Supplemental Table 1. T_m s of triplexes formed from X^mT_{13} and various duplex targets. [a]

Duplex target [b]	T_m / $^{\circ}$ C		$\Delta T_m / {}^{\circ}\mathrm{C}^{[\mathrm{c}]}$
	trans [d]	cis	
5'-t/a	30.2 (22.5)	10.7	19.5
5'-a/t	30.8 (24.6)	14.4	16.4
5'-g/c	22.5 (14.0)	0.0	22.5
5'-c/g	26.1 (17.6)	4.5	21.5
3'-g/c	35.1 (29.4)	20.1	15.0
3'-c/g	28.5 (23.4)	11.7	16.8

Sequences of the duplex targets

5'-t/a

5'-CGTCGGTT-t-AAAAAAAAAAAAAA-TTTCGTGGC-3'

3-GCAGCCAA-a-TTTTTTTTTTTT-AAAGCACCG-5

5'-g/c

5-CGTCGGTT-g-AAAAAAAAAAAAATTTCGTGGC-3

3'-GCAGCCAA-c-TTTTTTTTTTTT-AAAGCACCG-5'

3'-g/c

5'-CGTCGGTTT-AAAAAAAAAAAAA-g-TTCGTGGC-3'

3-GCAGCCAAA-TTTTTTTTTTTT-c-AAGCACCG-5

5'-a/t

5'-CGTCGGTT-a-AAAAAAAAAAAAA-TTTCGTGGC-3'

3'-GCAGCCAA-t-TTTTTTTTTTTT-AAAGCACCG-5'

5'-c/g

5'-CGTCGGTT-c-AAAAAAAAAAAAAA-TTTCGTGGC-3'

3'-GCAGCCAA-g-TTTTTTTTTTTT-AAAGCACCG-5'

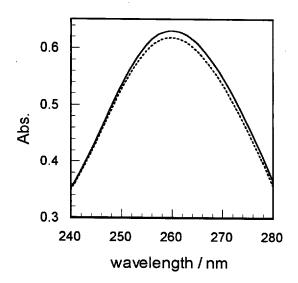
3'-c/g

5'-CGTCGGTTT-AAAAAAAAAAAAA c-TTCGTGGC-3'

3'-GCAGCCAAA-TTTTTTTTTTTTT-g-AAGCACCG-5'

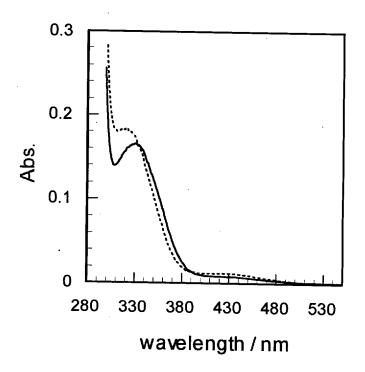
 $^{^{\}rm a)}[T_{13}]$ = [XmT_{13}] = [duplex target] = 2.0 $\mu M, \ [MgCl_2]$ = 0.2 M, at pH 7.0 (10 mM HEPES buffer).

^{b)} The difference among the 31 mer duplex targets is the base pair next to the end of T_{13}/A_{13} part. For example, target 5'-g/c means that the base pair just next to the end of T_{13}/A_{13} part is GC, and the base G is at 5'-end direction of the A_{13} strand. Target 3'-c/g means that the base pair just next to the end of T_{13}/A_{13} part is CG, but the base C is at 3'-end direction of the A_{13} strand.

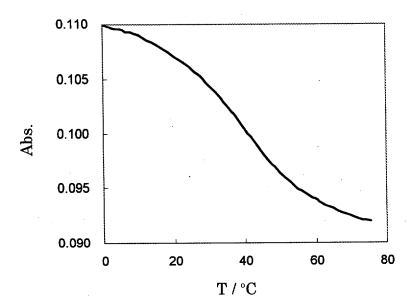

c) Change of T_m induced by $cis \rightarrow trans$ isomerization

 $^{^{} ext{d})}$ Parentheses show the $T_{ ext{m}}$ s of triplexes between natural $ext{T}_{13}$ and duplex targets.

Supplemental Table 2. The MALDI-TOFMS results of modified oligonucleotides.


Sequence	Obsd.		Calcd.
	Polar fraction	Less polar fraction	Caicu.
$\mathrm{X^pT_{13}}$:	4264.3		4264.7
$TX^{P}T_{12}$:	4266.4	4264.4	4264.7
$T_2 X^p T_{11}$:	4265.2	4262.9	4264.7
$T_3X^pT_{10}$:	4265.3	4263.5	4264.7
$T_4 X^p T_9$:	4262.0	4264.3	4264.7
$\mathrm{T_5X^pT_8}$:	4263.9	4267.6	4264.7
${f T_6 X^p T_7}$:	4265.2	4264.2	4264.7
$\mathrm{T_7X^pT_6}$:	4261.8	4264.6	4264.7
${\rm X^pT_6X^pT_7}$:	4642.6	4638.2	4639.8
$T_{13}X^p$:		4267.4	4264.7
$\mathrm{X^mT}_{13}$:		4264.1	4264.7
$TX^{m}T_{12}$:	4264.0	4263.1	4264.7
$\mathbf{T}_2\mathbf{X}^{\mathbf{m}}\mathbf{T}_{11}$:	4264.1	4266.6	4264.7
${ m T_6X^mT_7}$:	4266.0	4267.1	4264.7
$T_{13}X^m$:		4265.9	4264.7
$X^mT_{10}C_3$:		4222.5	4219.7
$X^{m}T_{11}C_{3}$:		4525.9	4523.7

Liang et al.



Supplemental Figure 1. Hyperchromicity at 260 nm of $X^mT_{13}/a/t$ triplex caused by the $trans \rightarrow cis$ isomerization of azobenzene at 29 °C. The dotted and solid lines are the spectra before and after UV light irradiation, respectively.

[X^mT₁₃] = [a/t] = 10 μ M, [MgCl₂] = 0.2 M, at pH 7.0 (10 mM HEPES buffer). $T_{\rm m}s$ of trans- and cis-X^mT₁₃/a/t triplex are 37.9 °C and 20.6 °C, respectively. UV irradiation was carried out at the averaged temperature of the $T_{\rm m}s$ of trans- (37.9 °C) and cis-form (20.6 °C).

Supplemental Figure 2. UV-Vis spectra of the trans-X^mT₁₃/a/t at 65 °C (dotted line, $\lambda_{max} = 322$ nm) and 0 °C (solid line, $\lambda_{max} = 331$ nm). [X^mT₁₃] = [a/t] = 10 μ M, [MgCl₂] = 0.2 M, at pH 7.0 (10 mM HEPES buffer). T_{m} s of trans- and cis-X^mT₁₃/a/t triplex are 37.9 °C and 20.6 °C, respectively.

Supplemental Figure 3. Melting curve for the triplex trans-X^mT₁₃/a/t monitored at 355 nm. The $T_{\rm m}$ was determined from this curve as 38.5 °C, which is almost the same as that determined at 280 nm ($T_{\rm m}$ at 280 nm = 37.9 °C).

[X^mT_{13}] = [a/t] = 10 μ M, [MgCl₂] = 0.2 M, at pH 7.0 (10 mM HEPES buffer).