Supporting Information for: # Consistent Helicities from CD and Template t/c Data for N-Templated Polyalanines: Progress Toward Resolution of the Alanine Helicity Problem Robert J. Kennedy, Kwok-Yin Tsang and Daniel S. Kemp* ## I. Experimental Peptides were synthesized, purified and identified as previously described.¹ #### **II.** Characterization Table | Peptide | Electrospray Mass Spectrometry (M+zH)/z Found (Expected) | |---|--| | | | | AcHel-A ₄ - ^t LInp ₂ K ₄ W-NH ₂ | 539.77 (539.32); 405.06 (404.74) | | AcHel-A ₅ - ^t LInp ₂ K ₄ W-NH ₂ | 842.78 (844.00); 562.45 (563.00) | | AcHel-A ₆ - ^t LInp ₂ K ₄ W-NH ₂ | 879.80 (879.52); 586.59 (586.68) | | AcHel-A ₇ - ^t LInp ₂ K ₄ W-NH ₂ | 915.14 (915.03); 610.20 (610.36); 457.91(458.02) | | AcHel-A ₈ - ^t LInp ₂ K ₄ W-NH ₂ | 950.83 (950.55); 634.58 (634.04); 476.01 (475.78) | | AcHel-A ₉ - ^t LInp ₂ K ₄ W-NH ₂ | 986.12 (986.07); 657.94 (657.72); 395.08 (395.03) | | AcHel-A ₁₀ - ^t LInp ₂ K ₄ W-NH ₂ | 1021.55 (1021.59); 681.30 (681.40); 511.15 (511.30) | | AcHel-A ₁₁ - ^t LInp ₂ K ₄ W-NH ₂ | 1057.17 (1057.11); 705.76 (705.07); 528.76 (529.06) | | AcHel-A ₁₂ - ^t LInp ₂ K ₄ W-NH ₂ | 1093.02 (1092.63); 728.97 (728.75); 546.97 (546.82) | | AcHel-A ₁₃ - ^t LInp ₂ K ₄ W-NH ₂ | 1127.84 (1128.14); 752.31 (752.43); 564.41 (564.58) | | AcHel-A ₁₄ - ^t LInp ₂ K ₄ W-NH ₂ | 1163.29 (1163.66); 775.87 (776.11); 582.11 (582.34) | | (H)- ^t LInp ₂ K ₄ W-NH ₂ | 1051.71(1051.71); 526.30 (526.36); 351.18(351.18); 263.58 (263.58) | | $Ac^{-\beta}D$ -Hel- A_8 - β -NH ₂ | 1067.29 (1067.49); 534.10 (534.25) | | $Ac^{-\beta}D$ -Hel- A_8 - β -Inp K_2 W-NH ₂ | 840.70 (840.92); 540.81 (540.95) | β = beta amino alanine, βD= beta linked aspartate - ¹ Maison, W.; Arce, E.; Renold, P.; Kennedy, R. J.; Kemp, D. S. J. Am. Chem. Soc. 2001, 123, in press. ### III. Circular Dichorism and t/c Analysis CD spectra were obtained on an Aviv 62DS spectrometer. Peptides were dissolved in water and concentration was determined by the UV absorbance of the tryptophan residue at 280 nm (ϵ_{280} = 5560 cm⁻¹ M⁻¹). To isolate the $[\theta]_{222}$ of the alanine helix, the molar ellipticity of $(H)^{-t}LInp_2K_4-NH_2$ was subtracted from the molar ellipticity of the Ac-Hel-A_n- $^{-t}LInp_2K_4-NH_2$ series. The resulting molar ellipticity was divided by the number of alanine residues, yielding per residue molar ellipticity. The nonhelical CD contribution at 222 nm of the Ac-Hel was removed, by subtracting the limiting ellipticity.² Plot of per residue molar ellipticity $[\theta]_{222}$ for Ac-Hel-A₁₄- ^tLlnp₂K₄-NH₂. The original helical CD curve (dotted), - ^tLlnp₂K₄-NH₂ corrected CD curve (solid). The measurement of the t/c values was preformed as previously described.³ The t/c values for the series Ac-Hel-A_n-tLlnp₂K₄W-NH₂ n= 5, 6, were consistent with AcHel-A_n-NH₂ as previously reported.³ # IV. Hydrogen Exchange The decay of the amide NHs of $Ac^{-\beta}D$ -Hel- A_8 - β -NH $_2$ were monitored by 500 MHz NMR in 0.1M NaH $_2$ PO $_4$ at pH=4 as a function of time. The integration values were fit to a first order exponential decay. Both single and overlapping chemical shifts gave reasonable fits. When compared with the rate constants for Ac- A_3 -OH, the average protection factor for $Ac^{-\beta}D$ -Hel- A_8 - β -NH $_2$ was 17, which corresponds to an average fractional helicity of 0.94. _ ² Kemp, D. S.; Allen, T. J.; Oslick, S. L.; Boyd, J. G. *J. Am. Chem. Soc.* **1996**, *118*, 4240-4248. ³ Renold, P.; Tsang, K-Y.; Shimizu, L. S.; Kemp, D. S. *J. Am. Chem. Soc.* **1996**, *118*, 12234-12235. ## V. Analytical Ultra Centrifugation Ac-Hel-A₉- t LInp₂K₄W-NH₂, Ac-Hel-A₁₄- t LInp₂K₄W-NH₂, Ac- $^\beta$ D-Hel-A₈- Sedimentation Equilibrium Analysis at 45,000 rpm for AcHel- A_{14} - t LInp₂K₄W-NH₂: **A** 20 μ M peptide in 0.1M NaCl; **B** 5 mM peptide in D₂O.