Supporting Information for

Total Synthesis of (-)-Tetrazomine. Determination of the Stereochemistry of Tetrazomine and the Synthesis and Biological Activity of Tetrazomine Analogs

Jack D. Scott and Robert M. Williams*
Contribution from the Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523
e-mail: rmw@chem.colostate.edu

Experimental Section

General. ${ }^{1} \mathrm{H}$-NMR and ${ }^{13} \mathrm{C}$-NMR were obtained on either a Varian Gemini (300 MHz) or Varian $(400 \mathrm{MHz})$ spectrometer. The high resolution polyacrylamide gel was visualized using a Molecular Dynamics Storm 840 phosphoimager.

1-[1-Azido-1-(2-phenyl methoxy)ethyl]-2-methoxy-benzene (6).To a solution of epoxide $\mathbf{5}$ $(22.0 \mathrm{~g}, 147 \mathrm{mmol})$ in 1:1 acetone $/ \mathrm{H}_{2} \mathrm{O}(400 \mathrm{~mL})$ was added sodium azide $(14.3 \mathrm{~g}, 221 \mathrm{mmol}, 1.5$ eq.) and this solution was heated to reflux for 3 h . The acetone was removed via rotary evaporation the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic phase was dried over MgSO_{4} and concentrated to afford a clear oil. This oil was taken up in THF (100 mL) and added via cannula to a suspension of $\mathrm{NaH}(6.68 \mathrm{~g}, 153 \mathrm{mmol}, 1.05 \mathrm{eq}, 55 \%$ dispersion in oil) in THF $(100 \mathrm{~mL})$ and this solution was allowed to stir at rt for 15 min . To this solution, benzyl bromide ($22.6 \mathrm{~mL}, 190 \mathrm{mmol}, 1.3 \mathrm{eq}$.) was added dropwise and postassium iodide (100 mg) was added in one portion and stirred for 2 h . The solution was poured onto ice and extracted with ethyl acetate. The organic layer was washed with brine, dried over MgSO_{4}, and concentrated. The crude oil was purified by flash chromatography ($10 \% \mathrm{EtOAc} / \mathrm{hex}$) to afford 13.18 g of $\mathbf{6}$ (94%) as a light yellow oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right.$ vs TMS) $\delta 3.68(1 \mathrm{H}, \mathrm{dd}, J=9.9,8.4 \mathrm{~Hz}) ; 3.78(1 \mathrm{H}, \mathrm{dd}, J$ $=9.9,3.6 \mathrm{~Hz}) ; 3.89(3 \mathrm{H}, \mathrm{s}) ; 4.66(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=12.0 \mathrm{~Hz}) ; 4.70(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=12.0 \mathrm{~Hz})$; $5.29(1 \mathrm{H}, \mathrm{dd}, J=8.7 .3 .6 \mathrm{~Hz}) ; 6.94(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}) ; 7.03(1 \mathrm{H}, \mathrm{t}, J=6.9 \mathrm{~Hz}) ; 7.31-7.42(7 \mathrm{H}$, m). ${ }^{13} \mathrm{C}-\mathrm{NMR}(75 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right) \delta 55.35,59.51,72.84,73.12,110.43,120.43,124.75,127.17$, $127.53,128.12,128.30,129.24,137.83,156.26$. IR (NaCl , neat) 2937, 2860, 2359, 2097, 1602, $1028 \mathrm{~cm}^{-1}$. HRMS (FAB) calc. for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{2}\left(\mathrm{MH}^{+}\right)$284.1399; found 284.1398.

1-[1-Amino-1-(2-phenylmethoxy)methyl]-2-methoxy-benzene (7): To an argon degassed solution of $6(11.78 \mathrm{~g}, 41.6 \mathrm{mmol})$ in $\mathrm{EtOH}(140 \mathrm{~mL})$ was added $5 \% \mathrm{Pd}$ on carbon ($4.42 \mathrm{~g}, 2.08$ $\mathrm{mmol}, 0.05 \mathrm{eq}$.). Hydrogen was bubbled through the mixture for 10 min and a hydrogen balloon was attached. The solution was stirred for 3 h at rt . The mixture was purged with argon and the solution was filtered through Celite. The crude oil was purified via flash chromagraphy (gradient $4-6 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to afford 9.30 g of $7(87 \%)$ as a clear oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right.$ vs TMS) $\delta 1.87$ ($2 \mathrm{H}, \mathrm{s}$, broad, $\mathrm{D}_{2} \mathrm{O}$ exch.); $3.53(1 \mathrm{H}, \mathrm{t}, J=9.3 \mathrm{~Hz}$); 3.76 ($1 \mathrm{H}, \mathrm{dd}, J=9.3,3.9 \mathrm{~Hz}$); $3.86(3 \mathrm{H}, \mathrm{s}) ; 4.63(3 \mathrm{H}, \mathrm{m}) ; 6.91(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}) ; 7.02(1 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}) ; 7.26-7.40(6 \mathrm{H}, \mathrm{m})$;
$7.49(1 \mathrm{H}, \mathrm{dd}, J=7.4,1.5 \mathrm{~Hz}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(75 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right) \delta 49.81,55.10,72.92,74.85,110.20$, 120.54, 127.20, 127.43, 127.58, 127.98, 128.24, 103.45, 138.38, 156.74. IR (NaCl, neat) 3378, 2857, 2360, 1600, 1049, $1028 \mathrm{~cm}^{-1}$. HRMS (FAB) calc. for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{NO}_{2}\left(\mathrm{MH}^{+}\right)$258.1494; found 258.1496.

1-[1-Amino-1-(2-phenylmethoxy)methyl]-2-methoxy-3-nitro-benzene (8): A solution of 7 $(16.02 \mathrm{~g}, 62.4 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(250 \mathrm{~mL})$ was cooled to $-20^{\circ} \mathrm{C}$. Potassium nitrate ($6.62 \mathrm{~g}, 65.5$ mmol, 1.05 eq.) was added followed by the slow addition of TFAA ($44 \mathrm{~mL}, 312 \mathrm{mmol}, 5 \mathrm{eq}$.). This solution was stirred at $-20^{\circ} \mathrm{C}$ for 48 h . Saturated NaHCO_{3} was added slowly to adjust to pH 7. The aqeous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x})$ and the combined organic layers were dried over MgSO_{4} and concetrated. The crude oil was purified via a short column ($25 \% \mathrm{EtOAc} / \mathrm{hex}$). The semi crude product was dissolved in 1:1 THF/EtOH (200 mL) and $2 \mathrm{M} \mathrm{LiOH}(100 \mathrm{~mL})$ was added. This solution was allowed to stir for 14 h . Acetic acid was slowly added until the pH was $7-8$. The solvent was reduced to approx $1 / 2$ original volume via rotary evaporation and the product was partitioned in $\mathrm{EtOAc} / \mathrm{H}_{2} \mathrm{O}$. The aqueous layer was extracted with EtOAc (3x). The combined organic layers were washed with brine, dried over MgSO_{4}, and concentrated. Purification via flash chromatography $\left(2.5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ afforded 10.5 g of $\mathbf{8}(56 \%)$ as a yellow oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right.$ vs TMS) $\delta 1.78(2 \mathrm{H}, \mathrm{s}$, broad); $3.49(1 \mathrm{H}, \mathrm{dd}, J=8.7,7.8$ $\mathrm{Hz}) ; 3.70(1 \mathrm{H}, \mathrm{dd}, J=8.7,3.9 \mathrm{~Hz}) ; 3.91(3 \mathrm{H}, \mathrm{s}) ; 4.60(2 \mathrm{H}, \mathrm{s}) ; 4.68(1 \mathrm{H}, \mathrm{dd}, J=7.9,3.9 \mathrm{~Hz}) ; 7.25$ $(1 \mathrm{H}, \mathrm{t}, J=8.1 \mathrm{~Hz}) ; 7.33-7.42(5 \mathrm{H}, \mathrm{m}) ; 7.77(1 \mathrm{H}, \mathrm{dd}, J=8.1,1.5 \mathrm{~Hz}) ; 7.83(1 \mathrm{H}, \mathrm{dd}, J=8.1,1.5$ $\mathrm{Hz}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(75 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right) \delta 48.75,62.82,73.03,74.67,123.74,124.04,127.44,127.53$, 128.19, 132.42. 137.69, 138.76, 143.38, 150.84. IR (NaCl , neat) 3378, 3312, 2916, 1528, 1355, 1089, $1027 \mathrm{~cm}^{-1}$. HRMS (FAB) calc. for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{4}\left(\mathrm{MH}^{+}\right) 303.1345$; found 303.1349 .

N-(2,2-diethoxyethyl)-2-methoxy-3-nitro- α-[(phenylmethoxy)methyl]-benzenemetnamine

(9). To a solution of $\mathbf{8}(6.00 \mathrm{~g}, 19.8 \mathrm{mmol})$ in acetonitrile (50 mL) was added bromoacetaldehyde diethyl acetal ($15.0 \mathrm{~mL}, 99.3 \mathrm{mmol}, 5 \mathrm{eq}$.) and potassium carbonate ($10.9 \mathrm{~g}, 79.2 \mathrm{mmol}, 4 \mathrm{eq}$.). The solution was heated to reflux for 5 days. The solvent was removed in vacuo and the crude mixture was partitioned between EtOAc and water. The aqueous layer was extracted with EtOAc (3x). The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The crude product was purified via flash chromatography ($25 \% \mathrm{EtOAc} / \mathrm{hex}$) to afford 6.11 g 9 (74%) as a yellow oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right.$ vs TMS) $\delta 1.22(3 \mathrm{H}, \mathrm{t}, J=6.9 \mathrm{~Hz}) ; 1.26(3 \mathrm{H}$, $\mathrm{t}, J=6.9 \mathrm{~Hz}) ; 2.27\left(1 \mathrm{H}, \mathrm{s}\right.$, broad, $\mathrm{D}_{2} \mathrm{O}$ exch.); $2.55(1 \mathrm{H}, \mathrm{dd}, J=11.7,4.8 \mathrm{~Hz}) ; 2.67(1 \mathrm{H}, \mathrm{dd}, J=$ $11.7,6.0 \mathrm{~Hz}) ; 3.47(1 \mathrm{H}, \mathrm{dd}, J=9.6,8.7 \mathrm{~Hz}) ; 3.56(2 \mathrm{H}, \mathrm{m}) ; 3.64-3.77(3 \mathrm{H}, \mathrm{m}) ; 3.90(3 \mathrm{H}, \mathrm{s}) ; 4.44$ $(1 \mathrm{H}, \mathrm{dd}, J=8.4,4.2 \mathrm{~Hz}) ; 4.58(2 \mathrm{H}, \mathrm{s}) ; 4.62(1 \mathrm{H}, \mathrm{dd}, J=6.3,4.8 \mathrm{~Hz}) ; 7.25(1 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz})$; $7.35(5 \mathrm{H}, \mathrm{m}) ; 7.77(1 \mathrm{H}, \mathrm{dd}, J=7.8,1.2 \mathrm{~Hz}) ; 7.87(1 \mathrm{H}, \mathrm{dd}, J=7.8,1.2 \mathrm{~Hz}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(75 \mathrm{MHz})$ $\left(\mathrm{CDCl}_{3}\right) \delta 15.39,49.89,55.60,62.18,62.23,63.07,73.12,73.76,101.91,124.02,124.32,127.54$, $127.65,128.31,133.20,137.06,137.83,143.72,151.79$. IR (NaCl , neat) $3340,2975,2688,1602$, 1530, 1356, $1064 \mathrm{~cm}^{-1}$. HRMS (FAB) calc. for $\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{6}\left(\mathrm{MH}^{+}\right) 419.2182$; found 419.2184.
\{[[2-Benzyloxy-1-(2-methoxy-3-nitro-phenyl)-ethyl]-(2,2-diethoxyethyl)-carbamoyl]methyl $\}$-methyl-carbamic acid $\mathbf{9 H}$-fluoren-9-ylmethyl ester (10). To a solution of N -Fmocsarcosine ($6.70 \mathrm{~g}, 21.4 \mathrm{mmol}, 1.25 \mathrm{eq}$.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ was added oxalyl chloride (2.0 mL , $23.0 \mathrm{mmol}, 1.35 \mathrm{eq}$.) and DMF ($159 \mu \mathrm{~L}, 2.1 \mathrm{mmol}, 0.12 \mathrm{eq}$.) and was stirred at rt for 1 h . Hexanes (100 mL) were added and the solution was filtered through a cotton plug and concentrated. A solution of amine $9(7.15 \mathrm{~g}, 17.1 \mathrm{mmol})$, pyridine ($4.15 \mathrm{~mL}, 51.3 \mathrm{mmol}, 3.0 \mathrm{eq}$.) and DMAP ($209 \mathrm{mg}, 1.71 \mathrm{mmol}, 0.10$ eq.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added to the acid chloride and the solution was allowed to stir at $0^{\circ} \mathrm{C}$ for 45 min . Dilute $\mathrm{HCl}(\mathrm{aq}$.) was added and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x})$. The combined organic layers were washed with sat NaHCO_{3} and water. The organic layer was dried over MgSO_{4} and concetrated. The
crude product was purified via flash chromatrography (30-40\% EtOAc/hex) to afford $10.0 \mathrm{~g} \mathbf{1 0}$ (82%) as a light yellow foam. ${ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz})\left(\mathrm{d}_{6}-\mathrm{DMSO}, 120^{\circ} \mathrm{C}\right) \delta 1.02(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz})$; $1.09(3 \mathrm{H}, \mathrm{t}, J=6.9 \mathrm{~Hz}) ; 2.82(3 \mathrm{H}, \mathrm{s}) ; 2.87(1 \mathrm{H}, \mathrm{s}) ; 3.37-3.60(6 \mathrm{H}, \mathrm{m}) ; 3.82(3 \mathrm{H}, \mathrm{s}) ; 4.05(2 \mathrm{H}$, ddd, $J=10.2,6.9,6.9 \mathrm{~Hz})$; 4.21-4.34 ($5 \mathrm{H}, \mathrm{m}$); $4.54(2 \mathrm{H}, \mathrm{s}) ; 5.62(1 \mathrm{H}, \mathrm{m}) ; 7.24-7.32$ ($8 \mathrm{H}, \mathrm{m}$); $7.40(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}) ; 7.63(2 \mathrm{H}, \mathrm{dd}, J=7.5,2.7 \mathrm{~Hz}) ; 7.84(4 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(75 \mathrm{MHz})\left(\mathrm{d}_{6}-\right.$ DMSO, $120^{\circ} \mathrm{C}$) $\delta 14.23,14.28,34.45,46.51,47.57,50.08,53.14,61.71,61.91,62.11,66.32$, $68.56,71.94,100.42,119.17,123.12,123.90,124.25,126.28,126.70,126.77,126.81,127.42$, 133.24, 137.51, 140.21, 143.39, 150.82, 155.45, 168.81. IR (NaCl, neat) 2959, 1735, 1716, 1697, 1153, $1079 \mathrm{~cm}^{-1}$. HRMS (FAB) calc. for $\mathrm{C}_{40} \mathrm{H}_{46} \mathrm{~N}_{3} \mathrm{O}_{9}\left(\mathrm{MH}^{+}\right) 712.3234$; found 712.3233.

1,2-dihydro-8-methoxy-2-[(methylamino)acetyl]-1-[(phenylmethoxy)methyl]-7-isoquinolinyl)-($9 H$-fluoren- 9 -ylmethoxycarbonyl)-carbamic acid methyl ester. (11): To an argon degassed solution of $\mathbf{1 0}(6.45 \mathrm{~g}, 9.07 \mathrm{mmol})$ in $1: 1 \mathrm{THF} / \mathrm{EtOH}(140 \mathrm{~mL})$ in a pressure vessel was added $\mathrm{PtO}_{2}(102 \mathrm{mg}, 0.45 \mathrm{mmol}, 0.05$ eq.) and the vessel was sealed and pressurized with $80 \mathrm{psi}_{2}$. The solution was stirred at rt for 16 h . The vessel was depressurized and the solution was purged with Ar. The catalyst was removed by filtering through celite and the solution was concentrated. The crude product was dissolved in dioxane (75 mL) to this solution was added $6 \mathrm{~N} \mathrm{HCl}\left(4.48 \mathrm{~mL}, 26.9 \mathrm{mmol}, 3 \mathrm{eq}\right.$.) and the solution was stirred in a oil bath at $90^{\circ} \mathrm{C}$ for 15 min . The solution was allowed to cool to room temp. Excess sat. NaHCO_{3} was added and the mixture was extracted with EtOAc (3x). The combined organic layers were washed with brine, dried over MgSO_{4}, and concentrated. The crude product was redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (50 mL) and cooled to $4^{\circ} \mathrm{C}$. Methyl cholorfomate ($2.07 \mathrm{~mL}, 26.9 \mathrm{mmol}, 3$ eq.) was added followed by pyridine ($724 \mu \mathrm{~L}, 9.0 \mathrm{mmol}, 1 \mathrm{eq}$.) and this solution was stirred at $4^{\circ} \mathrm{C}$ for 18 hr . Saturated NaHCO_{3} was added and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3x). The combined organic layers were dried over MgSO_{4} and concentrated. The crude product was purified via flash chromatography ($45 \% \mathrm{EtOAc} / \mathrm{hex}$) to afford 5.22 g 11 (89%) as a light yellow foam. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $(300 \mathrm{MHz})\left(\mathrm{d}_{6}-\mathrm{DMSO}, 120^{\circ} \mathrm{C}\right) \delta 2.83(3 \mathrm{H}, \mathrm{s}) ; 3.38(1 \mathrm{H}, \mathrm{dd}, J=10.2,3.4 \mathrm{~Hz}) ; 3.58(1 \mathrm{H}, \mathrm{dd}, J=$ $10.5,8.7 \mathrm{~Hz}) ; 3.71(3 \mathrm{H}, \mathrm{s}) ; 3.78(3 \mathrm{H}, \mathrm{s}) ; 4.29(5 \mathrm{H}, \mathrm{m}) ; 4.37(1 \mathrm{H}, 1 / 2 \mathrm{ABq} J=12.3 \mathrm{~Hz}) ; 4.48(1 \mathrm{H}$, $1 / 2 \mathrm{ABq}, 12.3 \mathrm{~Hz}) ; 6.03(1 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}) ; 6.87(1 \mathrm{H}, \mathrm{s}$, broad); $6.94(1 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}) ; 7.20-$ $7.38(10 \mathrm{H}, \mathrm{m}) ; 7.58(3 \mathrm{H}, \mathrm{m}) ; 7.80(2 \mathrm{H}, \mathrm{dd}, J=7.7,2.9 \mathrm{~Hz}) ; 8.23\left(1 \mathrm{H}, \mathrm{s}\right.$, broad). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{d}_{6}-\right.$ DMSO, $120^{\circ} \mathrm{C}$) $\delta 34.50,46.42,49.69,51.07,60.32,66.32,68.84,71.79,109.54,119.15,119.76$, $122.20,122.33,122.58,124.10,126.24,126.58,126.70,126.80,127.35,127.51,129.68,137.55$, 140.17, 143.31, 147.26, 153.80, 155.31, 166.25 Note: one carbon resonance not observed. HRMS (FAB) calcd for $\mathrm{C}_{38} \mathrm{H}_{38} \mathrm{~N}_{3} \mathrm{O}_{7}\left(\mathrm{MH}^{+}\right) 648.2710$; found 648.2698.

1,2-dihydro-8-methoxy-2-[(methylamino) acetyl]-1-[(phenylmethoxy)methyl]-7-isoquinolinyl)-carbamic acid methyl ester. (12): To a solution of 11 ($5.06 \mathrm{~g}, 7.80 \mathrm{mmol}$) in acetonitrile (50 mL) was added pyrrolidine (5 mL) and this was allowed to stir at rt for 1 h . The solution was concentrated and the crude product was purified via flash chromatography (3-7.5 \% $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to afford $3.12 \mathrm{~g} 12(94 \%)$ as a white foam. ${ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz})\left(\mathrm{d}_{6}\right.$-DMSO, $\left.120^{\circ} \mathrm{C}\right) \delta 2.37(3 \mathrm{H}, \mathrm{s}) ; 3.00\left(1 \mathrm{H}, \mathrm{s}\right.$, broad, $\mathrm{D}_{2} \mathrm{O}$ exchangeable); $3.39(1 \mathrm{H}, \mathrm{dd}, J=10.5,4.5 \mathrm{~Hz})$; $3.61(3 \mathrm{H}, \mathrm{m}) ; 3.68(3 \mathrm{H}, \mathrm{s}) ; 3.71(3 \mathrm{H}, \mathrm{s}) ; 4.44(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=12.0 \mathrm{~Hz}) ; 4.51(1 \mathrm{H}, \mathrm{ABq}, J=$ $12.0 \mathrm{~Hz}) ; 5.99(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}) ; 6.05(1 \mathrm{H}, \mathrm{s}$, broad); $6.89(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}) ; 6.98(1 \mathrm{H}, \mathrm{d}, J=$ $7.2 \mathrm{~Hz}) ; 7.24-7.35(5 \mathrm{H}, \mathrm{m}) ; 7.54(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}) ; 8.22(1 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(75 \mathrm{MHz})\left(\mathrm{d}_{6^{-}}\right.$ DMSO, $120^{\circ} \mathrm{C}$) $\delta 35.11,51.04,51.82,60.33,68.85,71.74,108.96,119.44,119.58,122.23$, $122.50,122.94,126.09,126.56,126.62,127.36,127.70,129.49,147.30,153.79$ (Note: one carbon resonance not observed) IR (NaCl, neat) 3421, 3328, 2945, 2860, 1729, 1671, 1628, 1526, $1229,1088 \mathrm{~cm}^{-1}$. HRMS (FAB) calc. for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{5}\left(\mathrm{MH}^{+}\right) 426.2029$; found 426.2025 .
[2-[8-methoxy-7-[(methoxycarbonyl)amino]-1-[(phenylmethoxy)methyl]2(1H)-
isoquinolinyl]-2-oxoethyl]methyl-carbamic acid 9H-fuoren-9-ylmethyl ester. (13): To a solution of $12(1.50 \mathrm{~g}, 3.53 \mathrm{mmol})$ in THF $(40 \mathrm{~mL})$ was added iodoacetonitrile $(281 \mu \mathrm{~L}, 3.88$ mmol, 1.1 eq.) and diisopropylethyl amine ($675 \mu \mathrm{~L}, 3.88 \mathrm{mmol}, 1.1 \mathrm{eq}$.$) . This solution was$ stirred at rt for 18 h . The solution was diluted with EtOAc and washed with sat. NaHCO_{3} and brine then dried over MgSO_{4} and concentrated. The crude product was purified via flash chromatography ($50-60 \% \mathrm{EtOAc} /$ hex) to afford $1.64 \mathrm{~g} 13(99 \%)$ as a white foam. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (300MHz) ($\left.\mathrm{d}_{6} \mathrm{DMSO}, 120^{\circ} \mathrm{C}\right) \delta 2.40(3 \mathrm{H}, \mathrm{s}) ; 3.40(2 \mathrm{H}, \mathrm{m}) ; 3.59(1 \mathrm{H}, \mathrm{t}, J=10.2 \mathrm{~Hz}) ; 3.71(3 \mathrm{H}, \mathrm{s})$ $3.74(3 \mathrm{H}, \mathrm{s}) ; 3.82(3 \mathrm{H}, \mathrm{s}) ; 4.45(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=12.0 \mathrm{~Hz}) ; 4.52(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=12.0 \mathrm{~Hz})$; $6.00(1 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}) ; 6.12(1 \mathrm{H}, \mathrm{s}$, broad $) ; 6.91(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}) ; 7.01(1 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}) ;$ 7.25-7.25 ($5 \mathrm{H}, \mathrm{m}$); $7.56(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}) ; 8.22(1 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(75 \mathrm{MHz})\left(\mathrm{d}_{6}-\mathrm{DMSO}, 120^{\circ} \mathrm{C}\right)$ $\delta 40.92,43.68,51.06,56.71,60.35,68.77,71.77,109.24,114.86,119.69,122.22,122.50,122.91$, $126.63,126.68,127.40,127.55,129.60,129.94,137.57,147.25,153.79,166.76 . \mathrm{IR}(\mathrm{NaCl}$, neat $)$ $2925,1733,1669,1524,1093,1047 \mathrm{~cm}^{-1}$. HRMS (FAB) calc. for $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{~N}_{4} \mathrm{O}_{5}\left(\mathrm{MH}^{+}\right) 465.2138$; found 265.2127 .
[1,3,4,6-tetrahydro-7-methoxy-2-methyl-4-oxo-6[(phenylmethoxy)methyl]-2-Hpyrazino[1,2-b]isoquinolin-8-yl]carbamic acid methyl ester (14): To a solution of $\mathbf{1 3}$ ($2.65 \mathrm{~g}, 5.71 \mathrm{mmol}$) in dichloroethane (220 mL) was added trifluoroacetic anhydride ($806 \mu \mathrm{~L}, 5.71 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) ,$ trifluoroacetic acid ($660 \mu \mathrm{~L}, 8.57 \mathrm{mmol}, 1.5 \mathrm{eq}$.$) , and Silver(I)trifluoroactate (1.32 \mathrm{~g}, 5.71 \mathrm{mmol}$, 1.05 eq.$)$ The mixture was heated to reflux for 45 min . The mixture was cooled to rt. Excess sat. NaHCO_{3} was added and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x})$. The combined organic layers were dried over MgSO_{4}, filtered and concentrated. The crude product was purified via flash chromatography ($3 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to afford $2.32 \mathrm{~g} \mathbf{1 4}(93 \%)$ as a yellow foam. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right.$ vs TMS $) \delta 2.42(3 \mathrm{H}, \mathrm{s}) ; 3.38(2 \mathrm{H}, \mathrm{m}) ; 3.50(2 \mathrm{H}, \mathrm{m}) ; 3.63(2 \mathrm{H}, \mathrm{dd}, \quad J=10.5$, $8.4 \mathrm{~Hz}) ; 3.83(3 \mathrm{H}, \mathrm{s}) ; 3.85(3 \mathrm{H}, \mathrm{s}) ; 4.45$, $(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=12.3 \mathrm{~Hz}), 4.67(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=$ $12.3 \mathrm{~Hz}) ; 5.70(1 \mathrm{H}, \mathrm{s}) ; 6.35(1 \mathrm{H}, \mathrm{dd}, J=8.1,3.4 \mathrm{~Hz}) ; 6.86(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}) ; 7.07(1 \mathrm{H}, \mathrm{s})$; $7.30(5 \mathrm{H}, \mathrm{m}), 7.98(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(75 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right) \delta 44.16,46.77,52.34,55.60$, $59.58,61.45,69.83,72.59,105.68,118.67,120.98,121.62,127.01,127.30,127.44,128.10$, $129.96,130.91,138.02,144.77,153.01,165.81$. IR(NaCl, neat) $3420,3318,2926,2854,1731$, 1682, 1645, 1526, 1234, 1204, $1096 \mathrm{~cm}^{-1}$. HRMS (FAB) calcd for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{5} 438.2029$; found 438.2024.
($5 \alpha, 8 \alpha, 10 \alpha, 11 \alpha)-5,7,8,9,10,11$--hexahydro-5-(benzyloxymethyl)-3-amino(carbamic acid methyl ester)-4-methoxy-13-methyl-7-oxo, 8,11-Iminoazepino[1,2-b]isoquinoline-10carboxylic acidtert-butyl ester (17).
$(5 \beta, 8 \alpha, 10 \alpha, 11 \alpha) \quad 5,7,8,9,10,11--h e x a h y d r o-5$-(benzyloxymethyl)-3-amino(carbamic acid methyl ester)-4-methoxy-13-methyl-7-oxo, 8,11-Iminoazepino[1,2-b]isoquinoline-10carboxylic acid tert-butyl ester (18). To a solution of $14(2.31 \mathrm{~g}, 5.3 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(75 \mathrm{~mL})$ was added NBS ($943 \mathrm{mg}, 5.3 \mathrm{mmol}, 1.0 \mathrm{eq}$.) and the solution was heated to reflux for 45 min (a dark green color formed). The solution was cooled to $0^{\circ} \mathrm{C}$ and t-butyl acrylate ($15.5 \mathrm{~mL}, 106$ mmol, 20 eq.) was added followed by the dropwise addition (over 10 min .) of a solution of $\mathrm{Et}_{3} \mathrm{~N}$ ($5.9 \mathrm{~mL}, 42 \mathrm{mmol}, 8 \mathrm{eq}$.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ (The solution turned dark blue). This solution was stirred at rt for 3 h . The solvent was then removed under reduced pressure. The crude material was taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with sat. NaHCO_{3}. The organic layer was dried over MgSO_{4} and the solvent was removed. The crude product was purified via flash chromatography ($50-60 \%$ $\mathrm{EtOAc} / \mathrm{hex}$) to afford 1.04 g 17 (35\%) as a white foam and recovered 211 mg 14 (9\%). The minor diastereomer had to be repurified via flash chromatography (gradient 1-1.5\% $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to afford 200 mg 18 (7\%).

17: ${ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right.$ vs. TMS $) \delta 1.51(9 \mathrm{H}, \mathrm{s}) ; 2.21(1 \mathrm{H}, \mathrm{dd}, J=13.2,9.9 \mathrm{~Hz}) ; 2.55$ $(3 \mathrm{H}, \mathrm{s}) ; 2.60(1 \mathrm{H}, \mathrm{m}) ; 2.83(1 \mathrm{H}, \mathrm{dd}, J=9.9,5.1 \mathrm{~Hz}) ; 3.52(1 \mathrm{H}, \mathrm{dd}, J=10.8,4.2 \mathrm{~Hz}) ; 3.65(1 \mathrm{H}$, dd, $J=10.8,7.5 \mathrm{~Hz}) ; 3.78(1 \mathrm{H}, \mathrm{m}) ; 3.80(6 \mathrm{H}, \mathrm{s}) ; 4.19(1 \mathrm{H}, \mathrm{s}) ; 4.42(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=12.0 \mathrm{~Hz}) ;$ $4.58(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=12.0 \mathrm{~Hz}) ; 5.69(1 \mathrm{H}, \mathrm{s}) ; 6.28(1 \mathrm{H}, \mathrm{dd}, J=7.2,4.2 \mathrm{~Hz}) ; 6.86(1 \mathrm{H}, \mathrm{d}, J=8.4$ $\mathrm{Hz}) ; 7.07(1 \mathrm{H}, \mathrm{s}) ; 7.21-7.33(5 \mathrm{H}, \mathrm{m}) ; 7.98(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(75 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right) \delta$ $28.05,32.48,34.92,47.48,51.26,52.39,61.41,64.76,65.92,70.40,72.39,81.16,103.48,118.83$, $120.64,121.34,127.21,127.25,127.67,128.05,129.80,135.34,137.83,144.93,153.63,170.50$, 171.98. HRMS (FAB) calcd. for $\mathrm{C}_{31} \mathrm{H}_{38} \mathrm{~N}_{3} \mathrm{O}_{7}(\mathrm{M}+\mathrm{H})$ 564.2710, found 564.2693.

18: ${ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right.$ vs. TMS) $\delta 1.52(9 \mathrm{H}, \mathrm{s}) ; 2.33(1 \mathrm{H}, \mathrm{dd}, J=12.9,9.9 \mathrm{~Hz}) ; 2.48$ $(3 \mathrm{H}, \mathrm{s}) ; 2.54(1 \mathrm{H}, \mathrm{m}) ; 3.09(1 \mathrm{H}, \mathrm{dd}, J=9.9,6.3 \mathrm{~Hz}) ; 3.44(1 \mathrm{H}$, dd, $J=10.5,3.9 \mathrm{~Hz}) ; 3.62(1 \mathrm{H}$, dd, $J=10.5,8.4 \mathrm{~Hz}) ; 3.68(1 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}) ; 3.84(3 \mathrm{H}, \mathrm{s}) ; 3.87(3 \mathrm{H}, \mathrm{s}) ; 3.98(1 \mathrm{H}, \mathrm{s}) ; 4.42(1 \mathrm{H}$, $1 / 2 \mathrm{ABq}, J=11.7 \mathrm{~Hz}) ; 4.65(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=11.7 \mathrm{~Hz}) ; 5.72(1 \mathrm{H}, \mathrm{s}) ; 6.26(1 \mathrm{H}, \mathrm{dd}, J=8.4,3.6$ $\mathrm{Hz}) ; 6.88(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}) ; 7.06(1 \mathrm{H}, \mathrm{s}) ; 7.31(5 \mathrm{H}, \mathrm{m}) ; 7.98(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(75$ $\mathrm{MHz})\left(\mathrm{CDCl}_{3}\right) \delta 28.07,34.55,35.91,45.86,48.21,52.46,61.58,65.31,67.13,70.31,73.00$, $81.20,105.24,118.91,121.53,121.97,126.57,127.67,127.96,128.31,130.20,133.75,137.77$, $144.78,153.75,169.10,172.42$. IR (NaCl , neat) $2949,1724,1687,1525,1230,1205,1096 \mathrm{~cm}^{-1}$. HRMS (FAB) calcd. for $\mathrm{C}_{31} \mathrm{H}_{38} \mathrm{~N}_{3} \mathrm{O}_{7}(\mathrm{M}+\mathrm{H}) 564.2710$, found 564.2699.
($5 \alpha, 8 \alpha, 10 \alpha, 11 \alpha, 11 \mathrm{a} \alpha$)-5,7,8,9,10,11,11a,12-octahydro-5-(hydroxymethyl)-3-amino(carbamic acid methyl ester)-4-methoxy-13-methyl-7-oxo 8,11-Iminoazepino[1,2-b]isoquinoline-10carboxylic acid tert-butyl ester (19). To an argon degassed solution of 17 ($930 \mathrm{mg}, 1.65 \mathrm{mmol}$) in absolute EtOH (40 mL) in a pressure vessel, Raney Nickel (W-2, Aldrich) (4 mL) was added and the vessel was pressurized to 100 psi with H_{2}. This mixture was stirred for 24 h . The pressure was released and the mixture was degassed with Ar. The catalyst was removed by filtering through celite. The solvent was removed in vacuo and the crude product was purified via flash chromatography ($5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to afford 710 mg 19 (90%) as a white foam. ${ }^{1} \mathrm{H}-\mathrm{NMR}(300$ $\mathrm{MHz})\left(\mathrm{CDCl}_{3}\right.$ vs TMS) $\delta 1.46(9 \mathrm{H}, \mathrm{s}) ; 2.12(1 \mathrm{H}, \mathrm{dd}, J=13.2,9.6 \mathrm{~Hz}) ; 2.51(3 \mathrm{H}, \mathrm{s}) ; 2.53(1 \mathrm{H}, \mathrm{m}) ;$ $2.83(2 \mathrm{H}, \mathrm{m}) ; 3.04(1 \mathrm{H}$, dd, $J=9.0,6.6 \mathrm{~Hz}) ; 3.15\left(1 \mathrm{H}, \mathrm{s}\right.$, broad, $\mathrm{D}_{2} \mathrm{O}$ exchangeable); $3.60(2 \mathrm{H}$, $\mathrm{m}) ; 3.72(1 \mathrm{H}, \mathrm{m}) ; 3.77(6 \mathrm{H}, \mathrm{s}) ; 3.90(1 \mathrm{H}, \mathrm{dd}, J=7.8,3.7 \mathrm{~Hz}) ; 4.40(1 \mathrm{H}, \mathrm{m}) ; 5.77(1 \mathrm{H}, \mathrm{dd}, J=6.9$, $3.3 \mathrm{~Hz}) ; 6.91(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 7.07(1 \mathrm{H}, \mathrm{s}) ; 7.90(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(75 \mathrm{MHz})$ $\left(\mathrm{CDCl}_{3}\right) \delta 27.79,29.03,31.90,36.72,42.07,49.28,49.55,52.16,60.67,63.83,66.06,66.17$, 80.91, 118.85, 124.52, 125.63, 127.90, 129.36, 145.18, 153.70, 171.21, 172.86. IR (NaCl , neat) $3431,2948,1727,1648,1066 \mathrm{~cm}^{-1}$. HRMS (FAB) calcd. for $\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{~N}_{3} \mathrm{O}_{7}\left(\mathrm{MH}^{+}\right) 476.2397$; found 476.2388 .
$(5 \alpha, 8 \alpha, 10 \alpha, 11 \alpha, 11 a \alpha)-5,7,8,9,10,11,11 a, 12-o c t a h y d r o-5-f o r m y l-3-a m i n o(c a r b a m i c ~ a c i d$ methyl ester)-4-methoxy-13-methyl-7-oxo, 8,11-Iminoazepino[1,2-b]isoquinoline-10carboxylic acid tert-butyl ester (20). To a solution of DMSO ($424 \mu \mathrm{~L}, 5.98 \mathrm{mmol}, 4$ eq.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(35 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added oxalyl chloride ($260 \mu \mathrm{~L}, 2.98 \mathrm{mmol}, 2 \mathrm{eq}$.). The solution was stirred at $-78^{\circ} \mathrm{C}$ for 10 min . To this solution 19 ($710 \mathrm{mg}, 1.49 \mathrm{mmol}, 1 \mathrm{eq}$.) in $20 \mathrm{~mL} \mathrm{CH} \mathrm{Cl}_{2}$ cooled to $-78^{\circ} \mathrm{C}$ was added via a cannula. The resulting solution was stirred at $-78^{\circ} \mathrm{C}$ for 1 h . Triethylamine ($2.07 \mathrm{~mL}, 14.9 \mathrm{mmol}, 10 \mathrm{eq}$.$) was added slowly and the solution was allowed to$ warm to rt . The solvent was removed in vacuo and the crude material was partitioned between $\mathrm{NaHCO}_{3}(\mathrm{aq})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude product was purified by flash chromatography ($70 \% \mathrm{EtOAc} /$ hexanes) to afford $694 \mathrm{mg} 20(98 \%)$ as a white foam. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right.$ vs TMS) $\delta 1.48(9 \mathrm{H}, \mathrm{s}) ; 2.18(1 \mathrm{H}, \mathrm{dd}, J=13.2,9.9 \mathrm{~Hz}) ; 2.57(1 \mathrm{H}, \mathrm{m}) ; 2.71$ $(3 \mathrm{H}, \mathrm{s}) ; 2.74(1 \mathrm{H}, \mathrm{m}) ; 2.87(1 \mathrm{H}, \mathrm{m}) ; 3.13(1 \mathrm{H}, \mathrm{dd}, J=9.0,6.3 \mathrm{~Hz}) ; 3.65(2 \mathrm{H}, \mathrm{m}) ; 3.81(3 \mathrm{H}, \mathrm{s}) ;$ $3.85(3 \mathrm{H}, \mathrm{s}) ; 4.12(1 \mathrm{H}, \mathrm{m}) ; 6.15(1 \mathrm{H}, \mathrm{s}) ; 6.98(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}) ; 7.10(1 \mathrm{H}, \mathrm{s}) ; 8.00(1 \mathrm{H}, \mathrm{d}, J=$ $8.4 \mathrm{~Hz}) ; 9.67(1 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(75 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right) \delta 27.93,29.28,32.93,36.10,42.52,50.85$,
$52.39,57.48,60.17,65.35,65.58,81.04,119.77,120.20,125.32,127.73,129.84,145.20,153.58$, $172.01,172.85,194.57$. IR (NaCl , neat) $2932,1737,1703,1472,1031 \mathrm{~cm}^{-1}$. HRMS (FAB) calcd. for $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{~N}_{3} \mathrm{O}_{7}\left(\mathrm{MH}^{+}\right) 474.2240$; found 474.2241 .
$(5 \alpha, 8 \beta, 10 \beta, 11 \beta, 11 a \beta)-5,7,8,9,10,11,11 a, 12$-octahydro-5-formyl-3-amino(carbamic acid methyl ester)-4-methoxy-13-methyl-7-oxo, 8,11-Iminoazepino[1,2-b]isoquinoline-10carboxylic acid tert-butyl ester (21). To a solution of 20 ($290 \mathrm{mg}, 0.613 \mathrm{mmol}$) in THF (20 mL) was added DBU ($84 \mu \mathrm{~L}, 0.613 \mathrm{mmol}, 1 \mathrm{eq}$.) and the solution was allowed to stir at room temperature for 24 h . Sat. NaHCO_{3} was added and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(3 x)$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude product was purified via flash chromatography (gradient 80/20/0 - 90/10/0 - 94/0/4 $\mathrm{EtOAc} / \mathrm{hexanes} / \mathrm{MeOH}$) to afford $160 \mathrm{mg} 21(55 \%)$ as a white foam along with starting aldehyde $109 \mathrm{mg} 20(38 \%) .{ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz})(\mathrm{CDCl} 3 \mathrm{vs} \mathrm{TMS}) \delta 1.49(9 \mathrm{H}, \mathrm{s}) ; 2.40(1 \mathrm{H}, \mathrm{dd}, J=12.9$, $9.9 \mathrm{~Hz}) ; 2.47(3 \mathrm{H}, \mathrm{s}) ; 2.64(2 \mathrm{H}, \mathrm{m}) ; 2.74(1 \mathrm{H}, \mathrm{m}) ; 3.39(1 \mathrm{H}, \mathrm{t}, J=8.1 \mathrm{~Hz}) ; 3.66(3 \mathrm{H}, \mathrm{m}) ; 3.81$ $(3 \mathrm{H}, \mathrm{s}) ; 3.83(3 \mathrm{H}, \mathrm{s}) ; 5.99(1 \mathrm{H}, \mathrm{s}) ; 6.98(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}) ; 7.09(1 \mathrm{H}, \mathrm{s}) ; 7.99(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz})$; $9.46(1 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(75 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right) \delta 27.97,31.35,33.43,37.93,42.25,52.47,55.60$, $58.30,61.06,66.66,66.72,81.00,119.65,120.06,124.49,130.36,131.53,145,96,153.72$, $170.30,173.22,192.70$. IR (NaCl , neat) $2977,2948,1729,1659,1525,1078 \mathrm{~cm}^{-1} . \mathrm{HRMS}$ (FAB) calcd. for $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{~N}_{3} \mathrm{O}_{7}\left(\mathrm{MH}^{+}\right) 474.2240$; found 474.2237.
($5 \alpha, 8 \beta, 10 \beta, 11 \beta, 11 a \beta)-5,7,8,9,10,11,11 a, 12$-octahydro-5-(hydroxymethyl)-3-amino(carbamic acid methyl ester)-4-methoxy-13-methyl-7-oxo, 8,11-Iminoazepino[1,2-b]isoquinoline-10carboxylic acid, tert-butyl ester (22). To a solution of 21 ($174 \mathrm{mg}, 0.368 \mathrm{mmol}$) in absolute $\mathrm{EtOH}(15 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added sodium borohydride $(56 \mathrm{mg}, 1.47 \mathrm{mmol}, 4 \mathrm{eq}$.). This mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h . Aqueous 1 M HCl was added slowly until there was no more H_{2} evolution. Excess sat. NaHCO_{3} was added and the ethanol was removed by rotary evaporation. The aqueous layer was extracted with EtOAc (3x) and the combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The crude product was purified via flash chromatography $\left(5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to afford $156 \mathrm{mg} 22(89 \%)$ as a white solid. TLC ${ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz})$ $\left(\mathrm{CDCl}_{3}\right.$ vs TMS) $\delta 1.44(9 \mathrm{H}, \mathrm{s}) ; 2.25(1 \mathrm{H}, \mathrm{dd}, J=12.9,9.3 \mathrm{~Hz}) ; 2.37(3 \mathrm{H}, \mathrm{s}) ; 2.55(2 \mathrm{H}, \mathrm{m}) ; 2.87$ $(1 \mathrm{H}, \mathrm{t}, J=12.9 \mathrm{~Hz}) ; 3.12(1 \mathrm{H}, \mathrm{dd}, J=9.0,6.9 \mathrm{~Hz}) ; 3.20(1 \mathrm{H}, \mathrm{t}, J=5.7 \mathrm{~Hz}) ; 3.50(3 \mathrm{H}, \mathrm{m}, 1 \mathrm{H}$ is $\mathrm{D}_{2} \mathrm{O}$ exchangeable); $3.70(3 \mathrm{H}, \mathrm{s}) ; 3.73(3 \mathrm{H}, \mathrm{s}) ; 3.79(2 \mathrm{H}, \mathrm{m}) ; 5.45(1 \mathrm{H}, \mathrm{dd}, J=5.1,3.6 \mathrm{~Hz}) ; 6.88$ $(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}) ; 7.15(1 \mathrm{H}, \mathrm{s}) ; 7.84(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(75 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right) \delta 27.92$, $31.63,33.64,37.93,42.20,52.08,52.31,56.68,61.10,66.90,67.39,67.45,81.00,118.77,123.68$, $126.39,130.14,131.65,145.57,153.79,172.27,173.05$. IR (NaCl , neat) $3388,2977,2948,1725$, 1638, 1527, $1064 \mathrm{~cm}^{-1}$. HRMS (FAB) calcd. for $\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{~N}_{3} \mathrm{O}_{7}\left(\mathrm{MH}^{+}\right) 476.2397$; found 476.2400.
$(5 \alpha, 8 \beta, 10 \beta, 11 \beta, 11 a \beta)-5,7,8,9,10,11,11 a, 12$-octahydro-5-(hydroxymethyl)-3-amino(carbamic acid methyl ester)-7-cyano-10-(hydroxy methyl)-4-methoxy-13-methyl-8,11-Iminoazepino[1,2-b]isoquinoline (23). To a solution of lithium aluminum hydride (1 M soln. in hexanes) ($160 \mu \mathrm{~L}, 0.16 \mathrm{mmol}, 8 \mathrm{eq}$.$) in THF (750 \mu \mathrm{~L})$ at $0^{\circ} \mathrm{C}$, ethyl acetate $(7.8 \mu \mathrm{~L}, 0.08 \mathrm{mmol}, 4$ eq.) was added. This solution was allowed to stir at $0^{\circ} \mathrm{C}$ for 2 hours. To this solution, a solution of $22(9.5 \mathrm{mg}, 0.020 \mathrm{mmol})$ in THF (1 mL) was added dropwise. This solution was allowed to stir at $0^{\circ} \mathrm{C}$ for 45 min . Acetic acid ($34 \mu \mathrm{~L}, 0.60 \mathrm{mmol}, 30 \mathrm{eq}$.) was added slowly followed by an aqueous solution of $\mathrm{KCN}(4.5 \mathrm{M}, 27 \mu \mathrm{~L}, 6 \mathrm{eq}$.$) . The resulting solution was stirred at room$ temperature for 16 hours. Excess sat. NaHCO_{3} was added and the solution was extracted with 1:1 $\mathrm{EtOAc} / \mathrm{THF}(3 \times 10 \mathrm{~mL})$. The combined organic layers were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed in vacuo and the crude material was purified by flash chromatography ($2.5-5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to yield $5.7 \mathrm{mg} 23(69 \%)$ as an oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz})$ $\left(\mathrm{CDCl}_{3}\right) \delta 1.93(3 \mathrm{H}, \mathrm{m}) ; 2.19(1 \mathrm{H}, \mathrm{s}$, broad); $2.46(1 \mathrm{H}, \mathrm{dd}, J=11.1,1.8 \mathrm{~Hz}) ; 2.51-2.56(2 \mathrm{H}, \mathrm{m}) ;$
$2.63(3 \mathrm{H}, \mathrm{s}) ; 3.01(1 \mathrm{H}, \mathrm{s}) ; 3.13(1 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}) ; 3.50-3.54(2 \mathrm{H}, \mathrm{m}) ; 3.60(1 \mathrm{H}, \mathrm{dd}, J=7.5,5.4$ $\mathrm{Hz}) ; 3.66-3.73(2 \mathrm{H}, \mathrm{m}) ; 3.78(3 \mathrm{H}, \mathrm{s}) ; 3.79(3 \mathrm{H}, \mathrm{s}) ; 3.93(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}) ; 4.17(1 \mathrm{H}, \mathrm{dd}, J=3.3$, $3.3 \mathrm{~Hz}) ; 6.87(1 \mathrm{H}, \mathrm{d}, J=6.3 \mathrm{~Hz}) ; 7.01(1 \mathrm{H}, \mathrm{s}) ; 7.87\left(1 \mathrm{H}, \mathrm{s}\right.$, broad). ${ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ $\delta 31.40,32.63,39.91,41.00,52.63,55.23,57.02,58.11,61.24,63.09,61.20,67.33,67.70$, 118.63, 118.75, 124.46, 126.91, 130.08, 131.68, 145.57, 154.18. IR (NaCl, neat) 3418, 2979, 2248, 1724, 1048. HRMS (FAB) calcd. for $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{~N}_{4} \mathrm{O}_{5}\left(\mathrm{MH}^{+}\right) 417.2138$; found 417.2135.
($5 \alpha, 8 \beta, 10 \beta, 11 \beta, 11 \mathrm{a} \beta$)-10-(triisopropylsilyloxymethyl) 5,7,8,9,10,11, 11a,12-octahydro-5-(triisopropylsilyloxymethyl)-3-amino(carbamic acid methyl ester)-7-cyano-4-methoxy-13-methyl-8,11-Iminoazepino[1,2-b]isoquinoline (24). Aminonitrile 23 ($28 \mathrm{mg}, 0.67 \mathrm{mmol}$), triisopropylsilyl choride ($58 \mu \mathrm{~L}, 0.269 \mathrm{mmol}, 4$ eq.), imidazole ($37 \mathrm{mg}, 0.536 \mathrm{mmol}, 8 \mathrm{eq}$.), and $\mathrm{Et}_{3} \mathrm{~N}(93 \mu \mathrm{~L}, 0.67 \mathrm{mmol}, 1.0$ eq.) were dissolved in a minimum amount of DMF (ca. $500 \mu \mathrm{~L}$). This solution was allowed to stir for 18 hours. The solution was partitioned in water and $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude product was purified by flash chromagraphy ($2.5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to yield $45 \mathrm{mg} 24(92 \%)$ as a clear oil. TLC (5% $\left.\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \mathrm{R}_{\mathrm{f}}=0.44$ (UV and PMA). ${ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right) \delta 0.95-1.20(42 \mathrm{H}, \mathrm{m})$; $1.71(1 \mathrm{H}, \mathrm{ddd}, J=12,6,6 \mathrm{~Hz}) ; 2.03(1 \mathrm{H}, \mathrm{m}) ; 2.40(1 \mathrm{H}, \mathrm{m}) ; 2.57(3 \mathrm{H}, \mathrm{s}) ; 2.61(2 \mathrm{H}, \mathrm{m}) ; 2.95(3 \mathrm{H}$, m); $3.36(1 \mathrm{H}, \mathrm{m}) ; 3.43(1 \mathrm{H}, \mathrm{dd}, J=9.0,9.0 \mathrm{~Hz}) ; 3.60(1 \mathrm{H}, \mathrm{dd}, J=9.6,9.6 \mathrm{~Hz}) ; 3.72(1 \mathrm{H}, \mathrm{m})$; $3.78(3 \mathrm{H}, \mathrm{s}) ; 3.80(3 \mathrm{H}, \mathrm{s}) ; 4.15(1 \mathrm{H}, \mathrm{dd}, J=8.4,2.1 \mathrm{~Hz}) ; 4.33(1 \mathrm{H}, \mathrm{d}, J=2.1 \mathrm{~Hz}) ; 6.85(1 \mathrm{H}, \mathrm{d}, J$ $=8.0 \mathrm{~Hz}) ; 7.02(1 \mathrm{H}, \mathrm{s}) ; 7.88(1 \mathrm{H}, \mathrm{dd}, J=8.0 \mathrm{~Hz}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(75 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right) \delta 11.79,11.94$, 17.94, 18.04, 29.77, 32.64, 41.19, 42.07, 52.32, 57.22, 58.76, 59.09, 60.95, 63.42, 67.29, 67.49, 70.94, 117.76, 119.40, 124.03, 126.44, 129.68, 132.06, 145.28, 153.92. IR (NaCl ,neat) 2939, $2865,1727,1498,1461,1095,1064 \mathrm{~cm}^{-1}$. HRMS (FAB) calcd. For $\mathrm{C}_{39} \mathrm{H}_{69} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{Si}_{2}\left(\mathrm{MH}^{+}\right)$ 729.4807; found 729.4805.
($5 \alpha, 8 \beta, 10 \beta, 11 \beta, 11 \mathrm{a} \beta$)-10-(triisopropylsilyloxymethyl) 5,7,8,9,10,11, 11a,12-octahydro-5-(triisopropylsilyloxymethyl)-3-amino-7-cyano-4-methoxy-13-methyl-8,11-Iminoazepino[1,2-
b]isoquinoline (25). To a solution of $24(12 \mathrm{mg}, 0.17 \mathrm{mmol})$ in EtOH (2 mL) was added 2M $\mathrm{LiOH}(200 \mu \mathrm{~L})$ and the solution was heated to reflux for 5.5 h . The solvent was removed in vacuo and the crude product was partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and water. The pH was adjusted to 7 with dilute HCl and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed. The crude product was purified via flash chromatograhy ($2.5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to afford $7 \mathrm{mg} 25(63 \%)$ as a clear oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}(300$ $\mathrm{MHz})\left(\mathrm{CDCl}_{3}\right) \delta 1.11(42 \mathrm{H}, \mathrm{m}) ; 1.61(1 \mathrm{H}, \mathrm{s}) ; 1.76(1 \mathrm{H}, \mathrm{dd}, J=12.0,5.7 \mathrm{~Hz}) ; 2.08(1 \mathrm{H}, \mathrm{dd}, J=$ 12.3, 9.0 Hz$) ; 2.37(1 \mathrm{H}, \mathrm{dd}, J=14.4,2.4 \mathrm{~Hz}) ; 2.61(3 \mathrm{H}, \mathrm{s}) ; 2.64(1 \mathrm{H}, \mathrm{m}) ; 3.07(2 \mathrm{H}, \mathrm{m}) ; 3.40$ $(1 \mathrm{H}, \mathrm{d}, J=6.3 \mathrm{~Hz}) ; 3.47(1 \mathrm{H}, \mathrm{t}, J=9.3 \mathrm{~Hz}) ; 3.71(4 \mathrm{H}, \mathrm{m}) ; 3.84(3 \mathrm{H}, \mathrm{s}) ; 3.92(1 \mathrm{H}, \mathrm{dd}, J=9.3,2.4$ $\mathrm{Hz}) ; 4.20(1 \mathrm{H}, \mathrm{dd}, J=9.0,2.4 \mathrm{~Hz}) ; 4.41(1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}) ; 6.63(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}) ; 6.71(1 \mathrm{H}$, $\mathrm{d}, J=8.1 \mathrm{~Hz}$) ${ }^{13} \mathrm{C}-\mathrm{NMR}(75 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right) \delta 12.04,12.17,18.20,18.26,30.03,32.64,41.33$, $42.33,57.49,59.00,59.34,59.56,63.69,67.59,67.79,71.52,115.06,119.79,123.96,127.06$, 127.41, 138.14, 144.20. IR (NaCl ,neat) 3437, 3368, 2942, 2865, 1734, 1498, 1461, 1097, 1064 cm^{-1}. HRMS (FAB) calcd. For $\mathrm{C}_{37} \mathrm{H}_{67} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{Si}_{2}\left(\mathrm{MH}^{+}\right)$671.4752; found 671.4769.
(2S,3R)- 3-tert-butoxy-1-(9H-fluoren-9-ylmethyl)ester-2-piperidinecarboxylic acid allyl ester [(+)-27]. To a slurry of (-)-26 ($145 \mathrm{mg}, 0.36 \mathrm{mmol}$) and Amberlyst $15(120 \mathrm{mg})$ in hexanes (8 mL) in an open tube was bubbled isobutene for 10 min . The tube was sealed and the mixture stirred for 48 h . The mixture was filtered through Celite and the filtrate was washed with hexanes. The solvent was removed in vacuo and the crude oil was purified via flash chromatography ($10 \% \mathrm{EtOAc} / \mathrm{hex}$) to afford $142 \mathrm{mg}(+)-27(86 \%)$ as a clear oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (300 $\mathrm{MHz})\left(\mathrm{d}_{6}\right.$-DMSO, $120^{\circ} \mathrm{C}$) $\delta 1.17(9 \mathrm{H}, \mathrm{s}) ; 1.45(1 \mathrm{H}, \mathrm{m}) ; 1.67(3 \mathrm{H}, \mathrm{m}) ; 3.01(1 \mathrm{H}, \mathrm{s}$, broad); 3.21 ($1 \mathrm{H}, \mathrm{ddd}, J=12.6,3.3,3.3 \mathrm{~Hz}$); $3.71(2 \mathrm{H}, \mathrm{m}) ; 4.25(1 \mathrm{H}, \mathrm{t}, J=6.3 \mathrm{~Hz}) ; 4.44(2 \mathrm{H}, \mathrm{d}, J=6.0 \mathrm{~Hz})$;
$4.55(2 \mathrm{H}, \mathrm{m}) ; 4.73(1 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}) ; 5.19(1 \mathrm{H}, \mathrm{m}) ; 5.90(1 \mathrm{H}, \mathrm{m}) ; 7.32(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}) ; 7.41$ $(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}) ; 7.62(2 \mathrm{H}, \mathrm{dd}, J=7.5,3.3 \mathrm{~Hz}) ; 7.84(2 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{d}_{6}\right.$-DMSO, $\left.120^{\circ} \mathrm{C}\right) \delta 21.80,27.17,27.31,46.47,57.72,63.69,66.24,66.37,73.26,116.71,119.22,124.02$, $126.21,126.24,126.82,131.85,140.27,143.24,154.23,168.75 . \operatorname{IR}(\mathrm{NaCl}$, neat) 2972, 1734, 1701, 1265, 1210, $1049 \mathrm{~cm}^{-1}$. HRMS (FAB) calc. for $\mathrm{C}_{28} \mathrm{H}_{34} \mathrm{NO}_{5}\left(\mathrm{MH}^{+}\right) 464.2437$; found 464.2437. $[\alpha]_{\mathrm{D}}{ }^{20}=+5.5\left(\mathrm{c}=0.55 \mathrm{CHCl}_{3}\right)$.
(2S,3R)- 3-tert-butoxy-1-(9H-fluoren-9-ylmethyl)ester-2-piperidinecarboxylic acid [(+)-28]. To a solution of (+)-27 ($142 \mathrm{mg}, 0.32 \mathrm{mmol}$) and palladium tetrakis triphenyl phosphine (29 mg , 0.025 mmol , 0.08 eq .) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL}$) was added hydroxymethanesulfinic acid sodium salt (53 $\mathrm{mg}, 0.35 \mathrm{mmol}, 1.1 \mathrm{eq}$.) in $\mathrm{MeOH}(4 \mathrm{~mL})$ and the solution was stirred for 3 h . Hydrochloric acid (1 M) was added to adjust to pH 2 and the mixture was extracted with EtOAc (3x). The combined organic layers were washed with brine and dried over MgSO_{4} and concentrated. The crude product was purified via flash chromatography (gradient 1-2.5\% $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to afford $123 \mathrm{mg}(+)-28(95 \%)$ as a white foam. ${ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz})\left(\mathrm{d}_{6}\right.$-DMSO, $\left.120^{\circ} \mathrm{C}\right) \delta 1.21(9 \mathrm{H}, \mathrm{s})$; $1.44(1 \mathrm{H}, \mathrm{m}) ; 1.66(3 \mathrm{H}, \mathrm{m}) ; 3.17(1 \mathrm{H}, \mathrm{ddd}, J=12.3,3.3,3.3 \mathrm{~Hz}) ; 3.72(2 \mathrm{H}, \mathrm{m}) ; 4.26(1 \mathrm{H}, \mathrm{t}, J=$ $6.3 \mathrm{~Hz}) ; 4.42(2 \mathrm{H}, \mathrm{d}, J=5.7 \mathrm{~Hz}) ; 4.68(1 \mathrm{H}, \mathrm{d}, J=6.3 \mathrm{~Hz}) ; 7.32(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}) ; 7.41(2 \mathrm{H}, \mathrm{t}, J$ $=7.5 \mathrm{~Hz}) ; 7.63(2 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}) ; 7.84(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}) ; 11.6\left(1 \mathrm{H}, \mathrm{s}\right.$, broad). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{d}_{6}-\right.$ DMSO, $120^{\circ} \mathrm{C}$) $\delta 21.98,27.22,27.57,46.48,57.7,66.29,66.61,73.69,98.84,119.22,124.15$, 126.26, 126.85, 140.25, 143.27, 154.35, 169.82. IR (NaCl , neat) 3066, 2971, 1768, 1701, 1420, 1150, $1059 \mathrm{~cm}^{-1}$. HRMS (FAB) calc. for $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{NO}_{5}\left(\mathrm{MH}^{+}\right) 424.2124$; found 424.2121. $[\alpha]_{\mathrm{D}}{ }^{20}=$ $+19.1\left(\mathrm{c}=0.23 \mathrm{CHCl}_{3}\right)$.
(5S,7R,8S,10R,11R,11aS)-5,7,8,9,10,11,11a,12-octahydro-5-(triisopropylsilyloxymethyl)-3amino [($\mathbf{2}^{\prime} \mathrm{S}, \mathbf{3}^{\prime} \mathrm{R}$)-piperidine-2'-carboxy-3'- tert-butyloxy]-7-cyano-4-methoxy--10-(triisopropylsilyloxymethyl)-13-methyl-8,11-Iminoazepino[1,2-b]isoquinoline [(+)-30] and (5R,7S,8R,10S,11S,11aR)-5,7,8,9,10,11,11a,12-octahydro-5-(triisopropylsilyloxymethyl)-3amino [(2'S, $\mathbf{3}^{\prime}$ R)-piperidine-2'-carboxy-3'-tert-butyloxy]-7-cyano--10-(triisopropylsilyloxymethyl)-4-methoxy-13-methyl-8,11-Iminoazepino[1,2-b]isoquinoline [(-)-31]. To a solution of (+)-28 ($44 \mathrm{mg}, 1.04 \mathrm{mmol}, 1.8 \mathrm{eq}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ was added oxalyl chloride ($10 \mu \mathrm{~L}, 0.116 \mathrm{mmol}, 2.0 \mathrm{eq}$) and DMF ($0.8 \mu \mathrm{~L}, 0.01 \mathrm{mmol}, 0.18 \mathrm{eq}$) and the resultant solution was stirred at rt for 1 h . Hexanes (4 mL) were added and the solution was filtered through a cotton plug and the solvent removed in vacuo. A solution of aniline $\mathbf{2 5}(39 \mathrm{mg}, 0.058$ mmol, 1 eq) and DMAP ($7.1 \mathrm{mg}, 0.058 \mathrm{mmol}, 1 \mathrm{eq}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added to the acid chloride and the solution was stirred at rt for 24 h . The solution was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with $\mathrm{NaHCO}_{3}(\mathrm{aq})$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed. The crude product was redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ and $\mathrm{DBU}(10 \mu \mathrm{~L}, 0.075 \mathrm{mmol}$, 1.3 eq) was added and the solution was stirred at rt for 15 h . The solution was washed with NaHCO_{3} and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed and the crude product was purified via flash chromatography (gradient 2.5-4.0\% $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to afford $17 \mathrm{mg}(+)-\mathbf{3 0}(36 \%)$ and $17 \mathrm{mg}(-)-\mathbf{3 1}(36 \%)$.
$(+)-30:{ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right) \delta 1.07(42 \mathrm{H}, \mathrm{m}) ; 1.25(3 \mathrm{H}, \mathrm{s}) ; 1.28(6 \mathrm{H}, \mathrm{s}) ; 1.63(2 \mathrm{H}, \mathrm{m}) ;$ $1.71(3 \mathrm{H}, \mathrm{m}) ; 1.80(1 \mathrm{H}, \mathrm{m}) ; 2.01(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}) ; 2.04(1 \mathrm{H}, \mathrm{d}, J=9.2 \mathrm{~Hz}) ; 2.42(1 \mathrm{H}, \mathrm{d}, J=$ $12.8 \mathrm{~Hz}) ; 2.57(3 \mathrm{H}, \mathrm{s}) ; 2.62(1 \mathrm{H}, \mathrm{m}) ; 2.74(2 \mathrm{H}, \mathrm{m}) ; 3.04(2 \mathrm{H}, \mathrm{m}) ; 3.37(1 \mathrm{H}, \mathrm{d}$, broad, $J=6.4 \mathrm{~Hz})$; $3.43(1 \mathrm{H}, \mathrm{t}, J=8.8 \mathrm{~Hz}) ; 3.57(1 \mathrm{H}, \mathrm{d}, J=4.0 \mathrm{~Hz}) ; 3.61(1 \mathrm{H}, \mathrm{t}, J=9.6 \mathrm{~Hz}) ; 3.73(1 \mathrm{H}, \mathrm{dd}, J=9.6$, $5.8 \mathrm{~Hz}) ; 3.80(3 \mathrm{H}, \mathrm{s}) ; 3.86(1 \mathrm{H}, \mathrm{dd}, J=9.2,1.5 \mathrm{~Hz}) ; 4.16(2 \mathrm{H}, \mathrm{m}) ; 4.37(1 \mathrm{H}, \mathrm{d}, J=2.8 \mathrm{~Hz}) ; 6.85$ $(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}) ; 8.30(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}) ; 10.06\left(1 \mathrm{H}, \mathrm{s}\right.$, broad). ${ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ $\delta 11.78,11.95,17.98,18.05,23.96,28.17,29.75,31.24,32.68,41.25,42.12,42.69,57.28,58.81$, $59.20,61.10,62.24,63.49,67.35,67.54,68.64,71.15,75.67,119.13,119.39,123.81,126.41$,
130.36, 132.42, 146.08, 170.24. IR (NaCl, neat) 2928, 2864, 1733, 1652, 1559, $1049 \mathrm{~cm}^{-1}$. HRMS (FAB) calcd. For $\mathrm{C}_{47} \mathrm{H}_{84} \mathrm{~N}_{5} \mathrm{O}_{5} \mathrm{Si}_{2}\left(\mathrm{MH}^{+}\right)$854.6011; found 854.6006. $[\alpha]_{\mathrm{D}}{ }^{25}=+26.7 \quad(\mathrm{c}=0.08$ CHCl_{3}).
(-)-31: ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right) \delta 1.02-1.13(42 \mathrm{H}, \mathrm{m}) ; 1.26(9 \mathrm{H}, \mathrm{s}) ; 1.58-1.80(7 \mathrm{H}, \mathrm{m}) ; 2.03$ ($1 \mathrm{H}, \mathrm{dd}, J=10.0,9.2 \mathrm{~Hz}$); $2.42(1 \mathrm{H}, \mathrm{dd}, J=15.2,2.0 \mathrm{~Hz}) ; 2.57(3 \mathrm{H}, \mathrm{s}) ; 2.62(2 \mathrm{H}, \mathrm{m}) ; 2.84(1 \mathrm{H}$, $\mathrm{m}) ; 3.03(2 \mathrm{H}, \mathrm{m}) ; 3.36(1 \mathrm{H}, \mathrm{d}$, broad, $J=7.6 \mathrm{~Hz}) ; 3.44(1 \mathrm{H}, \mathrm{t}, J=8.8 \mathrm{~Hz}) ; 3.61(2 \mathrm{H}, \mathrm{t}, J=9.6$ $\mathrm{Hz}) ; 3.72(1 \mathrm{H}, \mathrm{dd}, J=9.2,6.9 \mathrm{~Hz}) ; 3.80(3 \mathrm{H}, \mathrm{s}) ; 3.85(1 \mathrm{H}, \mathrm{dd}, J=9.2,2.4 \mathrm{~Hz}) ; 4.17(1 \mathrm{H}, \mathrm{dd}, J=$ $6.4,2.0 \mathrm{~Hz}) ; 4.28(1 \mathrm{H}, \mathrm{m}) ; 4.35(1 \mathrm{H}, \mathrm{d}, J=2.8 \mathrm{~Hz}) ; 6.85(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}) ; 8.06(1 \mathrm{H}, \mathrm{d}, J=8.8$ Hz) $9.51\left(1 \mathrm{H}, \mathrm{s}\right.$, broad). ${ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right) \delta 11.80,11.95,17.98,18.05,22.92$, 28.52, 29.68, 29.82, 31.33, 32.75, 41.13, 42.09, 57.10, 58.73, 59.10, 60.73, 63.43, 67.26, 67.31, $67.52,71.08,74.69,74.88,119.45,120.29,123.78,126.45,129.57,132.94,146.69,169.97$. IR (NaCl , neat) 2928, 2865, 1733, 1653, 1457, $1047 \mathrm{~cm}^{-1}$. HRMS (FAB) calcd. For $\mathrm{C}_{47} \mathrm{H}_{84} \mathrm{~N}_{5} \mathrm{O}_{5} \mathrm{Si}_{2}$ $\left(\mathrm{MH}^{+}\right) 854.6011$; found 854.6003. $[\alpha]_{\mathrm{D}}{ }^{25}=-8.2\left(\mathrm{c}=0.11 \mathrm{CHCl}_{3}\right)$.
(5S,7R,8S,10R,11R,11aS)-5,7,8,9,10,11,11a,12-octahydro-5-(triisopropylsilyloxymethyl)-3amino [(2'S, 3'R)-piperidine-2'-carboxy-3'-hydroxy]-7-cyano--10-(triisopropylsilyloxymethyl)-4-methoxy-13-methyl-8,11-Iminoazepino[1,2-b]isoquinoline
$[(+)-32)$. To a mixture of $(+)-30(9 \mathrm{mg}, 0.011 \mathrm{mmol})$ and 1,3 -dimethoxybenzene $(50 \mu \mathrm{~L})$ at $0^{\circ} \mathrm{C}$ was added TFA (1 mL) and this solution was stirred at $4^{\circ} \mathrm{C}$ for 26 h . The solvent was removed in vacuo and the crude product was partitioned in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and NaHCO_{3}. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3x). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed. The crude product was purified via flash chromatography (gradient 1-2.5$\left.5.0 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to afford $4.5 \mathrm{mg}(+)-32(53 \%)$ as a clear oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ $\delta 1.02-1.10(42 \mathrm{H}, \mathrm{m}) ; 1.58(2 \mathrm{H}, \mathrm{m}) ; 1.71(2 \mathrm{H}, \mathrm{m}) ; 1.83(2 \mathrm{H}, \mathrm{m}) ; 1.91(1 \mathrm{H}, \mathrm{m}) ; 2.03(1 \mathrm{H}, \mathrm{dd}, J=$ 13.2, 8.8 Hz); $2.41(1 \mathrm{H}, \mathrm{d}, J=12.4 \mathrm{~Hz}) ; 2.57(3 \mathrm{H}, \mathrm{s}) ; 2.63(2 \mathrm{H}, \mathrm{m}) ; 2.83(1 \mathrm{H}, \mathrm{m}) ; 3.04(2 \mathrm{H}, \mathrm{m})$; $3.36(1 \mathrm{H}, \mathrm{m}) ; 3.43(1 \mathrm{H}, \mathrm{t}, J=8.8 \mathrm{~Hz}) ; 3.60(2 \mathrm{H}, \mathrm{t}, J=10.0 \mathrm{~Hz}) ; 3.71(1 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}) ; 3.73$ $(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}) ; 3.82(3 \mathrm{H}, \mathrm{s}) ; 3.83(1 \mathrm{H}, \mathrm{d}, J=4.4 \mathrm{~Hz}) ; 4.16(1 \mathrm{H}, \mathrm{d}, J=6.0 \mathrm{~Hz}) ; 4.32(1 \mathrm{H}, \mathrm{d}, J$ $=2.0 \mathrm{~Hz}) ; 4.36(1 \mathrm{H}, \mathrm{m}) ; 6.85(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}) ; 8.12(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}) ; 9.39(1 \mathrm{H}, \mathrm{s}$, broad)). ${ }^{13} \mathrm{C}$-NMR (100 MHz) $\left(\mathrm{CDCl}_{3}\right) \delta 11.83,11.96,17.99,18.07,22.13,29.79,30.72,32.84,41.21$, $42.09,45.38,57.25,58.73,59.10,61.14,62.64,63.46,65.84,67.31,67.52,70.74,119.34,119.45$, $123.92,126.64,129.29,133.44,146.17,170.30$. IR (NaCl , neat) $3220,3066,2944,1716,1528$, 1167, $1044 \mathrm{~cm}^{-1}$. HRMS (FAB) calcd. For $\mathrm{C}_{43} \mathrm{H}_{76} \mathrm{~N}_{5} \mathrm{O}_{5} \mathrm{Si}_{2}\left(\mathrm{MH}^{+}\right)$798.5385; found 798.5373. $[\alpha]_{D}^{25}=+31.0\left(c=0.33 \mathrm{CHCl}_{3}\right)$.

2a'-cyanotetrazominol (33): To a solution of $\mathbf{3 2}(6.2 \mathrm{mg}, 0.0078 \mathrm{mmol})$ in $\mathrm{MeCN}(1 \mathrm{~mL})$ was added $5 \% \mathrm{HF}(\mathrm{aq}.) / \mathrm{MeCN}(150 \mu \mathrm{~L})$ and the solution was stirred for 4 h . Excess sat. NaHCO_{3} was added and the mixture was lyophillized. The crude product was taken up in $\mathrm{dd}_{\mathrm{H}_{2} \mathrm{O}}$ and filtered through a Nalgene syringe filter ($0.2 \mu \mathrm{~m}$, nylon). The solution was then purified using a HP-20 column at $4^{\circ} \mathrm{C}\left(100: 0-10: 90 \mathrm{H}_{2} \mathrm{O}: \mathrm{MeOH}\right)$. The MeOH was removed from the organic fractions by rotary evaporation and the remaining water was removed by lyophillization to afford 3 mg 33 (79%) as a white solid. TLC ($9: 90: 1 \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ conc. $\mathrm{NH}_{4} \mathrm{OH}$) $\mathrm{R}_{\mathrm{f}}=0.31$ (UV and PMA). ${ }^{1} \mathrm{H}$ NMR (400 MHz) $\left(\mathrm{D}_{2} \mathrm{O}\right) \delta 1.52(1 \mathrm{H}, \mathrm{m}) ; 1.81(2 \mathrm{H}, \mathrm{m}) ; 1.96(2 \mathrm{H}, \mathrm{m}) ; 2.05(1 \mathrm{H}, \mathrm{dd}, J=14.0,8.4$ $\mathrm{Hz}) ; 2.44(3 \mathrm{H}, \mathrm{s}) ; 2.60-2.75(4 \mathrm{H}, \mathrm{m}) ; 2.88(1 \mathrm{H}, \mathrm{d}, J=10.4 \mathrm{~Hz}) ; 3.07(1 \mathrm{H}, \mathrm{s}) ; 3.11(1 \mathrm{H}, \mathrm{d}, J=$ $14.0 \mathrm{~Hz}) ; 3.59-3.70(6 \mathrm{H}, \mathrm{m}) ; 3.78(3 \mathrm{H}, \mathrm{s}) ; 4.17(1 \mathrm{H}, \mathrm{t}, J=1.2 \mathrm{~Hz}) ; 4.26(1 \mathrm{H}, \mathrm{d}, J=1.2 \mathrm{~Hz}) ; 4.33$ ($1 \mathrm{H}, \mathrm{s}$, broad); $7.05\left(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}\right.$); $7.50(1 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz})\left(\mathrm{D}_{2} \mathrm{O}\right.$ vs. $\left.\mathrm{d}_{4}-\mathrm{MeOH}\right) \delta 20.15,30.82,31.19,33.25,42.28,45.12,48.63,58.93,58.99,59.04,62.30,63.07$, $64.74,66.49,67.05,67.20,68.75,120.29,125.24,125.41,128.35,128.59,137.75,15070$, 172.49. HRMS (FAB) calcd. for $\mathrm{C}_{25} \mathrm{H}_{36} \mathrm{~N}_{5} \mathrm{O}_{5}\left(\mathrm{MH}^{+}\right)$486.2716; found 486.2722. IR (KBr) 3430, 2933, 1738, 1731, 1574, 1384, $1136 \mathrm{~cm}^{-1}$.

Tetrazomine (1). To a solution of $\mathbf{3 3}(1.5 \mathrm{mg}, 0.003 \mathrm{mmol})$ in $4: 1 \mathrm{MeOH} / \mathrm{ddH}_{2} \mathrm{O}(500 \mu \mathrm{~L})$ was added TFA ($1.2 \mu \mathrm{~L}, 0.015 \mathrm{mmol}, 5 \mathrm{eq}$.) followed by silver trifluoroacetate ($2.1 \mathrm{mg}, 0.009 \mathrm{mmol}$, 3 eq). This solution was allowed to stir at rt for 4 h . Excess Dowex (Cl^{-}) ion exchange resin was added and the mixture was stirred for 15 min . The mixture was filtered though a cotton plug and the resin was washed with $\mathrm{ddH}_{2} \mathrm{O}$. The filtrate was then lyophilized to afford crude tetrazomine that was purified via HPLC (Waters Resolve C_{18}, isocratic 90/10/0.1 $\mathrm{H}_{2} \mathrm{O} / \mathrm{MeOH} / \mathrm{TFA}$) to afford 1.0 mg tetrazomine $\cdot 2 \mathrm{HCl}(61 \%)$. ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz})\left(\mathrm{D}_{2} \mathrm{O}\right) \delta 1.84(1 \mathrm{H}, \mathrm{d}, J=12.4 \mathrm{~Hz}) ; 1.93$ $(1 \mathrm{H}, \mathrm{t}, J=9.6 \mathrm{~Hz}) ; 2.09(3 \mathrm{H}, \mathrm{m}) ; 2.42(1 \mathrm{H}, \mathrm{dd}, J=14.8,10.4 \mathrm{~Hz}) ; 2.75(2 \mathrm{H}, \mathrm{m}) ; 2.99(3 \mathrm{H}, \mathrm{s}) ;$ $3.04(1 \mathrm{H}, \mathrm{m}) ; 3.15(1 \mathrm{H}$, ddd, $J=12.4,12.4,2.8 \mathrm{~Hz}) ; 3.52(1 \mathrm{H}, \mathrm{s}$, broad); 3.55 ($1 \mathrm{H}, \mathrm{s}$, broad); 3.69 $(1 \mathrm{H}, \mathrm{m}) ; 3.75(2 \mathrm{H}, \mathrm{m}) ; 3.82(3 \mathrm{H}, \mathrm{s}) ; 3.83(1 \mathrm{H}, \mathrm{m}) ; 3.90(1 \mathrm{H}, \mathrm{s}) ; 3.99(1 \mathrm{H}, \mathrm{m}) ; 4.34(1 \mathrm{H}, \mathrm{d}, J=1.6$ $\mathrm{Hz}) ; 4.50(1 \mathrm{H}, \mathrm{t}, J=4 \mathrm{~Hz}) ; 4.73(1 \mathrm{H}, \mathrm{s}$, broad); $5.01(1 \mathrm{H}, \mathrm{d}, J=2.8 \mathrm{~Hz}) ; 7.10(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz})$; $7.51(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz})$. HRMS (FAB) calcd. For $\mathrm{C}_{24} \mathrm{H}_{35} \mathrm{~N}_{4} \mathrm{O}_{5}\left(\mathrm{MH}^{+}\right)$459.2607; found 459.2612. $[\alpha]_{D}^{25}=-57(c=0.04 \mathrm{MeOH}) ;[\alpha]_{D}^{25}($ natural tetrazomine $)=-59(c=0.1 \mathrm{MeOH})$ Lit. $[\alpha]_{\mathrm{D}}{ }^{25}=-62$ (c = $1.0, \mathrm{MeOH}$). The synthetic material was identical to the natural product ${ }^{21}$ by ${ }^{1} \mathrm{H} \mathrm{nmr},{ }^{13} \mathrm{C}$ nmr , IR and mobility on TLC.

(5S,7R,8S,10R,11R,11aS)-8,11-5,7,8,9,10,11,11a,12-octahydro-5-

(triisopropylsilyloxymethyl)-3-amino [($\left.2^{\prime} S, 3^{\prime} \mathbf{R}\right)$-piperidine-2'-carboxy-3'-hydroxy]-7-cyano-4-methoxy-13-methyl--10-(triisopropylsilyloxymethyl)Iminoazepino[1,2-b]isoquinoline [(+)34]. To a mixture of $\mathbf{3 1}(8 \mathrm{mg}, 0.0094 \mathrm{mmol})$ and 1,3 -dimethoxybenzene $(50 \mu \mathrm{~L})$ at $0^{\circ} \mathrm{C}$ was added TFA (1 mL) and this solution was stirred at $4^{\circ} \mathrm{C}$ for 26 h . The solvent was removed in vacuo and the crude product was partitioned in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and NaHCO_{3}. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3x). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed. The crude product was purified via flash chromatography (gradient 1-2.5$\left.5.0 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to afford $4 \mathrm{mg} 34(54 \%)$ as a clear oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right) \delta$ $0.85(3 \mathrm{H}, \mathrm{m}) ; 1.07(35 \mathrm{H}, \mathrm{m}) ; 1.25(4 \mathrm{H}, \mathrm{m}) ; 1.56(4 \mathrm{H}, \mathrm{m}) ; 1.70(2 \mathrm{H}, \mathrm{m}) ; 1.85(2 \mathrm{H}, \mathrm{m}) ; 2.03(1 \mathrm{H}$, dd, $J=14.0,8.4 \mathrm{~Hz}) ; 2.42(1 \mathrm{H}, \mathrm{d}, J=14.0 \mathrm{~Hz}) ; 2.57(3 \mathrm{H}, \mathrm{s}) ; 2.63(2 \mathrm{H}, \mathrm{m}) ; 2.79(1 \mathrm{H}, \mathrm{m}) ; 3.02$ $(2 \mathrm{H}, \mathrm{m}) ; 3.38(1 \mathrm{H}, \mathrm{m}) ; 3.43(1 \mathrm{H}, \mathrm{t}, J=8.4 \mathrm{~Hz}) ; 3.60(2 \mathrm{H}, \mathrm{t}, J=8.8 \mathrm{~Hz}) ; 3.73(2 \mathrm{H}, \mathrm{m}) ; 3.82(3 \mathrm{H}$, s); 4.17 ($1 \mathrm{H}, \mathrm{dd}, J=7.6,0.8 \mathrm{~Hz}$); $4.29(1 \mathrm{H}, \mathrm{m}) ; 4.33(1 \mathrm{H}, \mathrm{d}, J=1.2 \mathrm{~Hz}) ; 6.86(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz})$; $8.14(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}) ; 9.38\left(1 \mathrm{H}, \mathrm{s}\right.$, broad). ${ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right) \delta 11.81,11.95$, $17.98,18.05,29.68,29.72,30.45,32.83,41.24,42.09,45.01,57.28,58.72,59.11,61.22,63.48$, $65.95,67.32,67.51,68.00,70.76,119.20,119.54,123.93,126.67,129.22,146.13,151.61$, 161.80. IR (NaCl, neat) $3220,3066,2944,1716,1528,1167,1044 \mathrm{~cm}^{-1}$. HRMS (FAB) calcd. for $\mathrm{C}_{43} \mathrm{H}_{76} \mathrm{~N}_{5} \mathrm{O}_{5} \mathrm{Si}_{2}\left(\mathrm{MH}^{+}\right) 798.5385$; found 798.5375. $[\alpha]_{\mathrm{D}}{ }^{25}=-21.9\left(\mathrm{c}=0.29 \mathrm{CHCl}_{3}\right)$.

2, $\mathbf{3} \mathbf{3}$-epi-ent cyanotetrazominol (35): To a solution of $\mathbf{3 4}$ ($3.5 \mathrm{mg}, 0.0044 \mathrm{mmol}$) in MeCN (500 $\mu \mathrm{L}$) was added $5 \% \mathrm{HF}(\mathrm{aq}.) / \mathrm{MeCN}(100 \mu \mathrm{~L})$ and the solution was stirred for 3 h . Excess sat. NaHCO_{3} was added and the mixture was lyophillized. The crude product was taken up in dd $\mathrm{H}_{2} \mathrm{O}$ and filtered through a Nalgene syringe filter $(0.2 \mu \mathrm{~m}$, nylon). The solution was then purified using a HP-20 column (100:0-10:90 $\left.\mathrm{H}_{2} \mathrm{O}: \mathrm{MeOH}\right)$. The MeOH was removed from the organic fractions by rotary evaporation and the remaining water was removed by lyophillization to afford $1.5 \mathrm{mg} 35(70 \%)$ as a white solid. TLC ($9: 90: 1 \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ conc. $\mathrm{NH}_{4} \mathrm{OH}$) $\mathrm{R}_{\mathrm{f}}=0.25$ (UV and PMA). ${ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz})\left(\mathrm{D}_{2} \mathrm{O}\right) \delta 1.49(2 \mathrm{H}, \mathrm{m}) ; 1.78-2.07(5 \mathrm{H}, \mathrm{m}) ; 2.42(3 \mathrm{H}, \mathrm{s}) ; 2.57-2.75$ $(4 \mathrm{H}, \mathrm{m}) ; 2.86(1 \mathrm{H}, \mathrm{d}, J=11.1 \mathrm{~Hz}) ; 3.04(1 \mathrm{H}, \mathrm{s}) ; 3.09(1 \mathrm{H}, \mathrm{d}, J=14.1 \mathrm{~Hz}) ; 3.59-3.71(4 \mathrm{H}, \mathrm{m})$; $3.75(3 \mathrm{H}, \mathrm{s}) ; 4.14(1 \mathrm{H}, \mathrm{t}, J=3.0 \mathrm{~Hz}) ; 4.23(1 \mathrm{H}, \mathrm{d}, J=1.2 \mathrm{~Hz}) ; 4.29(1 \mathrm{H}, \mathrm{m}) ; 7.03(1 \mathrm{H}, \mathrm{d}, J=8.1$ $\mathrm{Hz}) ; 7.42(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz})\left(\mathrm{D}_{2} \mathrm{O}\right.$ vs. $\left.\mathrm{d}_{4}-\mathrm{MeOH}\right) \delta 20.0,30.8,31.1,33.2$, 41.9, 42.3, 48.61, 60.0, 62.3, 63.1, 64.7, 66.7, 67.0, 67.2, 67.8, 68.7, 69.0, 119.8, 125.2, 125.7, 126.8, 128.1, 137.9, 174.0 HRMS (FAB) calcd. for $\mathrm{C}_{25} \mathrm{H}_{36} \mathrm{~N}_{5} \mathrm{O}_{5}\left(\mathrm{MH}^{+}\right)$486.2716; found 486.2739. $[\alpha]_{D}^{25}=-22.0(\mathrm{c}=0.09 \mathrm{MeOH})$. IR (KBr) 3428, 2934, 1667, 1537, 1455, $1134 \mathrm{~cm}^{-1}$.
ent-2', $\mathbf{3}^{\prime}$-Tetrazomine (36): To a solution of $\mathbf{3 5}(1 \mathrm{mg}, 0.0021 \mathrm{mmol})$ in $4: 1 \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}(250$ $\mu \mathrm{L}$) was added TFA ($1 \mu \mathrm{~L}, 0.011 \mathrm{mmol}, 5 \mathrm{eq}$) followed by silver trifluoroacetate ($1.4 \mathrm{mg}, 0.0062$ $\mathrm{mmol}, 3$ eq.). The mixture was stirred at room temperature for 4 h . Excess Dowex (Cl^{-}) was added and the mixture was stirred at rt for 15 min . The mixture was filtered through a cotton plug followed by filtration through a nylon $(0.2 \mu \mathrm{M})$ syringe filter. The product was then lyophilized to afford $1 \mathrm{mg}(90 \%) 36$ as a white foam. ${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz})\left(\mathrm{D}_{2} \mathrm{O}\right) \delta 1.75(1 \mathrm{H}, \mathrm{d}, J=13.0 \mathrm{~Hz})$; $1.95(1 \mathrm{H}, \mathrm{m}) ; 2.01(3 \mathrm{H}, \mathrm{m}) ; 2.35(1 \mathrm{H}, \mathrm{m}) 2.63-2.74(2 \mathrm{H}, \mathrm{m}) ; 2.91(3 \mathrm{H}, \mathrm{s}) ; 3.08(1 \mathrm{H}, \mathrm{dd}, J=3.5$, $14 \mathrm{~Hz}) ; 3.45(2 \mathrm{H}, \mathrm{m}) ; 3.59(1 \mathrm{H}, \mathrm{d}, J=5 \mathrm{~Hz}) ; 3.61(1 \mathrm{H}, \mathrm{d}, J=4.5 \mathrm{~Hz}) ; 3.65-3.68(3 \mathrm{H}, \mathrm{m}) ; 3.72$ ($3 \mathrm{H}, \mathrm{s}$); $3.75(1 \mathrm{H}, \mathrm{m}) ; 3.92(1 \mathrm{H}, \mathrm{m}) ; 4.27(1 \mathrm{H}, \mathrm{s}) ; 4.42(1 \mathrm{H}, \mathrm{t}, J=3.5 \mathrm{~Hz}) ; 4.61(1 \mathrm{H}, \mathrm{s}) ; 4.94(1 \mathrm{H}$, $\mathrm{d}, J=2.5 \mathrm{~Hz}) ; 7.02(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}) ; 7.35(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz})$ HRMS (FAB) calcd. For $\mathrm{C}_{24} \mathrm{H}_{35} \mathrm{~N}_{4} \mathrm{O}_{5}\left(\mathrm{MH}^{+}\right) 459.2607$; found 459.2621
(5S,7R,8S,10R,11R,11aS)-5,7,8,9,10,11,11a,12-octahydro-5-(triisopropylsilyloxymethyl)-3amino (2'S-piperidine-2'-carboxy-)-7-cyano--10-(triisopropylsilyloxymethyl) 8,11-Iminoazepino[1,2-b]isoquinoline-4-methoxy-13-methyl- (38). (5R,7S,8R,10S,11S,11aR)-5,7,8,9,10,11,11a,12-octahydro-5-(triisopropylsilyloxymethyl)-3-amino-(2'S-piperidine-2'-carboxy-)7-cyano--10-(triisopropylsilyloxymethyl)-4-methoxy-13-methyl-8,11-Iminoazepino[1,2-b]isoquinoline (40). To a solution of Fmoc-pipecolic acid (10 $\mathrm{mg}, 0.029 \mathrm{mmol}, 1.5$ eq.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added oxalyl chloride ($3 \mu \mathrm{~L}, 0.033 \mathrm{mmol}, 1.7$ eq.) followed by DMF ($0.25 \mu \mathrm{~L}, 0.0029 \mathrm{mmol}, 0.15 \mathrm{eq})$. This solution was stirred at rt for 1 h . Hexanes (1 mL) was added and the solution was filtered through a cotton plug and the solvent was removed. Aniline $\mathbf{2 5}(13 \mathrm{mg}, 0.0194 \mathrm{mmol}, 1 \mathrm{eq})$ was dissolved in a minimum amount of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and added to the acid chloride with DMAP ($2.4 \mathrm{mg}, 0.0194 \mathrm{mmol}, 1 \mathrm{eq}$). This solution was stirred at rt for 18 h . The solution was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with NaHCO_{3}, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed. The crude product was purfied by preparative TLC ($20 \% \mathrm{EtOAc} / \mathrm{hex}$) to afford 6 mg of each diasteromer. Each diastereomer was seperately dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ and $\mathrm{DBU}(0.7 \mu \mathrm{~L}, 0.0050 \mathrm{mmol}, 1 \mathrm{eq})$ was added and the solution was stirred at rt for 1 h . The solvent was removed and the crude product was purified via column chromatography ($1-5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$; extracted with THF) to afford $3.8 \mathrm{mg} 38(30 \%)$ as a clear oil and 3.5 mg 40 (28%) as a clear oil.
38: ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right) \delta 1.04(42 \mathrm{H}, \mathrm{m}) ; 1.48-1.71(5 \mathrm{H}, \mathrm{m}) ; 1.80(1 \mathrm{H}, \mathrm{m}) ; 2.03(2 \mathrm{H}$, $\mathrm{m}) ; 2.38(1 \mathrm{H}, \mathrm{d}, J=14.4 \mathrm{~Hz}) ; 2.54(3 \mathrm{H}, \mathrm{s}) ; 2.59(2 \mathrm{H}, \mathrm{m}) ; 2.87(1 \mathrm{H}, \mathrm{t}, J=6.4 \mathrm{~Hz}) ; 3.01(2 \mathrm{H}, \mathrm{m})$; $3.24(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}) ; 3.38(1 \mathrm{H}, \mathrm{d}, J=4.0 \mathrm{~Hz}) ; 3.43(1 \mathrm{H}, \mathrm{d}, J=12.0 \mathrm{~Hz}) ; 3.58(1 \mathrm{H}, \mathrm{t}, J=9.6$ $\mathrm{Hz}) ; 3.67(1 \mathrm{H}, \mathrm{m}) ; 3.73(1 \mathrm{H}, \mathrm{d}, J=10.0 \mathrm{~Hz}) ; 3.79(1 \mathrm{H}, \mathrm{s}$, broad); $3.82(3 \mathrm{H}, \mathrm{s}) ; 4.14(1 \mathrm{H}, \mathrm{d}, J=$ $8.8 \mathrm{~Hz}) ; 4.30(1 \mathrm{H}, \mathrm{s}) ; 6.81(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}) ; 8.06(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}) ; 8.99\left(1 \mathrm{H}, \mathrm{s}\right.$, broad). ${ }^{13} \mathrm{C}-$ NMR (100 MHz) $\left(\mathrm{CDCl}_{3}\right) \delta 11.83,11.96,17.99,18.07,23.09,28.89,29.70,29.78,32.84,41.24$, $42.11,45.01,57.27,58.72,59.11,59.81,61.33,63.49,67.32,67.52,70.82,119.42,119.74$, 123.90 , 126.59, 129.34, 133.43, 146.39, 159.36. HRMS (FAB) calcd. for $\mathrm{C}_{43} \mathrm{H}_{76} \mathrm{~N}_{5} \mathrm{O}_{4} \mathrm{Si}_{2}\left(\mathrm{MH}^{+}\right)$ 782.5436; found 782.5399. $[\alpha]_{D}^{25}=-31.9\left(\mathrm{c}=0.32, \mathrm{CHCl}_{3}\right)$.

40: ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right) \delta 1.06(42 \mathrm{H}, \mathrm{m}) ; 1.25(2 \mathrm{H}, \mathrm{s}) ; 1.58-1.85(7 \mathrm{H}, \mathrm{m}) ; 2.03(1 \mathrm{H}, \mathrm{dd}$, $J=12.4,9.2 \mathrm{~Hz}) ; 2.36(1 \mathrm{H}, \mathrm{d}, J=9.2 \mathrm{~Hz}) ; 2.41(1 \mathrm{H}, \mathrm{d}, J=15.2 \mathrm{~Hz}) ; 2.57(3 \mathrm{H}, \mathrm{s}) ; 2.63(2 \mathrm{H}, \mathrm{m}) ;$ $3.02(3 \mathrm{H}, \mathrm{m}) ; 3.38(1 \mathrm{H}, \mathrm{s}$, broad); $3.43(1 \mathrm{H}, \mathrm{t}, J=8.8 \mathrm{~Hz}) ; 3.60(1 \mathrm{H}, \mathrm{t}, J=9.2 \mathrm{~Hz}) ; 3.72(1 \mathrm{H}, \mathrm{dd}$, $J=9.2,6.8 \mathrm{~Hz}) ; 3.81(3 \mathrm{H}, \mathrm{s}) ; 3.84(1 \mathrm{H}, \mathrm{m}) ; 4.17(1 \mathrm{H}, \mathrm{dd}, J=6.4,1.2 \mathrm{~Hz}) ; 4.33(1 \mathrm{H}, \mathrm{d}, J=1.2$ $\mathrm{Hz}) ; 6.83(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}) ; 8.03(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}) ; 8.85\left(1 \mathrm{H}, \mathrm{s}\right.$, broad). ${ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz})$ $\left(\mathrm{CDCl}_{3}\right) \delta 11.81,11.95,17.99,18.05,22.65,28.10,29.60,29.76,32.84,41.25,42.09,44.64$, $57.30,58.68,59.14,59.22,61.16,63.48,67.31,67.51,70.85,119.43,120.38,123.87,124.29$, 126.64, 133.92, 146.72, 159.16. HRMS (FAB) calcd. for $\mathrm{C}_{43} \mathrm{H}_{76} \mathrm{~N}_{5} \mathrm{O}_{4} \mathrm{Si}_{2}\left(\mathrm{MH}^{+}\right) 782.5436$; found 782.5443. $[\alpha]_{\mathrm{D}}{ }^{25}=+14.4\left(\mathrm{c}=0.29 \mathrm{CHCl}_{3}\right)$.

3-deoxy-2'cyanotetrazominol (39): To a solution of 38 ($4 \mathrm{mg}, 0.0051 \mathrm{mmol}$) in MeCN (500 $\mu \mathrm{L}$) was added $5 \% \mathrm{HF} / \mathrm{MeCN}(100 \mu \mathrm{~L})$. This solution was stirred at rt for 4 h . Excess sat NaHCO_{3} was added and the solution was lyophillized. The crude product was taken up in $\mathrm{ddH}_{2} \mathrm{O}$ and filtered through a cotton plug followed by a syringe filter (nylon $2 \mu \mathrm{M}$). The product was purified using a HP20 column at $4^{\circ} \mathrm{C}\left(1: 0\right.$ to $\left.10: 90 \mathrm{H}_{2} \mathrm{O}: \mathrm{MeOH}\right)$ and the solvent was removed by rotary evaporation followed by lyohpillization to afford $1.8 \mathrm{mg}(75 \%) \mathbf{3 9}$ as a white foam. ${ }^{1} \mathrm{H}$ NMR (300 MHz) ($\left.\mathrm{D}_{2} \mathrm{O}\right) \delta 1.49(2 \mathrm{H}, \mathrm{m}) ; 1.78-2.07(5 \mathrm{H}, \mathrm{m}) ; 2.42(3 \mathrm{H}, \mathrm{s}) ; 2.57-2.75(4 \mathrm{H}, \mathrm{m}) ; 2.86$ ($1 \mathrm{H}, \mathrm{d}, J=11.1 \mathrm{~Hz}$); $3.04(1 \mathrm{H}, \mathrm{s}) ; 3.09(1 \mathrm{H}, \mathrm{d}, J=14.1 \mathrm{~Hz}) ; 3.59-3.71(4 \mathrm{H}, \mathrm{m}) ; 3.75(3 \mathrm{H}, \mathrm{s}) ;$ $4.14(1 \mathrm{H}, \mathrm{t}, J=3.0 \mathrm{~Hz}) ; 4.23(1 \mathrm{H}, \mathrm{d}, J=1.2 \mathrm{~Hz}) ; 4.29(1 \mathrm{H}, \mathrm{m}) ; 7.03(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}) ; 7.42$ $(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz})\left(\mathrm{D}_{2} \mathrm{O}\right.$ vs. $\left.\mathrm{d}_{4}-\mathrm{MeOH}\right) \delta 24.08,24.95,30.07,30.80$, $33.28,41.84,42.28,45.75,58.91,58.98,59.26,60.32,62.23,64.72,66.43,67.18,68.73,120.27$, $125.26,128.05,128.69,135.50,138.31,151.38,153.38$. HRMS (FAB) calcd. for $\mathrm{C}_{25} \mathrm{H}_{36} \mathrm{~N}_{5} \mathrm{O}_{4}$ $\left(\mathrm{MH}^{+}\right) 470.2756$; found 470.2767. $[\alpha]_{\mathrm{D}}{ }^{25}=-17.4(\mathrm{c}=0.17 \mathrm{MeOH}) . \operatorname{IR}(\mathrm{KBr}) 3550,2942,1698$, 1537, 1454, $1043 \mathrm{~cm}^{-1}$.

3-deoxy-2-epi-ent-2'-cyanotetrazominol (41): To a solution of 40 ($4 \mathrm{mg}, 0.0051 \mathrm{mmol}$) in $\mathrm{MeCN}(500 \mu \mathrm{~L})$ was added $5 \% \mathrm{HF} / \mathrm{MeCN}(100 \mu \mathrm{~L})$. This solution was stirred at rt for 4 h . Excess sat NaHCO_{3} was added and the solution was lyophillized. The crude product was taken up in $\mathrm{ddH}_{2} \mathrm{O}$ and filtered through a cotton plug followed by a syringe filter (nylon $2 \mu \mathrm{M}$). The product was desalted using a HP20 column ($1: 0$ to $10: 90 \mathrm{H}_{2} \mathrm{O}: \mathrm{MeOH}$) and the solvent was removed by rotary evaporation follwed by lyohpillization to afford $1.8 \mathrm{mg}(75 \%) 41$ as a white foam. ${ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz})\left(\mathrm{D}_{2} \mathrm{O}\right) \delta 1.67(2 \mathrm{H}, \mathrm{m}) ; 1.88-2.04(4 \mathrm{H}, \mathrm{m}) ; 2.36(1 \mathrm{H}, \mathrm{m}) ; 2.42(3 \mathrm{H}, \mathrm{s}) ;$ $2.63(3 \mathrm{H}, \mathrm{m}) ; 2.87(1 \mathrm{H}, \mathrm{d}, J=10.2 \mathrm{~Hz}) ; 3.05(2 \mathrm{H}, \mathrm{s}$, broad); $3.49(1 \mathrm{H}, \mathrm{d}, J=10.5 \mathrm{~Hz}) ; 3.55(4 \mathrm{H}$, $\mathrm{m}) ; 3.73(3 \mathrm{H}, \mathrm{s}) ; 4.06-4.16(2 \mathrm{H}, \mathrm{m}) ; 4.24(1 \mathrm{H}, \mathrm{d}, J=1.2 \mathrm{~Hz}) ; 7.04(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}) ; 7.38(1 \mathrm{H}$, $\mathrm{d}, J=7.8 \mathrm{~Hz}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz})\left(\mathrm{D}_{2} \mathrm{O}\right.$ vs. $\left.\mathrm{d}_{4}-\mathrm{MeOH}\right) \delta 24.13,25.04,30.20,30.81,33.30$, $41.86,42.29,45.72,58.95,59.04,60.29,60.39,62.32,64.74,66.49,67.19,68.75,120.26,125.36$, 126.54, 128.06, 128.76, 138.53, 151.67, 154.00. HRMS (FAB) calcd. for $\mathrm{C}_{25} \mathrm{H}_{36} \mathrm{~N}_{5} \mathrm{O}_{4}\left(\mathrm{MH}^{+}\right)$ 470.2767; found 470.2765. IR (KBr) 3407, 2939, 1687, 1538, 1460, $1030 \mathrm{~cm}^{-1} .[\alpha]_{\mathrm{D}}{ }^{25}=+17.0(\mathrm{c}$ $=0.1 \mathrm{MeOH})$.

3-Deoxy-tetrazomine (42): To a solution of $39(0.7 \mathrm{mg}, 0.0015 \mathrm{mmol})$ in $4: 1 \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}(250$ $\mu \mathrm{L})$ was added TFA $(0.6 \mu \mathrm{~L}, 0.0075 \mathrm{mmol}, 5 \mathrm{eq})$ followed by $\mathrm{AgOCOCF}_{3}(1 \mathrm{mg}, 0.0045 \mathrm{mmol}, 3$ $\mathrm{eq})$ and the solution was allowed to stir at rt for 4 h . Excess Dowex $\left(\mathrm{Cl}^{-}\right)$in $\mathrm{ddH}_{2} \mathrm{O}(1 \mathrm{~mL})$ was added and the slurry was stirred for 15 min . The reaction mixture was filtered through a cotton plug followed by filtration through a syringe filter (Gelman GHP $0.45 \mu \mathrm{M}$). The solvent was removed via lyophilization to afford pure $0.6 \mathrm{mg} \mathrm{42} \cdot 2 \mathrm{HCl}(78 \%)$ as a white foam. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (400 $\mathrm{MHz})\left(\mathrm{D}_{2} \mathrm{O}\right) 1.72(2 \mathrm{H}, \mathrm{m}) ; 1.85-2.09(3 \mathrm{H}, \mathrm{m}) ; 2.41(2 \mathrm{H}, \mathrm{m}) ; 2.68-2.80(2 \mathrm{H}, \mathrm{m}) ; 2.96(3 \mathrm{H}, \mathrm{s}) ;$ $3.02(1 \mathrm{H}, \mathrm{m}) ; 3.13(1 \mathrm{H}, \mathrm{m}) ; 3.52(2 \mathrm{H}, \mathrm{m}) ; 3.67(2 \mathrm{H}, \mathrm{m}) ; 3.77(3 \mathrm{H}, \mathrm{s}) ; 3.97(1 \mathrm{H}, \mathrm{d}, J=3.2 \mathrm{~Hz}$, broad); $4.16(1 \mathrm{H}, \mathrm{dd}, J=12.0,3.2 \mathrm{~Hz}) ; 4.47(1 \mathrm{H}, \mathrm{t}, J=3.2 \mathrm{~Hz}) ; 4.99(1 \mathrm{H}, \mathrm{d}, J=3.2 \mathrm{~Hz}) ; 7.08$ $(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}) ; 7.39(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz})\left(\mathrm{D}_{2} \mathrm{O}\right.$ vs. $\left.\mathrm{d}_{4}-\mathrm{MeOH}\right) \delta 21.6$, $21.7,31.1,37.1,40.6,44.1,49.3,54.5,57.4,58.1,59.3,61.4,63.9,65.9,69.7,70.3,81.6,124.4$, $125.5,126.1,127.3,169.3$. HRMS (FAB) calcd. for $\mathrm{C}_{24} \mathrm{H}_{35} \mathrm{~N}_{4} \mathrm{O}_{4}\left(\mathrm{MH}^{+}\right) 443.2658$; found 443.2667. $[\alpha]_{\mathrm{D}}{ }^{25}=+36.0(\mathrm{c}=0.033 \mathrm{MeOH})$.
ent,-2-epi-3-Deoxy-tetrazomine (43). To a solution of 41 ($0.7 \mathrm{mg}, 0.0015 \mathrm{mmol}$) in $4: 1$ $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}(250 \mu \mathrm{~L})$ was added TFA $(0.6 \mu \mathrm{~L}, 0.0075 \mathrm{mmol}, 5 \mathrm{eq})$ followed by $\mathrm{AgOCOCF}_{3}$ ($1 \mathrm{mg}, 0.0045 \mathrm{mmol}, 3 \mathrm{eq}$) and the solution was allowed to stir at rt for 4 h . Excess Dowex $\left(\mathrm{Cl}^{-}\right)$ in $\mathrm{ddH}_{2} \mathrm{O}(1 \mathrm{~mL})$ was added and the slurry was stirred for 15 min . The reaction mixture was filtered through a cotton plug followed by filtration through a syringe filter (Gelman GHP 0.45 $\mu \mathrm{M})$. The solvent was removed via lyophilization to afford pure $0.6 \mathrm{mg} \mathrm{43} \mathrm{\bullet} \mathbf{2} \mathrm{HCl}(75 \%)$ as a
white foam. ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz})\left(\mathrm{D}_{2} \mathrm{O}\right) 1.71(2 \mathrm{H}, \mathrm{m}) ; 1.85-2.10(3 \mathrm{H}, \mathrm{m}) ; 2.39(2 \mathrm{H}, \mathrm{m}) ; 2.74$ $(2 \mathrm{H}, \mathrm{m}) ; 2.96(3 \mathrm{H}, \mathrm{s}) ; 3.02(1 \mathrm{H}, \mathrm{m}) ; 3.12(1 \mathrm{H}, \mathrm{m}) ; 3.52(2 \mathrm{H}, \mathrm{t}, J=13.6 \mathrm{~Hz}) ; 3.66(2 \mathrm{H}, \mathrm{m}) ; 3.76$ $(3 \mathrm{H}, \mathrm{s}) ; 3.78(1 \mathrm{H}, \mathrm{m}) ; 3.87(1 \mathrm{H}, \mathrm{s}) ; 4.16(1 \mathrm{H}, \mathrm{dd}, J=12.0,3.6 \mathrm{~Hz}) ; 4.64(1 \mathrm{H}, \mathrm{t}, J=3.6 \mathrm{~Hz}) ; 4.99$ $(1 \mathrm{H}, \mathrm{d}, J=3.2 \mathrm{~Hz}) ; 7.07(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}) ; 7.30(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz})\left(\mathrm{D}_{2} \mathrm{O}\right.$ vs. $\left.\mathrm{d}_{4} \mathrm{MeOH}\right) ~ \delta 21.6,21.8,26.5,27.6,31.2,37.1,40.7,44.2,54.1,54.6,58.2,61.6,63.9,66.0$, 69.7, 70.3, 73.4, 124.6, 125.9, 126.2, 126.9, 128.8, 136.5, 169.5. HRMS (FAB) calcd. for $\mathrm{C}_{24} \mathrm{H}_{35} \mathrm{~N}_{4} \mathrm{O}_{4}\left(\mathrm{MH}^{+}\right) 443.2658$; found 443.2667. $[\alpha]_{\mathrm{D}}{ }^{25}=-27.0(\mathrm{c}=0.033 \mathrm{MeOH})$.

9

Compound 9: ${ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}$-NMR (75 MHz) in CDCl_{3}

Compound 10: ${ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}(75 \mathrm{MHz})$ in d_{6}-DMSO at $120^{\circ} \mathrm{C}$

Compound 11: ${ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}(75 \mathrm{MHz})$ in $\mathrm{d}_{6}-\mathrm{DMSO}$ at $120^{\circ} \mathrm{C}$

12

Compound 12: ${ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}(75 \mathrm{MHz})$ in d_{6}-DMSO at $120^{\circ} \mathrm{C}$

Compound 13: ${ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}(75 \mathrm{MHz})$ in d_{6}-DMSO at $120^{\circ} \mathrm{C}$

Compound 14: ${ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}(75 \mathrm{MHz})$ in CDCl_{3}

Compound 17: ${ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}(75 \mathrm{MHz})$ in CDCl_{3}

18

Compound 18: ${ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}(75 \mathrm{MHz})$ in CDCl_{3}

19

Compound 20: ${ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}(75 \mathrm{MHz})$ in CDCl_{3}

Compound 21: ${ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}(75 \mathrm{MHz})$ in CDCl_{3}

Compound 22: ${ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}(75 \mathrm{MHz})$ in CDCl_{3}

23

Compound 23: ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz})$ in CDCl_{3}

24

Compound 24: ${ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}(75 \mathrm{MHz})$ in CDCl_{3}

25

Compound 25: ${ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz})$ in CDCl_{3}

(+)-30

Compound 30: ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz})$ in CDCl_{3}

(-)-31

Compound 31: ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz})$ in CDCl_{3}

Compound 32: ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz})$ in CDCl_{3}

Compound 33: ${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz})$ in $\mathrm{D}_{2} \mathrm{O}$ (vs. $\mathrm{d}_{4}-\mathrm{MeOH}$)

Compound 34: ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz})$ in CDCl_{3}

Compound 35: ${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz})$ in $\mathrm{D}_{2} \mathrm{O}$ (vs. $\mathrm{d}_{4}-\mathrm{MeOH}$)

Compound 38: ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}$-NMR (100 MHz) in CDCl_{3}

40

Compound 40: ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz})$ in CDCl_{3}

Compound 39: ${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz})$ in $\mathrm{D}_{2} \mathrm{O}$ (vs. $\left.\mathrm{d}_{4} \mathrm{MeOH}\right)$

Compound 41: ${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}\right.$) in $\mathrm{D}_{2} \mathrm{O}$ (vs. $\mathrm{d}_{4} \mathrm{MeOH}$)

Compound 42: ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz})$) in $\mathrm{D}_{2} \mathrm{O}$

Compound 43: ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz})$ in $\mathrm{D}_{2} \mathrm{O}\left(\right.$ vs. $\left.\mathrm{d}_{4} \mathrm{MeOH}\right)$

