Is the Linkage Region of Sphingolipids Responsible for Lipid Raft Formation?

Maki Uragami, Nobuya Tokutake, and Steven L. Regen*

Department of Chemistry and Zettlemoyer Center for Surface Studies, Lehigh University, Bethlehem, Pennsylvania 18015

Supporting Information

General Methods. Unless stated, otherwise, all reagents were obtained from commercial sources, and used without further purification. Phosphorous trichloride was refluxed and distilled before use. Triethylamine was distilled from CaH₂ and stored over KOH. Pivaloyl chloride was distilled prior to use. THF, toluene and pyridine were used in an anhydrous form. All ¹H-, ³¹P, and ¹³C-NMR spectra were recorded on a Bruker 360 MHz instrument; chemical shifts are reported in ppm and are referenced to residual solvent. Phosphoric acid was used as external reference for ³¹P NMR. D-*erythro*-sphinganine (Avanti Polar Lipids) was used as received.

N-Myristoyl-D-erythro-Sphinganine (5) D-ervthrosphinganine (1.02 g, 3.38 mmol) was dissolved in 30 mL of THF, followed by addition of 0.95 mL of Et₃N (6.76mmol, 2eq), and a solution of 1.22 g of N-succinimidyl tetradecanoate (3.72 mmol, 1.1eq). After stirring for 15 h, the precipitate was removed by filtration. The organic layer was then concentrated under reduced pressure, and the crude product purified by recrystallization from 5~10mL of EtOH to give 1.50 g of colorless solid (86%), having Rf 0.47 (CHCl₃/MeOH, 10/1, v/v); ¹H NMR (360 MHz, CDCl₃) δ : 6.33 (d, *J*=7.2 Hz, 1 H), 4.00 (dd, J=3.4, 10.4 Hz, 1 H), 3.81 (m, 1 H), 3.76 (m, 2 H), 2.21 (t, J=7.6 Hz, 2 H), 1.71 (m, 2 H), 1.62 (m, 2 H), 1.51 (m, 2 H), 1.23 (m, 46 H), 0.85 (t, J=6.7 Hz, 3 H); ¹³C NMR (90 MHz, CDCl₃) δ : 173.7, 74.0, 62.3, 53.7, 45.7, 36.7, 34.3, 31.8, 29.5, 29.2, 25.9, 25.7, 22.6, 14.0; IR v_{max} (KBr) 3278, 2918, 2850, 1727, 1640, 1552, 1465, 1211, 1072cm⁻¹; HRMS for C₃₂H₆₆NO₃ Calcd: 512.5043. Found: 512.5035.

N-Myristoyl-1-O-benzoyl-3-triisopropylsilyl-D-erythro-

sphinganine (6). Sphinganine 5 (316 mg, 0.62 mmol) was dissolved in 1.0 mL of pyridine, and 15.0 mg (0.31 mmol) of DMAP and 72.0 µL (0.62 mmol) of benzoyl chloride were added, successively. The reaction mixture was stirred for 15 h at room temperature. Removal of solvent under reduced pressure and purification of the residue by column chromatography (SiO₂, 30 g, CHCl₃/CH₃OH, 50/1 and 20/1, v/v) afforded 60.5 mg (19% recovery) of unreacted 5 and 252.3 mg (66%) of a monobenzoylated product as a colorless solid, having Rf 0.76 (CHCl₃/CH₃OH, 10/1, v/v); ¹H NMR (360 MHz, CDCl₃) δ 7.99 (d, J=5.0 Hz, 2 H), 7.56 (t, J=7.4 Hz, 1 H), 7.43 (t, J=7.5 Hz, 2 H), 5.97 (d, J=8.4 Hz, 1 H), 4.62 (dd, J=6.7, 11.7 Hz, 1 H), 4.40 (dd, J=3.7, 11.7 Hz, 1 H), 4.28 (m, 1 H), 3.67 (m, 1 H), 2.17 (t, J=7.4 Hz, 2 H), 1.57 (m, 2 H), 1.51 (m, 2 H), 1.23 (m, 44 H), 0.85 (t, J=6.7 Hz, 3 H); ¹³C NMR (90 MHz, CDCl₃) δ 173.5, 149.1, 136.4, 133.2, 129.6, 128.4, 72.6, 63.4, 53.1, 36.8, 34.0, 31.8, 29.6, 29.3, 26.0, 25.7, 22.6, 14.0; IR v_{max} (KBr) 3284, 2922, 2851, 1730, 1640, 1552, 1465, 1278, 1120, 1073, 705 cm⁻¹.

To a solution of 40.8 mg (0.066 mmol) of the monobenzoylated sphinganine and 38.5 μ L (0.33 mmol, 5 equiv) of 2,6-lutidine in 2.0 mL of THF was added 53.5 μ L of TIPSOTF (0.20 mmol), dropwise, at 0°C. The reaction mixture was then stirred for 15 min at 0°C and warmed to room temperature for 2.5 h. Removal of solvent under reduced pressure, followed by column chromatography (SiO₂, 25g, hexane/EtOAc, 10/1, v/v) afforded

39.5 mg (77%) of **6** having $R_f 0.56$ (hexane/EtOAc, 4/1, v/v); ¹H NMR (360 MHz, CDCl₃) δ 7.99 (d, *J*=7.2 Hz, 2 H), 7.52 (t, *J*=7.7 Hz, 1 H), 7.39 (t, *J*=7.2 Hz, 2 H), 5.88 (d, *J*=5.9 Hz, 1 H), 4.4 (m, 3 H), 4.01 (t, *J*=7.2 Hz, 1 H), 2.10 (m, 2 H), 1.62 (m, 2 H), 1.55 (m, 2 H), 1.23 (m, 42 H), 1.04 (m, 21 H), 0.85 (t, *J*=6.8 Hz, 6 H); ¹³C NMR (90 MHz, CDCl₃) δ 172.5, 166.8, 132.9, 129.7, 128.3, 74.4, 62.6, 50.9, 37.0, 34.9, 31.9, 29.6, 29.3, 25.6, 25.3, 22.6, 18.2, 14.0, 12.8; IR v_{max} (KBr) 3272, 2920, 2852, 1726, 1639, 1555, 1467, 1268, 1113, 883, 709cm⁻¹. HRMS for C₄₈H₉₀NO₄Si Calcd: 772.6639. Found: 772.6663

N-Myristoyl-N'-tert-butyloxycarbonyl-3-O-TIPS-D-erythrosphinganine (7). To a solution of 168.3 mg (022 mmol) of 6 in 2 mL of CH₂Cl₂ was added a solution of NaOMe in MeOH [2.0 mg of Na (0.08 mmol) in 0.5 mL of anhydrous MeOH]. After stirring for 14 h at room temperature, the mixture was diluted with Et₂O and passed through 15 g of silica gel by washing with Et₂O several times. The solvent was removed under reduced pressure, and the residue purified by column chromatography (SiO₂, 15 g, hexane/EtOAc, 10/1 to 4/1, v/v) to give 112.5 mg (77%) of the corresponding primary alcohol as colorless oil having Rf 0.21 (hexane/EtOAc, 4/1, v/v); ¹H NMR (360 MHz, CDCb) δ 6.33 (d, J=7.2 Hz, 1 H), 3.8-4.1 (m, 3 H), 3.58 (dd, J=2.9, 10.8 Hz, 1 H)), 2.18 (t, J=7.5 Hz, 2 H), 1.61 (m, 4 H), 1.23 (m, 45 H), 1.06 (m, 21 H), 0.86 (t, *J*=6.8 Hz, 6 H); ¹³C NMR (90 MHz, CDCl₃) δ 173.1, 62.2, 52.2, 36.8, 34.9, 31.9, 29.6, 29.3, 25.5, 25.3, 22.6, 18.1, 14.0, 12.6; IR vmax (KBr) 3295, 2952, 2850, 1643, 1557, 1467, 1120, 1061cm-1.

To a suspension of 92.5 mg (1.96 mmol) of imidazole in 2.0 ml of toluene was added 62.0 µL of PCl₃ (0.41 mmol) dropwise at 0°C. After stirring the mixture for 15 min at 0°C, 152.0 µL of Et₃N (1.09 mmol) was added dropwise over 5 min. After an additional 15 min of stirring, a solution of 91.0 mg (0.136 mmol) of the debenzoylated form of 6 in 2.0 mL of toluene was added, dropwise, over 5 min at 0°C, using 1 mL of toluene as a rinse. After 2 h of stirring at 0°C, 0.5 mL of H₂O was added to quench the product mixture. The mixture was then diluted with EtOAc, washed with 30 mL of H₂O, 30 mL of saturated NaCl, dried over Na₂SO₄, and concentrated under reduced pressure. The residue was dried azeotropically with toluene several times, and then dissolved in 10 mL of pyridine. To this mixture was added 66.0 mg (0.408 mmol) of N-(tert-butoxycarbonyl)ethanolamine, followed by 84 µL (0.68 mmol) of pivaloyl chloride. The resulting solution then stirred at room temperature for 1.5 h. To the reaction mixture was then added 34.5 mg (0.136 mmol) of I_2 and 1.5 mL of H₂O. After stirring for 1.5 h at room temperature, a saturated solution of Na₂S₂O₃ was added to quench the reaction. The product mixture was diluted with CH₂Cl₂, washed with 40 mL of saturated Na₂S₂O₃, 40 mL of saturated NaCl, dried over Na₂SO₄, and concentrated under reduced pressure. Purification by column chromatography (SiO₂, 15 g, CHCl₃/CH₃OH, 20/1 and CHCl₃/CH₃OH/H₂O, 65/25/1, v/v/v) yielded 61.7 mg (51%) of 7 as a colorless oil having $R_f 0.58$ (CHCb/CH₃OH/H₂O, 13/6/1, v/v/v); ¹H NMR (360 MHz, CDCl₃) δ 4.10 (brs, 1 H), 4.02 (brs, 1 H), 3.94 (brs, 1 H), 3.81 (brs, 3 H), 3.20 (brs, 2 H), 2.15 (m, 2 H), 1.52 (brs, 4 H), 1.39 (s, 9 H), 1.22 (m, 44 H), 1.03 (m, 21 H), 0.85 (t, J=7 Hz, 6 H); ¹³C NMR (90 MHz, CDCl₃) δ 174.0, 156.3, 78.6, 73.5, 64.9, 63.8, 53.0, 41.3, 36.8, 34.4, 31.9, 29.7, 29.3, 28.4, 25.7, 24.8, 22.6, 18.2, 14.0, 12.8; ³¹P NMR (145 MHz, CDCl₃) & 0.08; IR v_{max} (KBr) 3432, 2926, 2857, 1691, 1643, 1463, 1245, 1104, 1065cm⁻¹. 1523, HRMS for C48H98N2O8PSiNa2 Calcd: 935.6626. Found: 935.6582.

N-[3-(2-Pyridyldithio)propionyl]-D-erythro-sphinganin(8). To a solution of 7 (376.4 mg, 0.42 mmol) in 10.0 mL of CH_2Cl_2 and 2 mL of CH_3CN , which was added 50 drops (ca. 2.5 mL) of HF-Pyr complex. The mixture was stirred for 1 h at room temperature, and passed through 20 g of silica using $CHCl_3/CH_3OH$ (20/1, v/v) and $CHCl_3/CH_3OH/H_2O$, (13/6/1, v/v/v). The organic layer was concentrated under reduced pressure, and the residue was then dissolved in 10 mL of CH₂Cl₂, followed by addition of 1 mL of trifluoroacetic acid. The reaction mixture was stirred for an additional 1 h at room temperature, and the solvent then removed under reduced pressure. The crude product was dried, azeotropically, with MeOH and toluene several times prior to the next reaction. The crude oil was then dissolved in 10 mL of CHCl₃, and 0.75 mL of Et₃N (5.4 mmol) added, followed by addition of a solution made from 167.7 mg (0.46 mmol) of N-[O-1,2,3-benzotriazin-4(3H)one-yl]-3-(2pyridyldithio)propionate [BPDP] plus 3 mL of CHCl₃, using 2 mL of CHCl₃ as a rinse. The reaction mixture was stirred for 15 h, diluted with CHCl₃, washed with 50 mL of saturated aqueous NaHCO₃, 50 mL of saturated NaCl, dried over Na₂SO₄, and concentrated under reduced pressure. Subsequent purification by column chromatography (SiO₂, 25 g, CHCl₃/CH₃OH, 20/1 to CHCl₃/CH₃OH/H₂O, 13/6/1, v/v/v), followed by preparative TLC (Merck, SiO₂, 2 mm, 20×20 cm, CHCl₃/CH₃OH/H₂O, 65/25/1, v/v/v) afforded 198.3 mg (56%, 3 steps) of 8 as a colorless oil having Rf 0.57 (CHCl₃/CH₃OH/H₂O, 13/6/1, v/v/v); ¹H NMR (360 MHz, CDCl₃/CD₃OD, 1/1) δ8.36 (m, 1 H), 7.81 (m, 1 H), 7.74 (m, 1 H), 7.15 (t, J=5.8 Hz, 1 H), 4.21 (m, 1 H), 3.88 (m, 2 H), 3.80 (m, 2 H), 3.59 (m, 1 H), 3.40 (m, 2 H), 3.03 (t, J=7.1 Hz, 2 H), 2.60 (t, J=7.1 Hz, 2 H), 2.18 (t, 6.6 Hz, 2 H), 1.57 (m, 2 H), 1.49 (m, 2 H), 1.22 (m, 46 H), 0.84, (t, *J*= 7.5 Hz, 6 H); ¹³C NMR (90 MHz, CDCl₃/CD₃OD, 1/1) δ 174.5, 172.5, 160.6, 149.7, 138.5, 121.7, 120.6, 70.1, 65.2, 64.6, 54.8, 40.8, 36.9, 35.6, 34.9, 34.0, 32.5, 30.2, 30.0, 29.9, 26.6, 26.4, 23.2, 14.3. ³¹P NMR (145 MHz, CDCl₃/CD₃OD, 1/1) δ: 4.99; IR ν_{max} (KBr) 3289, 2919, 2849, 1647, 1554, 1468, 1419, 1232, 1006 cm⁻¹. HRMS for C₄₂H₇₇N₃O₇PS₂Na₂ Calcd: 876.4736. Found: 876.4698.

Sphingolipid Homodimer 1. To a solution of 89.5 mg (0.72 mmol) of dithiothreitol (DTT) in 5.0 mL of CHCl3 was added a solution of 30 mg (0.036 mmol) of 8 in 2.0 mL of CHCl₃, dropwise at 0°C under a nitrogen atmosphere. The reaction mixture was stirred for 30 min at 0°C and the solvent was then removed under reduced pressure. The resulting thiol monomer was purified by column chromatography (SiO₂, 5 g, CHCl₃/CH₃OH, 20/1 to CHCl₃/CH₃OH/H₂O, 13/6/1, v/v/v), and then by preparative TLC (Merck, SiO₂, 0.5 mm, 20×20 cm, CHCl₃/CH₃OH/H₂O, 13/6/1, v/v/v). The resulting thiol monomoer was dissolved in 3 mL of CHCl₃, and a solution of 33 mg (0.04 mmol) of 8 in 2.5 mL of CHCl₃ was added dropwise at room temperature; 1.0 mL of CHCl₃ was used as a rinse. The mxiture was stirred for 18 h, concentrated under reduced pressure and the residue purified by preparative TLC (Merck, SiO₂, 0.5 mm, 20 × 20 cm, CHCl₃/CH₃OH/H₂O, 13/6/1, v/v/v) to give 22.8 mg (44%) of 1 as a colorless oil having R_f 0.48 (CHCl₃/CH₃OH/H₂O, 13/6/1, v/v/v); ¹H NMR (360 MHz, CDCl₃/CD₃OD, 1/1, v/v) δ 4.06 (m, 2 H), 3.80 (m, 8 H), 3.50 (m, 2 H), 3.36 (m, 4 H), 2.90 (m, 4 H), 2.55 (m, 4 H), 2.13 (m, 4 H), 1.52 (m, 4 H), 1.45 (m, 4 H), 1.18 (m, 92 H), 0.80 (t, J=6.6 Hz, 12 H). ¹³C NMR (90 MHz, CDCl₃/CD₃OD (1/1), δ 175.1, 173.0, 70.2, 65.2, 64.6, 54.6, 40.7, 36.9, 35.9, 34.5, 34.0, 32.4, 30.2, 29.8, 26.5, 26.3, 23.1, 14.3; ³¹P NMR (145 MHz, CDCl₃/CD₃OD, 1/1, v/v) δ 3.16; IR v_{max} (KBr) 3420, 3300, 2923, 2854, 1646, 1555, 1466, 1242, 1103, 1068 cm^{-1} . HRMS for C₇₄H₁₄₇N₄O₁₄P₂S₂Na₂ Calcd: 1487.9620. Found: 1487.9674.

Heterodimer 4. Using procedures similar to those used for the synthesis of **1**, the corresponding heterodimer (**4**) was prepared by reacting **8** with 1 equiv of the thiol monomer of **2** in 47 % isolated yield, having $R_f 0.50$ (CHCl₃/MeOH/H₂O, 13/6/1, v/v/v); ¹H-NMR (360MHz, CDCl₃/CD₃OD, 1/1) δ : 5.19 (m, 1 H), 4.40 (d, *J*=10.0 Hz, 1 H), 4.14 (m, 2 H), 3.8-4.1 (m, 8 H), 3.59 (m, 1 H), 3.40 (m, 4 H), 2.92 (t, *J*=6.8 Hz, 4 H), 2.59 (t, *J*=7.0 Hz, 4 H),

2.28 (dd, J=7.3, 12.4 Hz, 4 H), 2.18 (t, J=7.4 Hz, 2 H), 1.53 (m, 8 H), 1.22 (m, 102 H), 0.85 (t, J=6.9 Hz, 12 H); ¹³C NMR (90 MHz, CDCl₃/CD₃OD, 1/1) δ : 175.3, 174.5, 174.2, 173.1, 70.9, 70.3, 65.5, 64.9, 64.4, 63.1, 54.7, 40.7, 36.9, 36.1, 34.6, 34.1, 32.5, 30.2, 29.9, 29.7, 26.6, 26.3, 25.4, 23.2, 14.3. ³¹P NMR (145 MHz, CDCl₃/CD₃OD, 1/1) δ : 3.44, 2.37. IR v_{max} (KBr) 3292, 2920, 2853, 1741, 1653, 1558, 1468, 1238, 1099, 1066cm⁻¹. HRMS for C₈₁H₁₅₇N₃O₁₆P₂S₂Na₃⁺ Calcd: 1623.0168. Found: 1623.0204