 20:1, $1.0 \mathrm{~mL} / \mathrm{min}, \lambda 220$ $\mathrm{nm}, \mathrm{t}($ major $)=10.88 \mathrm{~min}, \mathrm{t}($ minor $)=9.29 \mathrm{~min}] .[\alpha]_{\mathrm{D}}{ }^{25}-73.1^{\circ}\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.25(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}$), 4.18-4.32 (m, 2H), $5.12(\mathrm{~s}, 1 \mathrm{H})$, $7.12-7.32(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.98,62.67,71.64,115.58(\mathrm{~d}, J=18$ $\mathrm{Hz}), 117.28(\mathrm{~d}, J=18 \mathrm{~Hz}), 122.55(\mathrm{dd}, J=3.8,6.9 \mathrm{~Hz}), 135.19(\mathrm{dd}, J=3.8,5.3 \mathrm{~Hz})$, 150.19 (dd, $J=247.5,3.8 \mathrm{~Hz}$), $150.32\left(\mathrm{dd}, J=247.5,3.8 \mathrm{~Hz}\right.$), 172.99; IR $\left(\mathrm{CHCl}_{3}\right)$ v $3509,3054,2985,1735,1612,1514,1437,1276,1139,1019 \mathrm{~cm}^{-1}$; HRMS exact mass calcd for $\left(\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{3} \mathrm{~F}_{2}{ }^{+}\right)$requires $\mathrm{m} / \mathrm{z} 216.0598$, found $\mathrm{m} / \mathrm{z} 216.0603$.

(R)-1-Napthaleneglycolic acid, n-propyl ester (3h):

This product was obtained as a yellow oil in 74% yield after purification by silica gel chromatography (hexanes:ethyl acetate $=4: 1$) and 91% ee as determined by HPLC analysis [Daicel chiralpak AS, Hexanes:IPA, 20:1, $1.0 \mathrm{~mL} / \mathrm{min}, \lambda 280$ $\mathrm{nm}, \mathrm{t}($ major $)=19.86 \mathrm{~min}, \mathrm{t}($ minor $)=14.84 \mathrm{~min}] .[\alpha]_{\mathrm{D}}{ }^{25}-97.8^{\circ}\left(\mathrm{c}=1.1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.68(\mathrm{t}, 3 \mathrm{H}, J=7.6 \mathrm{~Hz}), 1.45-1.55(\mathrm{~m}, 2 \mathrm{H}), 4.05-4.18(\mathrm{~m}$, $2 \mathrm{H}), 5.82(\mathrm{~s}, 1 \mathrm{H}), 7.41-7.56(\mathrm{~m}, 4 \mathrm{H}), 7.82-7.90(\mathrm{~m}, 2 \mathrm{H}), 8.17(\mathrm{~d}, 1 \mathrm{H}, J=8.8 \mathrm{~Hz}),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.96,21.70,67.76,71.23,123.75,125.17,125.60,125.80$, $126.42,128.73,129.30,131.02,133.97,134.18,174.28$; $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right) \vee 3511,3052,2971$, 1738, 1512, 1421, 1257, 1165, $1096 \mathrm{~cm}^{-1}$; HRMS exact mass calcd for $\left(\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{3}{ }^{+}\right)$ requires $\mathrm{m} / \mathrm{z} 244.1099$, found $\mathrm{m} / \mathrm{z} 244.1103$.

(R)-Ethyl-2-chloromandelate (3i):

This product was obtained as a yellow oil in 66% yield after purification by silica gel chromatography (hexanes:ethyl acetate $=5: 1$) and 62% ee as determined by HPLC analysis [Daicel chiralpak OD, Hexanes:IPA, 20:1, $1.0 \mathrm{~mL} / \mathrm{min}, \lambda 220$ $\mathrm{nm}, \mathrm{t}($ major $)=11.95, \mathrm{t}($ minor $)=9.56 \mathrm{~min}] .[\alpha]_{\mathrm{D}}{ }^{25}-45.0^{\circ}(\mathrm{c}=$ 4.0, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.20(\mathrm{t}, 3 \mathrm{H}, J=7.6 \mathrm{~Hz}$), 3.78 (br, 1 H), 4.14$4.29(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.40(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.86,62.28,70.26$, 127.00, 128.64, 129.57, 129.77, 133.41, 136.08, 173.08; IR $\left(\mathrm{CHCl}_{3}\right)$ v 3508, 2984, 1731, 1476, 1252, $1086 \mathrm{~cm}^{-1}$.

(R)-Ethyl-2-methylmandelate (3j):

This product was obtained as a yellow oil in 61% yield after purification by silica gel chromatography (hexanes:ethyl acetate $=3: 1$) and 60% ee as determined by HPLC analysis [Daicel chiralpak OD, Hexanes:IPA, 20:1, $1.0 \mathrm{~mL} / \mathrm{min}, \lambda 220$ nm, t (major) $=13.51, \mathrm{t}$ (minor) $=10.71 \mathrm{~min}] .[\alpha]_{\mathrm{D}}{ }^{25}-57.4^{\circ}$ $\left(\mathrm{c}=2.8, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.21(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}), 2.43(\mathrm{~s}, 3 \mathrm{H})$, $3.52(\mathrm{~d}, 1 \mathrm{H}, J=4.8 \mathrm{~Hz}), 4.09-4.29(\mathrm{~m}, 2 \mathrm{H}), 5.35(\mathrm{~d}, 1 \mathrm{H}, J=4.8 \mathrm{~Hz}), 7.04-7.32(\mathrm{~m}, 4 \mathrm{H})$;
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.97,19.23,62.10,70.29,126.20,126.65,128.33$, $130.72,131.72,135.99,174.11$; $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right)$ v 3522, 3054, 2984, 1733, 1464, 1373, 1285, $1068,1048 \mathrm{~cm}^{-1}$.

General Procedure for Cinchona Alkaloid-Catalyzed Kinetic Resolution of 5-Alkyl 1,3-Dioxolane-2,4-Diones

A mixture of 5-alkyl-1,3-dioxolane-2,4-dione (1.0 mmol) and $4 \AA$ molecular sieves (100 mg) in anhydrous diethyl ether (50 mL) was stirred at room temperature for 15 minutes, then cooled to $-78{ }^{\circ} \mathrm{C}$ afterwhich the modified cinchona alkaloid $(\mathrm{DHQD})_{2} \mathrm{AQN}(0.1 \mathrm{mmol})$ was added to the mixture. The resulting mixture was stirred for another 5 minutes and then ethanol or allyl alcohol (1.0 eq .) was added dropwise over 10 minutes via a syringe. The resulting mixture was stirred at that temperature for 8-36 hrs. When the ee of both ester $\mathbf{3}$ and unreacted starting material $\mathbf{2}$ were found to be close to or above 90%, aqueous $\mathrm{HCl}(1 \mathrm{~N}, 5.0 \mathrm{~mL})$ was added dropwise to the reaction mixture. The resulting mixture was allowed to warm to room temperature. The organic phase was collected, washed with aqueous $\mathrm{HCl}(1 \mathrm{~N}, 2 \times 3.0 \mathrm{~mL})$ and concentrated. The residue was dissolved in $\mathrm{H}_{2} \mathrm{O} / \mathrm{THF}$ ($\mathrm{v} / \mathrm{v}: 1 / 4,5.0 \mathrm{~mL}$) and the resulting solution was stirred at room temperature overnight and diluted with ether $(20 \mathrm{~mL})$. The resulting mixture was extracted with aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}(1 \mathrm{~N}, 2 \times 5.0 \mathrm{~mL})$. The organic phase was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated to give α-hydroxy ester 3 in NMR-pure form and in yields indicated in Table 3. The aqueous phases were combined and then acidified to $\mathrm{pH}=1$ by conc. HCl , then extracted with ethyl acetate ($3 \times 5.0 \mathrm{~mL}$). The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to give α-hydroxy acid $\mathbf{1}$ in NMR-pure form and in yields indicated in Table 3.

Determination of the Enantiomeric Excesses of $2 k-2 n$ and $3 k-3 n$ in Reaction Mixture.

Dioxolanediones (2) are found to be unstable toward conditions for GC and HPLC analysis. The ee of the $\mathbf{2}$ in the reaction mixture was determined by converting the unreacted $\mathbf{2}$ into methyl ester 5 and subsequently GC or HPLC analysis of the resulting mixture of ester $\mathbf{3}$ and $\mathbf{5}$ as following: A small aliquot ($50 \mu \mathrm{~L}$) of the reaction mixture was added to dry methanol $(200 \mu \mathrm{~L})$. The resulting mixture was stirred at room temperature for 10 min , and then was allowed to pass through a plug of silica gel with ether as the eluent. The resulting solution of esters $\mathbf{3}$ and 5 was concentrated and then subjected to GC or HPLC analysis.

GC condition for $\mathbf{2 k}$ and $\mathbf{3 k}$: HP chiral 20\% Permethylated B-Cyclodextrin, 100 ${ }^{\circ} \mathrm{C}, 20 \mathrm{~min}, 0.5^{\circ} \mathrm{C} / \mathrm{min}$ ramp, $130^{\circ} \mathrm{C}(10 \mathrm{~min})$.

HPLC condition for 21 and 31: Chiralpak OD, Hexanes:IPA, 20:1, $1 \mathrm{~mL} / \mathrm{min}, \lambda$ 220 nm .

GC condition for $\mathbf{2 m}$ and $\mathbf{3 m}$: Gamma cyclodextrin Trifluoroacetyl, $60^{\circ}, 2 \mathrm{~min}$, 1% min ramp, $90^{\circ}(10 \mathrm{~min})$.

GC condition for $\mathbf{2 n}$ and $\mathbf{3 n}$: Gamma cyclodextrin Trifluoroacetyl, 80°.

Determination of Enantiomeric Excesses of Isolated Optically Active α-Hydroxy

 Acid 1Optically pure α-hydroxy acid $1(5.0 \mathrm{mg})$ isolated following the perocedure described on page 7 was dissolved in EtOH or $\mathrm{MeOH}(1.0 \mathrm{~mL})$, and then treated with sulfuric acid (1 drop). The mixture was stirred for 8 hrs and diluted with water (2.0 mL). After extracting with ether ($2 \times 2.0 \mathrm{~mL}$), the combined organic phase was washed with saturated sodium bicarbonate and brine. The solvent was removed to give the α-hydroxy ester. This ester was subject to HPLC or GC analysis to give the enantiomeric excesses of the isolated optically active α-hydroxy acid.

(R)-Ethyl-2-hydroxy-3-phenylpropinate (3k):

This product was obtained as yellow oil in 47\% yield and 96\% ee as determined by HPLC analysis [Daicel chiralpak AS, Hexanes:IPA, $50: 1,0.5 \mathrm{~mL} / \mathrm{min}, \lambda 220 \mathrm{~nm}, \mathrm{t}($ major $)=$ $32.45 \mathrm{~min}, \mathrm{t}$ (minor) $=29.13 \mathrm{~min}] .[\alpha]_{\mathrm{D}}{ }^{25}+14.5^{\circ}(\mathrm{c}=1.0$,
$\left.\mathrm{CHCl}_{3}\right) ;\left(\right.$ Literature, ${ }^{8}[\alpha]_{\mathrm{D}}{ }^{25}+22.2^{\circ}\left(\mathrm{c}=3.85, \mathrm{CHCl}_{3}\right)$); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $1.28(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}), 2.79(\mathrm{~s}, 1 \mathrm{H}), 2.94-3.16(\mathrm{~m}, 2 \mathrm{H}), 4.43(\mathrm{~s}, 1 \mathrm{H}), 7.20-7.32(\mathrm{~m}, 5 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.13,40.50,61.68,71.16,126.82,128.33,129.48$, 136.33, 174.14; $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right)$ v 3526, 3065, 2983, 1745, 1496, 1368, 1214, $1098 \mathrm{~cm}^{-1}$.

(S)-2-hydroxy-3-phenylpropinic acid (1k):

This product was obtained as white solid in 39% yield and 95% ee as determined by GC analysis of the methyl ester derived from $\mathbf{1 k}$ following the procedure described above [HP Chiral 20% Permethylated B-Cyclodextrin, $100^{\circ} \mathrm{C}, 20 \mathrm{~min}, 0.5^{\circ} \mathrm{C} / \mathrm{min}$ to $130{ }^{\circ} \mathrm{C}, \mathrm{t}$ (major) $=60.72 \mathrm{~min}, \mathrm{t}($ minor $\left.)=58.90 \mathrm{~min}\right] .[\alpha]_{\mathrm{D}}{ }^{25}-17.9^{\circ}\left(\mathrm{c}=1, \mathrm{H}_{2} \mathrm{O}\right)$. (Literature, $\left.{ }^{9}[\alpha]_{\mathrm{D}}=-20.0^{\circ}\left(\mathrm{c}=1, \mathrm{H}_{2} \mathrm{O}\right)\right)$.

(R)-2-hydroxy-4-phenylbutyric acid ethyl ester (31):

This product was obtained as yellow oil in 46% yield and 93% ee as determined by HPLC analysis [Daicel chiralpak OD, Hexanes:IPA, 20:1, $1.0 \mathrm{~mL} / \mathrm{min}, \lambda 220$ $\mathrm{nm}, \mathrm{t}($ major $)=15.03 \mathrm{~min}, \mathrm{t}($ minor $)=9.45 \mathrm{~min}] .[\alpha]_{\mathrm{D}}{ }^{25}$ $-14.5^{\circ}\left(\mathrm{c}=1.3, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.27(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}), 1.86-$ $2.24(\mathrm{~m}, 2 \mathrm{H}), 2.66-2.86(\mathrm{~m}, 2 \mathrm{H}), 4.12-4.24(\mathrm{~m}, 3 \mathrm{H}), 7.18-7.32(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.11,30.93,35.86,61.72$, $69.64,125.95,128.41,128.49,141.06$, 175.19; IR $\left(\mathrm{CHCl}_{3}\right) \vee 3520,3053,2983,1743,1454,1252,1101 \mathrm{~cm}^{-1}$.

(S)-2-hydroxy-4-phenylbutanoic acid (11):

This product was obtained as white solid in 40% yield and 85% ee as determined by HPLC analysis of the ethyl ester derived from 11 following the procedure described above [Daicel chiralpak OD, Hexanes:IPA, 20:1, $1 \mathrm{~mL} / \mathrm{min}, \lambda 220$ nm, t (major) $=8.94 \mathrm{~min}, \mathrm{t}($ minor $)=13.90 \mathrm{~min}] . \quad[\alpha]_{\mathrm{D}}{ }^{25}+6.8^{\circ}(\mathrm{c}=1.0, \mathrm{EtOH})$; (Literature, ${ }^{10}[\alpha]_{\mathrm{D}}{ }^{25}+7.6^{\circ}(\mathrm{c}=1.0, \mathrm{EtOH})$, for 91% ee).

(R)-Ethyl-2-hydroxy-hexanoate (3m):

This product was obtained as yellow oil in 46% yield and 92% ee as determined by GC with chiral support [Gamma cyclodextrin Trifluoroacetyl, $60^{\circ}, 2 \mathrm{~min}, 1 \% \mathrm{~min}$ to 90°, t $($ major $)=24.10 \mathrm{~min}, \mathrm{t}($ minor $)=25.00] .[\alpha]_{\mathrm{D}}{ }^{25} 5.5^{\circ}(\mathrm{c}=5.0, \mathrm{EtOH})$; $\left(\right.$ Literature, ${ }^{11}[\alpha]_{\mathrm{D}}{ }^{25}$ 6.6°, (c=7.1, EtOH)); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.91(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}), 1.30(\mathrm{t}, 3 \mathrm{H}$, $J=7.2 \mathrm{~Hz}), 1.33-1.50(\mathrm{~m}, 4 \mathrm{H}), 1.59-1.69(\mathrm{~m}, 1 \mathrm{H}), 1.74-1.84(\mathrm{~m}, 1 \mathrm{H}), 4.17(\mathrm{dd}, 1 \mathrm{H}, J=$ 7.2, 4.4 Hz), 4.21-4.29 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 13.84, 14.12, 22.34,

[^2]$26.79,34.02,61.50,70.37,175.39 ;$ IR $\left(\mathrm{CHCl}_{3}\right)$ v 3535, 3054, 2959, 1728, 1422, 1260 cm^{-1}.

(S)-2-hydroxyhexanic acid (1m).

This product was obtained as white solid in 36% yield and 95% ee as determined by GC analysis of the methyl ester derived from 1m following the procedure described above [Gamma cyclodextrin Trifluoroacetyl, $60^{\circ}, 2 \mathrm{~min}, 1 \%$ min to 90°, t (major) $=19.65 \mathrm{~min}, \mathrm{t}($ minor $)=19.07 \mathrm{~min}] .[\alpha]_{\mathrm{D}}{ }^{25} 6.4^{\circ}\left(\mathrm{c}=5.0, \mathrm{CHCl}_{3}\right) ;\left(\right.$ Literature, ${ }^{6}[\alpha]_{\mathrm{D}}{ }^{25}$ $+4.8^{\circ}\left(\mathrm{c}=6.3, \mathrm{CHCl}_{3}\right)$ for 79% ee $)$.

(R)-allyl-2-hydroxy-3-methylbutanoate (3n):

This product was obtained as a yellow oil in 48% yield and 90% ee as determined by GC on a chiral support [Gamma cyclodextrin Trifluoroacetyl $80^{\circ} \mathrm{C}$, t (major) $=18.68 \mathrm{~min}, \mathrm{t}$ $($ minor $)=17.82 \mathrm{~min}] .[\alpha]_{\mathrm{D}}{ }^{25}-1.0^{\circ}\left(\mathrm{c}=1.5, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.88(\mathrm{~d}, 3 \mathrm{H}, J=7.0), 1.03(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 2.02-2.10(\mathrm{~m}, 1 \mathrm{H})$, $3.28(\mathrm{~s}, 1 \mathrm{H}, \mathrm{br}), 4.08(\mathrm{~d}, 1 \mathrm{H}, J=4.0 \mathrm{~Hz}), 4.64-4.76(\mathrm{~m}, 2 \mathrm{H}), 5.24-5.40(\mathrm{~m}, 2 \mathrm{H}), 5.86-$ $6.04(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 15.89,18.69,32.07,66.02,74.99,131.35$, 137.10, 174.59; IR $\left(\mathrm{CHCl}_{3}\right) \vee 3536,3054,2969,1733,1467,1266,1030 \mathrm{~cm}^{-1}$; HRMS exact mass calcd for $\left(\mathrm{C}_{8} \mathrm{H}_{15} \mathrm{O}_{3}{ }^{+}\right)$requires $\mathrm{m} / \mathrm{z} 159.1021$, found $\mathrm{m} / \mathrm{z} 159.1026$.

(S)-2-Hydroxy-3-methylbutanoic acid (1n):

This product was obtained as a yellow solid in 32% yield and 93% ee as determined by GC analysis of the methyl ester ester derived from $\mathbf{1 n}$ following the procedure described above[Gamma cyclodextrin Trifluoroacetyl, $40^{\circ} \mathrm{C} 20 \mathrm{~min}, 0.5^{\circ} / \mathrm{min}$ to $60^{\circ} \mathrm{C}, \mathrm{t}$ (major) $=41.01$ $\min , \mathrm{t}($ minor $)=43.27 \mathrm{~min}] .[\alpha]_{\mathrm{D}}{ }^{25}+16.5^{\circ}\left(\mathrm{c}=0.8, \mathrm{CHCl}_{3}\right) ;\left(\right.$ Literature, ${ }^{12}[\alpha]_{\mathrm{D}}{ }^{25}+17.5^{\circ}$ ($\left.\mathrm{c}=1, \mathrm{CHCl}_{3}\right)$).

[^3]HPLC Condition: Chiralpak OD, Hexanes:IPA, 20:1, $1.0 \mathrm{~mL} / \mathrm{min}, \lambda 220 \mathrm{~nm}$.

Racemic 3a

HPLC Conditions: Chiralpak OD, Hexanes:IPA, 20:1, $1.0 \mathrm{~mL} / \mathrm{min}, \lambda 220 \mathrm{~nm}$

Racemic 3b

Isolated optically active 3b

HPLC Condition: Chiralpak OD, Hexanes:IPA, 20:1, $1.0 \mathrm{~mL} / \mathrm{min}, \lambda 220 \mathrm{~nm}$.

Racemic 3c

Isolated optically active $\mathbf{3 c}$

HPLC Condition: Chiralpak OD, Hexanes:IPA, 20:1, $1.0 \mathrm{~mL} / \mathrm{min}, \lambda 220 \mathrm{~nm}$

Racemic 3d

Isolated optically active 3d

HPLC Conditions: Chiralpak OD, Hexanes:IPA, 50:1, $1.0 \mathrm{~mL} / \mathrm{min}, \lambda 220 \mathrm{~nm}$.

Racemic 3e

HPLC Conditions: Chiralpak OD, Hexanes:IPA, 20:1, $1.0 \mathrm{~mL} / \mathrm{min}, \lambda 220 \mathrm{~nm}$.

Racemic 3f

Isolated optically active $\mathbf{3 f}$

HPLC Conditions: Chiralpak OD, Hexanes:IPA, 20:1, $1.0 \mathrm{~mL} / \mathrm{min}, \lambda 220 \mathrm{~nm}$.

Racemic 3g

Isolated optically active $\mathbf{3 g}$

HPLC Conditions: Chiralpak AS, Hexanes:IPA, 19:1, $1.0 \mathrm{~mL} / \mathrm{min}, \lambda 280 \mathrm{~nm}$.

Racemic 3h

Isolated optically active $\mathbf{3 h}$

HPLC Condition: Chiralpak OD, Hexanes:IPA, 20:1, $1.0 \mathrm{~mL} / \mathrm{min}, \lambda 220 \mathrm{~nm}$.

Racemic 3i

Isolated optically active $\mathbf{3 i}$

HPLC Condition: Chiralpak OD, Hexanes:IPA, 19:1, $1.0 \mathrm{~mL} / \mathrm{min}, \lambda 220 \mathrm{~nm}$.

Racemic 3j

Isolated optically active $\mathbf{3 j}$

HPLC Condition: Chiralpak AS, Hexanes:IPA, $50: 1,0.5 \mathrm{~mL} / \mathrm{min}, \lambda 220 \mathrm{~nm}$.

Racemic 3k

Isolated optically active $\mathbf{3 k}$

GC Conditions: HP chiral 20\% Permethylated B-Cyclodextrin, $100^{\circ} \mathrm{C}, 20 \mathrm{~min}, 0.5$ ${ }^{\circ} \mathrm{C} / \mathrm{min}$ ramp, $130^{\circ} \mathrm{C}(10 \mathrm{~min})$.

Derived from racemic acid $\mathbf{1 k}$

Derived from optically active acid $1 \mathbf{k}$

HPLC Conditions: Chiralpak OD, Hexanes:IPA, 20:1, $1 \mathrm{~mL} / \mathrm{min}, \lambda 220 \mathrm{~nm}$.

Isolated optically active $\mathbf{3 1}$

HPLC Conditions: Chiralpak OD, Hexanes:IPA, 20:1, $1 \mathrm{~mL} / \mathrm{min}, \lambda 220 \mathrm{~nm}$.

Derived form racemic acid 11

GC Conditions: Gamma cyclodextrin Trifluoroacetyl, $60^{\circ}, 2 \mathrm{~min}, 1^{\circ} / \mathrm{min} \mathrm{ramp}, 90^{\circ}(10$ min).

Racemic 3m

Isolated optically active $\mathbf{3 m}$

GC Conditions: Gamma cyclodextrin Trifluoroacetyl, $60^{\circ}, 2 \mathrm{~min}, 1^{\circ} / \mathrm{min} \mathrm{ramp}, 90^{\circ}(10$ min).

Derived from racemic acid $\mathbf{1 m}$

Derived from optically active acid $\mathbf{1 m}$

GC Conditions: $\gamma-\mathrm{TA}, 80^{\circ} \mathrm{C}$

Racemic 3n

Isolated optically active $\mathbf{3 n}$

GC Conditions: Gamma cyclodextrin Trifluoroacetyl, $40^{\circ} \mathrm{C}, 20 \mathrm{~min}, 0.5^{\circ} / \mathrm{min} \mathrm{ramp}, 60$ ${ }^{\circ} \mathrm{C}(10 \mathrm{~min})$.

Derived from racemic acid 1n

Derived from optically active acid 1 n

GC Conditions: HP chiral 20\% Permethylated B-Cyclodextrin, $100^{\circ} \mathrm{C}, 20 \mathrm{~min}, 0.5$
${ }^{\circ} \mathrm{C} / \mathrm{min}$ ramp, $130^{\circ} \mathrm{C}(10 \mathrm{~min})$.

Racemic 3k and 5k

Optically active $\mathbf{3 k}$ and $\mathbf{5 k}$ derived from reaction mixture

HPLC Conditions: Chiralpak OD, Hexanes:IPA, 20:1, $1 \mathrm{~mL} / \mathrm{min}, \lambda 220 \mathrm{~nm}$.

Racemic 31

Racemic 51

Optically active $\mathbf{3 1}$ and $\mathbf{1 1}$ derived from reaction mixture

YOTAL AREA $=1.1566 E+88$
MUL FACTOR $=1.9000 E+80$

GC Conditions: Gamma cyclodextrin Trifluoroacetyl, $60^{\circ}, 2 \mathrm{~min}, 1^{\circ} / \mathrm{min} \mathrm{ramp}, 80^{\circ}(10$ min).

Racemic 3m

Racemic 5m

Optically active $\mathbf{3 m}$ and $\mathbf{5 m}$ derived
 from reaction mixture

GC Conditions: Gamma cyclodextrin Trifluoroacetyl, $80^{\circ} \mathrm{C}$

Racemic 5n

Racemic 3n

$+$

Optically active $\mathbf{3 n}$ and $\mathbf{5 n}$ derived from reaction mixture

[^0]: ${ }^{1}$ Compere, E. L. J. Org. Chem. 1968, 33, 2565.
 ${ }^{2}$ Stecher, E. D.; Ryder, H. F. J. Am. Chem. Soc. 1952, 74, 4392.
 ${ }^{3}$ Clawson, P.; Lunn, P. M.; Whiting, D. A. J. Chem. Soc. Perkin trans I 1990, 159.
 ${ }^{4}$ Nikaido, T.; Takase, I. Jpn. Kokai Tokkyo Koho 1991.

[^1]: ${ }^{5}$ Following a procedure described previously (see references 6a-d of the text), we have recovered the catalyst quantitatively from the mixture resulting from a dynamic kinetic resolution of 2a.
 ${ }^{6}$ Naoshima, Y.; Maeda, J.; Munakata, Y.; Nishiyama, T.; Kamezawa, M.; Tachibana, H. J. Chem. Soc., Chem. Commun. 1990, 965.
 ${ }^{7}$ Carpentier, J.-F.; Mortreux, A. Tetrahedron: Asymmetry 1997, 8, 1083.

[^2]: ${ }^{8}$ Uang, B-J; Chang, J-W; Jang, D-P. PCT Int. Appl. 2001.
 ${ }^{9}$ Urban, F. J.; Moore, B. S. J. Heterocyclic Chem. 1992, 29, 431.
 ${ }^{10}$ Kalaritis, P.; Regenye, W. R.; Partridge, J. J.; Coffen, D. L. J. Org. Chem. 1990, 55, 812.
 ${ }^{11}$ Larcheveque, M., Petit, Y. Bull. Soc. Chim. Fr. 1989, 130.

[^3]: ${ }^{12}$ Shin, I.; Lee, M.; Lee, J.; Jung, M.; Lee, W.; Yoon, J. J. Org. Chem. 2000, 65, 7667.

