Supporting Information for:

The Effect of Mechanical Interlocking on Crystal Packing: Prediction and testing

Fabio Biscarini, Massimiliano Cavallini, David A. Leigh,^{b,*} Salvador León,^c Simon J. Teat,^d Jenny K. Y. Wong^b and Francesco Zerbetto^{c,*}

^a Consiglio Nazionale delle Ricerche, Istituto di Spettroscopia Molecolare, Via Gobetti 101, 40129, Bologna, Italy.

^b Centre for Supramolecular and Macromolecular Chemistry, Department of Chemistry,
University of Warwick, Coventry CV4 7AL, UK (email David.Leigh@Warwick.ac.uk).
Address from October 1st, 2001: Department of Chemistry, University of Edinburgh, The
King's Buildings, West Mains Road, Edinburgh EH9 3JJ, United Kingdom.

^c Dipartimento di Chimica "G. Ciamician", Università degli Studi di Bologna, V. F.
 Selmi 2, I-40126, Bologna, Italy (email gatto@ciam.unibo.it)

^d CCLRC Daresbury Laboratory, Warrington, UK

			PE	E _{mac-th}	E _{mac-xt}	E_{hb}	E _{hb(intra)}	E _{hb(inter)}	E _{hb(mac}) $r_{hb(1)}$	r_{hb}	(2)
	PI	Ŧ	1	-0.28	0.87	0.64	-0.15	0.61	0.45	0.5	1 0.4	.3
	E_{ma}	c-th	-0.28	1	-0.48	-0.19	0.84	-0.71	-0.76	-0.7	8 -0.7	78
	E _{ma}	c-xt	0.87	-0.48	1	0.45	-0.34	0.59	0.48	0.57	7 0.5	3
	E	ıb	0.64	-0.19	0.45	1	0.06	0.75	0.61	0.50	5 0.4	.5
	$E_{hb(i)}$	ntra)	-0.15	0.84	-0.34	0.06	1	-0.62	-0.72	-0.7	3 -0.8	30
	E _{hb(i}	nter)	0.61	-0.71	0.59	0.75	-0.62	1	0.95	0.93	3 0.8	9
	E _{hb(i}	nac)	0.45	-0.76	0.48	0.61	-0.72	0.95	1	0.92	2 0.9	1
	r_{hbb}	(1)	0.51	-0.78	0.57	0.56	-0.73	0.93	0.92	1	0.9	8
r_{hb}		(2)	0.43	-0.78	0.53	0.45	-0.80	0.89	0.91	0.98	8 1	
W		m	0.45	-0.06	0.32	-0.03	0.15	-0.13	-0.19	-0.1	6 -0.2	21
Z		v	0.33	-0.07	0.32	-0.24	0.08	-0.24	-0.30	-0.2	1 -0.2	24
	S_n	n	0.35	-0.14	0.40	-0.27	-0.03	-0.19	-0.23	-0.1	4 -0.1	15
	V_{i}	n	0.35	-0.14	0.40	-0.27	-0.04	-0.18	-0.22	-0.1	3 -0.1	13
	N _{no}	nH	0.38	-0.01	0.27	-0.12	0.15	-0.20	-0.28	-0.2	0 -0.2	25
	N _{nonH}	N_H	-0.05	0.22	-0.36	0.41	0.29	0.13	0.11	0.0	1 -0.0)5
	S_{nonH}	S_H	0.11	0.26	-0.20	0.47	0.37	0.13	0.07	-0.0	1 -0.1	10
	$V_m/$	S_m	0.15	-0.08	0.19	-0.13	-0.13	-0.01	0.05	0.00	6 0.1	0
	D	с	-0.19	-0.16	-0.33	-0.17	-0.10	-0.07	0.01	-0.1	3 -0.1	11
	D_{c}	el	-0.32	-0.15	-0.37	-0.34	-0.16	-0.16	-0.07	-0.1	8 -0.1	13
	<i>C</i>	k	-0.24	-0.24	-0.24	-0.42	-0.26	-0.16	-0.05	-0.1	5 -0.0)8
		W_m	Z_{v}	S_m	V_m	N _{nonH}	N_{nonH}/N_H	S_{nonH}/S_H	V_m/S_m	D_c	D_{el}	C_k
]	PE	0.45	5 0.33	0.35	0.35	0.38	-0.05	0.11	0.15	-0.19	-0.32	-0.24
E	mac-th	-0.0	6 -0.07	-0.14	-0.14	-0.01	0.22	0.26	-0.08	-0.16	-0.15	-0.24
E	mac-xt	0.32	2 0.32	0.40	0.40	0.27	-0.36	-0.20	0.19	-0.33	-0.37	-0.24
]	E _{hb}	-0.0	3 -0.24	-0.27	-0.27	-0.12	0.41	0.47	-0.13	-0.17	-0.34	-0.42
E _h	b(intra)	0.15	5 0.08	-0.03	-0.04	0.15	0.29	0.37	-0.13	-0.10	-0.16	-0.26
E _h	b(inter)	-0.1	3 -0.24	-0.19	-0.18	-0.20	0.13	0.13	-0.01	-0.07	-0.16	-0.16
E	nb(mac)	-0.1	9 -0.30	-0.23	-0.22	-0.28	0.11	0.07	0.05	0.01	-0.07	-0.05
R	h b(1)	-0.1	6 -0.21	-0.14	-0.13	-0.20	0.01	-0.01	0.06	-0.13	-0.18	-0.15
R	h b(2)	-0.2	1 -0.24	-0.15	-0.13	-0.25	-0.05	-0.10	0.10	-0.11	-0.13	-0.08
	W_m	1.00	0.92	0.87	0.86	0.97	-0.17	-0.09	0.40	0.08	-0.02	0.11
	Z_{v}	0.92	2 1.00	0.97	0.97	0.95	-0.47	-0.42	0.48	-0.03	-0.02	0.14
	S_m	0.87	0.97	1.00	1.00	0.89	-0.62	-0.54	0.49	-0.10	-0.08	0.13
	V_m	0.86	6 0.97	1.00	1.00	0.88	-0.62	-0.55	0.54	-0.12	-0.09	0.13
Λ	nonH	0.97	0.95	0.89	0.88	1.00	-0.21	-0.16	0.42	0.05	0.00	0.12
N _{no}	M_{H}/N_{H}	-0.1	7 -0.47	-0.62	-0.62	-0.21	1.00	0.92	-0.34	0.37	0.18	-0.04
S_{no}	$_{nH}/S_{H}$	-0.0	9 -0.42	-0.54	-0.55	-0.16	0.92	1.00	-0.44	0.27	0.05	-0.16
V	m/S_m	0.40	0.48	0.49	0.54	0.42	-0.34	-0.44	1.00	-0.21	-0.17	-0.02
	D_c	0.08	-0.03	-0.10	-0.12	0.05	0.37	0.27	-0.21	1.00	0.95	0.90
1	D_{el}	-0.0	2 -0.02	-0.08	-0.09	0.00	0.18	0.05	-0.17	0.95	1.00	0.96
	C_k	0.11	0.14	0.13	0.13	0.12	-0.04	-0.16	-0.02	0.90	0.96	1.00

Table 1. PCA correlations matrix. The strongest correlations are shown in bold.

Figure 1 continued

Figure 1. Correlation between some non-covalent interactions: a) PE versus other van der Waals energy; b) PE versus the interaction energies of the macrocycle with the crystal environment; c) rotaxane-crystal hydrogen bond energy versus macrocycle-crystal hydrogen bond energy; d) rotaxane-crystal π - π stacking energy versus macrocycle-crystal π - π stacking energy; e) rotaxane-crystal other van der Waals energy versus macrocycle-crystal crystal other van der Waals energy.