Selective Anion Binding by a Macrocycle with Convergent Hydrogen Bonding Functionality

Kihang Choi and Andrew D. Hamilton*
Department of Chemistry, Yale University, New Haven, Connecticut 06520

Supporting Information

3,5-Dimethyl-3'-nitro-1,1'-biphenyl (3). 3-nitrophenylboronic acid (3.65g, 1.06 eq) was dissolved in 50 ml toluene $/ 15 \mathrm{ml}$ EtOH. 3,5-dimethyliodobenzene ($3 \mathrm{ml}, 20.6 \mathrm{mmol}$) and $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution (2 N in $\mathrm{H}_{2} \mathrm{O}, 25 \mathrm{ml}$) were added and then followed by $\mathrm{Pd}_{(}\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{4}(0.80 \mathrm{~g}, 3.3 \mathrm{~mol} \%)$. The reaction mixture was refluxed for 3 hr and then allowed to cool down to RT. The mixture was partitioned between ether and water. The organic layer was washed with sat. NaHCO_{3} sol. and brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtering off the solid, the solvent was
removed by evaporation. The residue was purified by SiO_{2} chromatography (hexane:EtOAc 19:1) to give the product 3 as a white solid ($4.4 \mathrm{~g}, 94 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.44(\mathrm{~m}, 1 \mathrm{H}), 8.16-8.20\left(\mathrm{~m}, J^{3}=8.0,1 \mathrm{H}\right)$, $7.89-7.92\left(\mathrm{~m}, J^{3}=7.8,1 \mathrm{H}\right), 7.56-7.61(\mathrm{~m}, 1 \mathrm{H}), 7.24(\mathrm{~s}, 2 \mathrm{H}), 7.08(\mathrm{~s}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 6 \mathrm{H})$.

5-(Ethoxycarbonyl)-3'-nitro-1,1'-biphenyl-3-carboxylic acid (4a). Compound $\mathbf{3}$ ($4.4 \mathrm{~g}, 19.3 \mathrm{mmol}$) was dissolved in 40 ml pyridine $/ 20 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}$ by heating. $\mathrm{KMnO}_{4}(24.8 \mathrm{~g}, 8 \mathrm{eq})$ was added portionwise while the mixture was refluxing. The mixture was refluxed for additional 6 hr and then allowed to cool down to RT. After overnight stirring, the mixture was filtered through Celite pad and the filtrate was evaporated. 1 N NaOH solution was added to the residue and the undissolved material was removed by filtration. The filtrate was acidified with conc. HCl in an ice-water bath and extracted with EtOAc (x3). Combined EtOAc layers were washed with 0.1 N HCl solution and brine and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed by evaporation and the residue was further dried under vacuum to give the crude dicarboxylic acid $(4.57 \mathrm{~g})$. This dicarboxylic acid and ptoulenesulfonic acid ($0.30 \mathrm{~g}, 0.1 \mathrm{eq}$) were dissolved in $\mathrm{EtOH}(300 \mathrm{ml})$. The mixture was refluxed overnight. After cooling down, the solution volume was reduced to $1 / 3$ by evaporation. The residue was diluted with THF and washed with $5 \% \mathrm{NaHCO}_{3}$ solution and brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed by evaporation. The residue was purified by recrystallization (EtOAc/hexane) to give the diester (50%, two steps). This diester was dissolved in 60 ml THF/20 ml EtOH. To the solution, NaOH (1.0 eq) in $20 \mathrm{~mL} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$ was added slowly and the stirring was continued overnight. The mixture was extracted with ether and the aqueous layer was acidified with 2 N HCl . The resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed by evaporation and the residue was purified by SiO_{2} chromatography (MeOH: $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2} 2: 98\right)$ to give the product $\mathbf{4 a}$ as a white solid $(1.58 \mathrm{~g}, 52 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.82(\mathrm{~m}, 1 \mathrm{H}), 8.53-8.58(\mathrm{~m}, 3 \mathrm{H}), 8.29-8.32\left(\mathrm{~m}, J^{3}=8.1,1 \mathrm{H}\right), 8.01-8.04\left(\mathrm{~m}, J^{3}=7.6,1 \mathrm{H}\right), 8.69-8.73(\mathrm{~m}$, $1 \mathrm{H}), 4.49(\mathrm{q}, J=7.1,2 \mathrm{H}), 1.47(\mathrm{t}, J=7.1,3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.14,165.24,148.87,140.66$, $139.65,133.19,133.09,132.69,132.26,131.04,130.60,130.21,123.13,122.16,61.87,14.38$.

3-[(tert-butoxycarbonyl)amino]-5-iodobenzoic acid (5). 3-iodo-5-nitrobenzoic acid ($1.36 \mathrm{~g}, 4.6 \mathrm{mmol}$) was dissolved in 20 ml conc. $\mathrm{NH}_{3} / \mathrm{H}_{2} \mathrm{O}$. To the solution, ammonium iron(II) sulfate hexahydrate ($10.6 \mathrm{~g}, 5.8 \mathrm{eq}$) in 20 ml $\mathrm{H}_{2} \mathrm{O}$ was added. After refluxing for 10 min , the mixture was filtered through Celite pad and the filtrate was cooled down in an ice-water bath. The pH was adjusted to ≈ 4 with conc. HCl and the mixture was extracted with EtOAc (x3). The combined organic layers were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed by evaporation to give the aniline product $(1.07 \mathrm{~g}, 88 \%)$ This aniline compound $(0.94 \mathrm{~g}, 3.6 \mathrm{mmol})$ was dissolved in 4 ml 1,4-dioxane and $4 \mathrm{ml} 2 \mathrm{~N} \mathrm{KOH} / \mathrm{H}_{2} \mathrm{O}$. To the solution, $(\mathrm{Boc})_{2} \mathrm{O}(1.58 \mathrm{~g}, 2.0 \mathrm{eq})$ was added and stirring was continued overnight. After removing dioxane by evaporation, the mixture was diluted with 1 N KOH 6 ml and washed with ether. The aqueous layer was cooled in an ice-water bath and neutralized with 6 N HCl . The
precipitate was collected by filtration and dried under vacuum $(1.04 \mathrm{~g}, 80 \%) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta$ $13.2(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 9.68(\mathrm{~s}, 1 \mathrm{H}), 8.08(\mathrm{~s}, 1 \mathrm{H}), 8.07(\mathrm{~s}, 1 \mathrm{H}), 7.80(\mathrm{~s}, 1 \mathrm{H}), 1.48(\mathrm{~s}, 9 \mathrm{H})$.

5-[(tert-butoxycarbonyl)amino]-3'-nitro-1,1'-biphenyl-3-carboxylic acid (4b). Compound 5 (0.97g, 2.7 mmol) and 3-nitrophenylboronic acid ($0.45 \mathrm{~g}, 1.0 \mathrm{eq}$) were dissolved in 8 ml DMF. To the solution, $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution (1.6 N in $\mathrm{H}_{2} \mathrm{O}, 4 \mathrm{ml}$) was added and followed by $\mathrm{Pd}(\mathrm{OAc})_{2}(18 \mathrm{mg}, 3 \mathrm{~mol} \%)$. The mixture was then stirred at $80^{\circ} \mathrm{C}$ for 4 hr , after which it was cooled down to RT and $20 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}$ was added. The mixture was acidified $(\mathrm{pH} \approx$ 4) by adding 2 NHCl , and then it was extracted with $\operatorname{EtOAc}(\mathrm{x} 3)$. The combined organic layers were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed by evaporation and the residue was purified by SiO_{2} chromatography $\left(\mathrm{MeOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2} 4: 96\right)$ to give the product as a white solid $(0.79 \mathrm{~g}, 83 \%) .{ }^{1} \mathrm{H} \mathrm{NMR}(500 \mathrm{MHz}$, DMSO- $\left.d_{6}\right) \delta 9.72(\mathrm{~s}, 1 \mathrm{H}), 8.37(\mathrm{~m}, 1 \mathrm{H}), 8.25-8.27\left(\mathrm{~m}, J^{3}=8.2,1 \mathrm{H}\right), 8.19(\mathrm{~s}, 1 \mathrm{H}), 8.10-8.12\left(\mathrm{~m}, J^{3}=7.8,1 \mathrm{H}\right), 8.05(\mathrm{~s}$, $1 \mathrm{H}), 7.86(\mathrm{~s}, 1 \mathrm{H}), 7.78-7.81(\mathrm{~m}, 1 \mathrm{H}), 1.50(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 166.97,152.83,148.45$, $140.97,140.75,138.66,133.29,132.37,130.80,122.70,121.28,121.13,120.45,118.78,79.71,28.10$.

General procedure for 2-(trimethysilyl)-ethyl ester synthesis. The carboxylic acid was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{THF}$ (4:1). To the solution, 4-dimethylaminopyridine (0.2eq) and 2-(trimethylsilyl)-ethanol (1.0eq) were added and followed by dicyclohexylcarbodiimide (1.0eq). The mixture was stirred overnight and filtered to remove the urea byproduct. The filtrate was evaporated and purified by SiO_{2} chromatography (hexane/EtOAc).

General procedure for 2-(trimethysilyl)-ethyl ester cleavage. The ester was dissolved in THF and 1M tetrabutylammonium fluoride/THF (3eq) was added. After 4 hr , conc. $\mathrm{NH}_{4} \mathrm{Cl}$ was added and the mixture was diluted with EtOAc and washed with brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and purified by SiO_{2} chromatography $\left(\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

General procedure for nitro group hydrogenation. The nitro compound was dissolved in MeOH/EtOAc (1:1). $10 \% \mathrm{Pd}-\mathrm{C}$ was added to the solution and the mixture was shaken under H_{2} (40psi) until the starting material was disappeared on TLC. The catalyst was removed by filtration. The solvent was evaporated and the residue was dried under vacuum.

General procedure for amide bond formation. The carboxylic acid and aniline compounds were dissolved in THF. To the mixture, bis(2-oxo-3-oxazolidinyl)phosphinic chloride (1.2eq) and diisopropylethylamine (2.5eq) were added and stirring was continued overnight. The mixture was diluted with EtOAc and washed with sat. NaHCO_{3} and brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and purified by SiO_{2} chromatography
(hexane/EtOAc). The cyclization of the linear trimer with the same procedure under dilute condition $(1 \mathrm{mM})$ gave macrocycle 1 in $40-60 \%$ yield.

Macrocycle 1a. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, 5 \%$ DMSO- $d_{6} / \mathrm{CDCl}_{3}$) $\delta 10.17(\mathrm{~s}, 3 \mathrm{H}), 8.69(\mathrm{~s}, 3 \mathrm{H}), 8.48(\mathrm{~s}, 3 \mathrm{H}), 8.42-$ $8.44(\mathrm{~m}, 6 \mathrm{H}), 7.75(\mathrm{~s}, 3 \mathrm{H}), 7.44-7.50(\mathrm{~m}, 6 \mathrm{H}), 4.37(\mathrm{q}, J=7.1,6 \mathrm{H}), 1.37(\mathrm{t}, J=7.1,9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, 5 \%$ DMSO- $\left.d_{6} / \mathrm{CDCl}_{3}\right) \delta 165.25,164.60,140.16,139.01,138.88,135.21,131.40,130.18,129.40,128.68,128.38$, 122.37, 120.37, 118.20, 60.89, 13.79. MS (FAB) $m / z 824.3\left(\mathrm{M}+\mathrm{Na}^{+}\right), 840.2\left(\mathrm{M}+\mathrm{K}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{48} \mathrm{H}_{39} \mathrm{~N}_{3} \mathrm{O}_{9} \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 70.32 ; \mathrm{H}, 5.04 ; \mathrm{N}, 5.13$. Found: C, $70.10 ; \mathrm{H}, 4.98 ; \mathrm{N}, 5.15$.

Macrocycle 1b. ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}) $\delta 10.56(\mathrm{~s}, 3 \mathrm{H}), 9.70(\mathrm{~s}, 3 \mathrm{H}), 8.26\left(\mathrm{~d}, J^{3}=7.9,3 \mathrm{H}\right), 8.09(\mathrm{~s}$, $3 \mathrm{H}), 8.01(\mathrm{~s}, 3 \mathrm{H}), 7.95(\mathrm{~s}, 3 \mathrm{H}), 7.87(\mathrm{~s}, 3 \mathrm{H}), 7.52-7.56(\mathrm{~m}, 3 \mathrm{H}), 7.38\left(\mathrm{~d}, J^{3}=7.9,3 \mathrm{H}\right), 1.52(\mathrm{~s}, 27 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}) $\delta 165.56,152.88,140.64,140.43,140.21,139.62,136.21,129.65,122.35,120.47,119.45$, 119.30, 119.05, 117.21, 79.56, 28.15. MS (FAB) $m / z 953.4\left(\mathrm{M}+\mathrm{Na}^{+}\right), 969.3\left(\mathrm{M}+\mathrm{K}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{54} \mathrm{H}_{54} \mathrm{~N}_{6} \mathrm{O}_{9} \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 68.34 ; \mathrm{H}, 5.95 ; \mathrm{N}, 8.86$. Found: C, 68.17; H, 6.22; N, 8.63.

Linear triamide 2. ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, ~ D M S O-d_{6}\right) \delta 10.73(\mathrm{~s}, 1 \mathrm{H}), 10.67(\mathrm{~s}, 1 \mathrm{H}), 10.42(\mathrm{~s}, 1 \mathrm{H}), 8.60(\mathrm{~s}, 1 \mathrm{H})$, $8.57(\mathrm{~s}, 1 \mathrm{H}), 8.55(\mathrm{~s}, 1 \mathrm{H}), 8.54(\mathrm{~s}, 1 \mathrm{H}), 8.40-8.41(\mathrm{~m}, 2 \mathrm{H}), 8.22-8.23(\mathrm{~m}, 2 \mathrm{H}), 7.94-8.02(\mathrm{~m}, 4 \mathrm{H}), 7.80\left(\mathrm{~d}, J^{3}=7.7\right.$, $2 \mathrm{H}), 7.52-7.63(\mathrm{~m}, 7 \mathrm{H}), 7.39(\mathrm{~m}, 2 \mathrm{H}), 7.14\left(\mathrm{t}, J^{3}=7.4,1 \mathrm{H}\right), 3.97(\mathrm{~s}, 3 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO$\left.d_{6}\right) \delta 165.66(3 \mathrm{C}), 164.52,164.37,140.88,140.75,140.02,139.73,138.86,138.81,138.70,136.29,136.06$, $134.75,131.69,130.78,130.73,130.36,130.34,129.75,129.65,129.62,129.59,128.64,128.41,127.65,127.49$, $127.43,123.98,122.59,122.24,120.60,120.40,120.15,118.96,118.69,52.65,52.63$.

Titration of 1 b with pTsO^{-}at 296 K in different $\mathrm{DMSO}-\mathbf{d} / \mathrm{CDCl}_{3}$ solvents.

Job plot of 1b $+\mathrm{pTsO}^{-}\left(\right.$in 2% DMSO- $\left.d 6 / \mathrm{CDCl}_{3}\right)$

Titration of $1 \mathrm{~b}\left(\mathbf{0 . 7 5 m M}\right.$ in 2% DMSO- $\left.d_{6} / \mathrm{CDCl}_{3}\right)$ with I^{-}at 296 K .

$$
\begin{aligned}
& \text { association constant for } \mathrm{MI}(\mathrm{M}+\mathrm{I} \rightleftharpoons \mathrm{MI}): 1.2 \times 10^{5} \mathrm{M}^{-1} \\
& \text { association constant for } \mathrm{M}_{2} \mathrm{I}\left(\mathrm{MI}+\mathrm{I} \rightleftharpoons \mathrm{M}_{2} \mathrm{I}\right): 9.0 \times 10^{3} \mathrm{M}^{-1}
\end{aligned}
$$

Titration of $1 \mathrm{a}\left(0.5 \mathrm{mM}\right.$ in 2% DMSO- $\left.d_{6} / \mathrm{CDCl}_{3}\right)$ with $\mathrm{HSO}_{4}{ }^{-}$at 296 K .

Titration of $\mathbf{1 b}\left(1.0 \mathrm{mM}\right.$ in $\left.\mathrm{DMSO}-d_{6}\right)$ with $\mathrm{HSO}_{4}{ }^{-}$at $\mathbf{2 9 6 K}$.

Titration of $2\left(0.5 \mathrm{mM}\right.$ in 2% DMSO- $\left.d_{6} / \mathrm{CDCl}_{3}\right)$ with $\mathrm{NO}_{3}{ }^{-}$at 296 K .

