Structural Study of Three Isomers of $\mathbf{T m} @ \mathbf{C}_{82}$ by ${ }^{13} \mathrm{C}$-NMR Spectroscopy.

Takeshi Kodama*, Norio Ozawa, Yoko Miyake, Koichi Sakaguchi, Hiroyuki Nishikawa, Isao Ikemoto, Koichi Kikuchi, Yohji Achiba
Department of Chemistry, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan

Supporting Information

(experimental details)

[HPLC chromatograms]

Figure 1a shows the HPLC chromatogram of the first stage (a Buckyprep column 20mm $\times 250 \mathrm{~mm}$; toluene; flow rate $12 \mathrm{ml} / \mathrm{min}$). $\mathrm{Tm} @ \mathrm{C}_{82}$ was found in the tail of a hollow C_{84} fraction indicated in the figure. Figure 1b shows the HPLC chromatogram of the second stage (two Buckyprep column $20 \mathrm{~mm} \times 250 \mathrm{~mm}$; toluene; flow rate $12 \mathrm{ml} / \mathrm{min}$). $\mathrm{Tm} @ \mathrm{C}_{82}(\mathrm{I})$ was separated from the other two isomers. Figure 1c shows the HPLC chromatogram of the third stage for $\mathrm{Tm}^{\mathrm{C}} \mathrm{C}_{82}(\mathrm{I})$ (two Buckyprep column $20 \mathrm{~mm} \times 250 \mathrm{~mm}$; toluene; flow rate $12 \mathrm{ml} / \mathrm{min}$). Figure 1d shows the HPLC chromatogram of the fourth stage for $\mathrm{Tm} @ \mathrm{C}_{82}(\mathrm{I})$ (a 5 PBB column $20 \mathrm{~mm} \times 250 \mathrm{~mm}$; toluene; flow rate $12 \mathrm{ml} / \mathrm{min}$). Empty fullerenes were removed and $\mathrm{Tm}_{\mathrm{C}} \mathrm{C}_{82}(\mathrm{I})$ was isolated. Figure 1 e shows the HPLC chromatogram of the third stage of $\mathrm{Tm} @ \mathrm{C}_{82}$ (II) and $\mathrm{Tm} @ \mathrm{C}_{82}$ (III) (two Buckyprep column $20 \mathrm{~mm} \times 250 \mathrm{~mm}$; toluene; flow rate $12 \mathrm{ml} / \mathrm{min}$). They were roughly separated from each other and the empty fullerenes were removed. Figure 1f shows the HPLC chromatogram of the fourth stage for $\mathrm{Tm} @ \mathrm{C}_{82}$ (II) and $\mathrm{Tm} @ \mathrm{C}_{82}$ (III) (a Buckyclutcher column $20 \mathrm{~mm} \times 250 \mathrm{~mm}$; toluene; flow rate $12 \mathrm{ml} / \mathrm{min}) . \mathrm{Tm} @ \mathrm{C}_{82}(\mathrm{II})$ and $\mathrm{Tm} @ \mathrm{C}_{82}$ (III) were completely isolated each other.
[${ }^{13} \mathrm{C}$-NMR spectra of $\mathbf{T m} @ \mathbf{C}_{82}($ III $)$ in a proton-coupled mode and in a proton-decoupled mode]
Figure S 2 shows the ${ }^{13} \mathrm{C}$-NMR spectra of $\mathrm{Tm} @ \mathrm{C}_{82}(\mathrm{II})$ in CS_{2} solution at room temperature; (a) and (b) were measured in a mode and a proton-decoupled mode respectively.

[Temperature dependent ${ }^{13} \mathrm{C}$-NMR spectra of $\mathbf{T m} @ \mathbf{C}_{82}(\mathbf{I I})$]

Figure S 3 shows the temperature dependent ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra of $\mathrm{Tm} @ \mathrm{C}_{82}$ (II) in CS_{2} solution; (a), (b), and (c) were measured at $0^{\circ} \mathrm{C}, 22^{\circ} \mathrm{C}$, and $35^{\circ} \mathrm{C}$ respectively.

[Absorption spectra of three isomers of $\mathbf{T m} @ \mathbf{C}_{82}$]

Each isomer was identified with those reported by Dunsch et al. by comparing the absorption spectra. Figure S 4 shows the absorption spectra of $\mathrm{Tm} @ \mathrm{C}_{82}(\mathrm{I})$, $\mathrm{Tm} @ \mathrm{C}_{82}$ (II), and $\mathrm{Tm} @ \mathrm{C}_{82}(\mathrm{III})$ in CS_{2} solution at room temperature.

[ESR spectra of three isomers of $\mathbf{T m} @ \mathbf{C}_{82}$]

Figure S 5 shows the ESR spectra of $\mathrm{Tm} @ \mathrm{C}_{82}(\mathrm{I})$, $\mathrm{Tm} @ \mathrm{C}_{82}(\mathrm{II})$, and $\mathrm{Tm} @ \mathrm{C}_{82}(\mathrm{III})$ in CS_{2} solution at 5 K . The peaks marked with a solid square were assigned to paramagnetic impurities. The broad feature marked with an open square in the spectrum of isomer II was due to baseline instability. Detailed analysis is now in progress.
[Line positions and relative intensities in the ${ }^{13} \mathbf{C}$-NMR spectra of three isomers of $\mathbf{T m} @ \mathbf{C}_{82}$]
Table S1 shows the line positions and relative intensities in the ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra of three isomers of $\mathrm{Tm} @ \mathrm{C}_{82}$ at room temperature.

Figure S1a

Figure S1b

Figure S1c

Figure S1d

Figure S1e

Figure S1f

protoncoupled

Figure S2a

Figure S2b

$35^{\circ} \mathrm{C}$

1	1	1	1	1	1	1	17
350	300	250	200	150	100	50	ppm
	Figure S3c						

Figure S4

Figure S5

	Isomer I		Isomer II		Isomer III	
	Shift	Relative	Shift	Relative	Shift	Relative
No.	(ppm)	intensity	(ppm)	intensity	(ppm)	intensity
1	48.22	2	19.22	1	60.25	1
2	60.01	2	26.17	1	76.78	2
3	61.78	2	50.05	1	88.10	1
4	77.63	2	55.88	1	90.83	2
5	85.85	2	79.84	1	92.99	2
6	87.17	2	84.92	1	93.50	2
7	90.57	2	88.08	1	108.01	2
8	102.25	2	100.24	1	119.37	2
9	103.08	1	106.00	1	119.78	2
10	108.83	2	106.44	1	124.86	1
11	111.95	2	120.15	1	127.26	2
12	111.84	1	122.39	1	129.87	2
13	114.25	2	126.15	1	137.96	2
14	114.89	2	131.94	1	139.68	2
15	117.02	2	132.58	1	142.15	2
16	122.27	2	134.75	1	142.03	2
17	122.54	2	135.68	1	151.70	1
18	127.40	2	135.95	1	153.67	1
19	127.62	2	136.44	1	153.80	2
20	128.82	2	140.70	1	157.36	2
21	131.53	2	145.53	1	168.50	2
22	136.91	2	144.93	1	168.75	1
23	138.88	2	145.23	1	242.22	2
24	139.29	2	148.43	1	283.58	1
25	140.29	2	148.63	1		
26	142.00	2	148.63	1		
27	147.43	2	152.73	1		
28	148.27	1	153.97	1		
29	148.82	2	154.52	1		
30	149.16	2	156.49	1		
31	150.30	2	156.38	1		
32	150.64	2	156.50	1		
33	151.10	1	157.19	1		
34	153.90	2	160.69	1		
35	154.90	2	160.35	1		
36	156.09	2	161.23	1		
37	160.19	2	162.29	1		
38	162.62	2	168.10	1		
39	162.85	2	238.89	1		
40	163.02	2	262.85	1		
41	166.19	2	303.32	1		
42	258.33	2				
43	299.45	1				
44	414.00	1				

