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1. Derivation of equation (3) 

At steady state the following equations relate the concentrations of the various forms of the 

enzyme. They are obtained by expressing the steady state conditions for each form of the 

enzyme. 
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Combining these equations with equation (2) leads to: 
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The above steady state equations may be recast as follows so as to express all enzyme 

concentrations as a function of one of them, e.g., [E2Q]. 
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thus leading to the following expression of the initial rate: 
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2. Derivation of equation (6) 

 Equation (5) and the attending initial and boundary conditions may be made 

dimensionless by way of the following changes of variables and parameters. 
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with: τ = 0, y ≥ 0 and y = ∞, τ ≥ 0: q = 0, y = 0, t ≥ 0: q = 1. 

 The dimensionless current is given by: ∂ ∂ ==q y i FSC D Fv RTy P P/ /g 0
0 /

0

b . 

 S-shaped curves as the one shown in figure 5b are typical of a ‘pure catalytic’ 

situation21 corresponding to large values of the kinetic parameter λ, (i.e. high values of k3 

and/or slow scans). The Q profile is then confined within a reaction layer whose thickness is 

small as compared to the diffusion layer. A steady state is thus established resulting from the 

mutual compensation of diffusion and chemical reaction, implying that ∂ ∂  in the 

above partial derivative equation, which may thus be recast as: 
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Integration, taking into account that for y = ∞, q = 0 and ∂ ∂ =q y/ 0 , leads to: 
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3. Derivation of equation (11) 

 The steady state condition on each of the various forms of the enzyme now writes: 
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thus leading to equation (11). 
 

4. Derivation of equation (13) 

 The same dimensionless variables and parameters as in section 2 are used here 

together with new ones, namely, the concentration of the various forms of the enzymes: 

e
CE

=
E
0 ,   e ,   

CE
1 0=

E1 e ,   
CE

2 0=
E2 e  

CE
3 0=

E3

and three additional kinetic parameters: 

χ =
+

=−k k
k C

K
CP P

3 1 3 2

3 1
0

3
0

, ,

,

,M ,   ρ =
k C
k C

S

P

4
0

5
0 ,    ε =

k
k CP

6

5
0  

 Equation (12) may thus be recast in dimensionless form as: 
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Because reaction E2/E is the rate-determining step of the primary catalytic loop, [E], [ES], 

[E1], [E1Q] are negligible. The three forms remaining into play are E2, E2Q and E3. Their 

concentrations are related by the following steady state equations.  
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Taking now into account the fact that a ‘pure kinetic’ situation is achieved, the above equation 

becomes: 
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Changing y into y y* = λ , and introducing: 
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integration of the previous partial derivative equation, according to the same procedure, as in 

section 2, leads to: 
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ϕ = 1 corresponds to the maximal plateau current that can be obtained when E2/E is the rate-

determining step of the primary catalytic loop: 

i FSC D k Cpl P P E= 0
3

02  

i.e., the plateau current in the absence of inhibition and of Michaelis-Menten saturation. ϕ 

thus expresses a normalization of the current versus this maximal value.  

 We now proceed to the integration of the above expression of ϕ, introducing the 

function lms( , , )χ ρ ε  defined as follows. 
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leading to equation (13) 

 
5. Derivation of equation (15) 

 Reactions E/E1 and E2/E now jointly govern the kinetics the primary catalytic loop. 

[E1], [E1Q] are still negligible. The forms remaining into play are thus E, ES, E2, E2Q and E3. 

The following expression of the E2 concentration follows from the steady state equations of 

section 3, taking into account that, for the reasons already discussed in the paper, 
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(we may note, by reference to section 2, that χ’ = 1/σ) 

The plateau current is thus given by equation (13) keeping the same values for ρ and ε and 

replacing χ by χ’. 
 
6. Derivation of equation (16) 

 At low concentrations of H2O2, and when the ‘pure kinetic’ conditions are fulfilled, 

the diffusion-reaction equations pertaining to Q and S write: 
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Subtracting the first of these equations to the second leads: 
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Since, as seen next, q  is small as compared to 1 because the wave occurs at a more 

positive potential that the standard potential of the P/Q couple. It follows that: 
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taking into account the fact that, because the substrate concentration is small the expression of 

the parameter σ simplifies to: 
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Kinetic control by reaction (1) and by the diffusion of the substrate requires large values of σ. 

It follows that in the above expression of the current, the log term may be neglected leading 

to: 
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Introducing a new potential variable: 
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It follows, since the kinetic term is large, that the equation of the wave becomes: 

ψ ξ ψ' exp '2 1− = −b g I ' 
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leading to a wave that is under complete control of the substrate diffusion and is shifted 

toward positive potentials as compared to the standard potential of the P/Q couple. The peak 

characteristics are:20c  

ψ’p = 0.609, ξ’p = 0.409, ξ’p - ξ’p/2 = 1.41. 

Thus: 

i FS D C Fv
RTp S= 2 0.609  × 0

S  

 

7. Derivation of equations (18) and (19) 

 Equations (17) may be recast as follows, after introduction of the dimensionless form 

of the enzyme concentrations, e2, e2q, and e3. 
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leading finally to equation (18). 

 e3 may likewise be obtained from the above set of linear equations leading to: 
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and therefore to: 
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i.e., to equation (19). 


