Inorg. Chem., 1997, 36(24), 5440-5448, DOI:10.1021/ic970834r

Terms \& Conditions

Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machinereadable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.htm|

ACS Publications

Table S1. Kinetic characteristics of $\mathrm{Cr}(\mathrm{VI})$ reactions with As(III) in carboxylate buffers (pH 3.5). ${ }^{\mathrm{a}, \mathrm{b}}$

${ }^{\mathrm{a}}[\mathrm{Cr}(\mathrm{VI})]_{0}=0.1 \mathrm{mM},[\mathrm{As}(\mathrm{III})]_{0}=5 \mathrm{mM},[$ buffer $]=100 \mathrm{mM}, 1 \mathrm{M} \mathrm{NaClO} 4,25^{\circ} \mathrm{C}$. Deviations between the results of parallel kinetic experiments did not exceed 5%.
${ }^{\mathrm{b}}$ Analogous experiments were carried out at pH 2.5 and 4.5. Although values of the rate constants changed with pH , the reaction types (see note f) for all the studied systems remain unchanged.
${ }^{\text {c }}$ Designations of the buffer systems (see also note (1) in the main text): I - hmba; II ehba; III - qa; IV - citrate; V - pic; VI - atrolactate; VII - D-gluconate; VIII - D,Llactate; IX - ox; X - edta; XI - pyruvate; XII - mal; XIII - glycinate; XIV - L-prolinate; XV - salicylate; XVI - 100 mM acetate $+100 \mathrm{mM} D$-glucose.
${ }^{\mathrm{d}}$ The kinetic data for the reactions in the buffer systems I-VIII were fitted by sequences of two pseudo-first order reactions: Initial \rightarrow Intermediate \rightarrow Product; k_{1} and k_{2} are the optimised rate constants. Reactions in the buffers IX-XVI led to $\mathrm{Cr}(\mathrm{VI})$ reduction to Cr (III) without the formation of observable intermediates; given in the table are the pseudo-first order rate constants for this process.
${ }^{\mathrm{e}}$ Control reaction in the absence of $\mathrm{As}(\mathrm{III}) ; k$ is the pseudo-first order rate constant for the reduction of $\mathrm{Cr}(\mathrm{VI})$.
${ }^{\mathrm{f}}$ Designations of reaction types: A is the formation of relatively stable intermediates where the reductions of $\mathrm{Cr}(\mathrm{VI})$ by the buffer systems are negligible; B is the formation of unstable intermediates where the reductions of $\mathrm{Cr}(\mathrm{VI})$ by the buffer systems are negligible; C are where the rates of $\mathrm{Cr}(\mathrm{VI})+\mathrm{As}$ (III) reactions are low or comparable with the rates of $\mathrm{Cr}(\mathrm{VI})+$ buffer reactions.

Table S2. Regeneration of $\mathrm{Cr}(\mathrm{VI})$ After the Decomposition of $\mathrm{Cr}(\mathrm{IV})$ Complexes ${ }^{\text {a }}$

Ligand	$\mathbf{p H}^{\mathbf{b}}$	${\text { Yield of } \mathbf{C r}(\mathbf{V I})^{\mathbf{c}}}^{2}$
ehba	$2.8-3.2$	90 ± 5
hmba	$3.0-3.5$	85 ± 5
qa	$5.5-6.5$	60 ± 5
pic	$4.5-5.0$	25 ± 5
ox	$4.0-5.5$	70 ± 5
mal	$4.2-5.2$	~ 100

${ }^{\text {a }}$ See Experimental Section for the conditions of the decomposition experiments.
${ }^{\mathrm{b}} \mathrm{pH}$ values of maximal stability for the corresponding $\mathrm{Cr}(\mathrm{IV})$ complexes (Figure 2).
${ }^{c}$ Percentage of theoretical yield according to eq 4. See Experimental Section for the procedure of determination of $\mathrm{Cr}(\mathrm{VI})$.

Figure S1. Results of the global kinetic analysis for the reaction $\mathrm{Cr}(\mathrm{VI})+\mathrm{As}(\mathrm{III})+$ buffer (see Experimental Section for the conditions of $\mathrm{Cr}(\mathrm{IV})$ generation experiments); (a) estimated spectra of the intermediates; (b) concentration plots for the intermediates; designations of the buffers correspond to Table S1. The spectra for the buffers I, II, III and VI were attributed to $\mathrm{Cr}(\mathrm{IV})$ complexes. The spectra for the buffers IV, V and VII were attributed to the mixtures of $\mathrm{Cr}(\mathrm{III}), \mathrm{Cr}(\mathrm{V})$ and $\mathrm{Cr}(\mathrm{VI})$ complexes formed in the fast disproportionation of the initially formed $\mathrm{Cr}(\mathrm{IV})$ complex. No reliable spectra could be obtained in the case of the buffer VIII due to the very low concentration of the intermediate.

Figure S2. Typical results of the kinetic experiments for the reactions of 1 mM $\mathrm{Na}\left[\mathrm{Cr}^{\mathrm{V}} \mathrm{O}(\mathrm{ehba})_{2}\right]$ with $0.025-0.2 \mathrm{mM} \mathrm{V}(\mathrm{IV})$ in ehba buffers $(\mathrm{pH}=3.5 ; 1 \mathrm{M} \mathrm{NaClO} 4$; $25^{\circ} \mathrm{C}$); (a) typical spectral changes ([V(IV) $\left.]_{0}=0.05 \mathrm{mM}\right)$: l is the spectrum of the reaction mixtures at $\tau=0$ (practically independent on [ehba]); 2 and 3 are the spectra of the reaction mixtures after completion of the reaction ($\tau=2 \mathrm{~s}$) for [ehba] $=200 \mathrm{mM}$ and 10 mM , respectively; 4 and 5 are the spectra of $0.05 \mathrm{mM} \mathrm{V}(\mathrm{V})$ in 200 mM and 10 mM ehba buffers, respectively; (b) changes of absorbance at $560 \mathrm{~nm}: 1$, [ehba] $=200$ $\mathrm{mM} ; 2$, [ehba] $=10 \mathrm{mM}$.

Figure S3. Typical results from the kinetic experiments involving the reactions of 0.1 $\mathrm{mM} \mathrm{Na}\left[\mathrm{Cr}^{\mathrm{V}} \mathrm{O} \text { (ehba) }\right)_{2}$] with 2 mM (IV) in 200 mM ehba buffer ($\mathrm{pH}=3.5,1 \mathrm{M}$ $\mathrm{NaClO}_{4} ; 25^{\circ} \mathrm{C}$); (a) spectra obtained by optimization of the reaction scheme $A \rightarrow B$ $\rightarrow C \rightarrow D$. Attribution of the species: $A=\mathrm{Cr}(\mathrm{V})$-ehba; $B=\mathrm{Cr}(\mathrm{IV})$-ehba $+\mathrm{V}(\mathrm{V})-$ ehba; $C=\mathrm{Cr}(\mathrm{III})$-ehba $+\mathrm{V}(\mathrm{V})$-ehba; and $D=\mathrm{Cr}(\mathrm{III})$-ehba $+\mathrm{V}(\mathrm{V})-\mathrm{V}(\mathrm{IV})$-ehba; (b) 1: spectrum of $\mathrm{V}(\mathrm{V})$-ehba, measured in a separate experiment; 2: spectrum of $\mathrm{Cr}(\mathrm{IV})$-ehba, obtained by substraction of the $\mathrm{V}(\mathrm{V})$-ehba absorbance from the spectrum of the species B.

Figure S4. UV-visible spectra of $\mathrm{Cr}(\mathrm{IV})-\mathrm{Lig}$ complexes at $[\mathrm{Lig}]=200,100,50,25$, 15 and $10 \mathrm{mM}\left([\mathrm{Cr}(\mathrm{IV})]_{0}=0.1 \mathrm{mM} ; \mathrm{pH}=3.5 ;\left[\mathrm{NaClO}_{4}\right]=1 \mathrm{M} ; 25^{\circ} \mathrm{C}\right.$.). The directions of spectral changes with decreasing [Lig$]$ are shown by arrows.

Figure S5. Estimated UV-visible spectra of $\mathrm{Cr}(\mathrm{IV})$-ehba complexes 1 and 2 (eq 5, Scheme 1). Initial data for the estimations were the dependences of the spectra of $\mathrm{Cr}(\mathrm{IV})$-ehba complexes on $[\mathrm{Lig}]$ and $\mathrm{pH}\left([\mathrm{Cr}(\mathrm{IV})]_{0}=0.1 \mathrm{mM} ;[\mathrm{Lig}]=10-200 \mathrm{mM}\right.$; $\left.\mathrm{pH}=2.5-4.0 ;\left[\mathrm{NaClO}_{4}\right]=1 \mathrm{M} ; 25^{\circ} \mathrm{C}\right)$.

Figure S6. Influence of the mixing order to the generation of $\mathrm{Cr}(\mathrm{IV})$ complexes. 1 , Cr(IV)-qa complex: 44 mM qa buffer +5 mM As(III) $+0.1 \mathrm{mM} \mathrm{Cr}(\mathrm{VI})$; reaction time 1 min . 2, mixture of $\mathrm{Cr}(\mathrm{IV})$-qa and $\mathrm{Cr}(\mathrm{IV})$-ox complexes: $\mathrm{Cr}(\mathrm{IV})$-qa complex generated as in 1 , then 13 mM ox added. 3, mixture of $\mathrm{Cr}(\mathrm{IV})$ and $\mathrm{Cr}(I I I)$ complexes: 44 mM qa buffer +13 mM ox buffer +5 mM As(III) +0.1 mM Cr(VI); reaction time 1 min . For all reactions: $\mathrm{pH}=4.4 ;\left[\mathrm{NaClO}_{4}\right]=1 \mathrm{M} ; 21^{\circ} \mathrm{C}$. Concentrations of the reagents are estimated per volume of the final solutions.

Figure S7. CD (a) and UV-visible (b) spectra of $\mathrm{Cr}(\mathrm{III}), \mathrm{Cr}(\mathrm{TV})$ and $\mathrm{Cr}(\mathrm{V})$ complexes with qa ligands $\left([\mathrm{Cr}(\mathrm{III})]_{0},[\mathrm{Cr}(\mathrm{IV})]_{0}\right.$ or $[\mathrm{Cr}(\mathrm{V})]_{0}=0.5 \mathrm{mM} ;[\mathrm{Lig}]=50 \mathrm{mM} ; \mathrm{pH}=4.0$; $\left.\left[\mathrm{NaClO}_{4}\right]=1 \mathrm{M} ; 21^{\circ} \mathrm{C}\right)$. The CD spectrum of $\mathrm{Cr}(\mathrm{IV})$-qa is obtained in a single scan; the spectra of $\mathrm{Cr}(\mathrm{V})-\mathrm{qa}$ and $\mathrm{Cr}(\mathrm{III})-\mathrm{qa}$ are the averaged results of 10 scans (see Experimental Section for the conditions of CD spectroscopy).

Figure S8. CD spectra of the $\mathrm{Cr}(\mathrm{IV})-\mathrm{qa}$ (a) and $\mathrm{Cr}(\mathrm{V})-\mathrm{qa}(\mathbf{b})$ complexes at $\mathrm{pH}=3.5$ (1) and $6.0(2) .[\mathrm{Cr}(\mathrm{IV})]_{0}$ or $[\mathrm{Cr}(\mathrm{V})]_{0}=0.5 \mathrm{mM} ;[\mathrm{Lig}]=50 \mathrm{mM} ;\left[\mathrm{NaClO}_{4}\right]=1 \mathrm{M} ; 21$ ${ }^{\circ} \mathrm{C}$. The spectra are obtained by single scans (see Experimental Section for the conditions of CD-spectroscopy); noise reductions are performed by Origin software.

Figure S9. UV-visible spectra of $\mathrm{Cr}(\mathrm{IV})-\mathrm{qa}(\mathbf{a})$ and $\mathrm{Cr}(\mathrm{V})-\mathrm{qa}(\mathrm{b})$ complexes at $\mathrm{pH}=$ 3.5 (1) and 6.0 (2). Conditions correspond to Figure S8.

Figure S10. Comparison of concentration changes of $\mathrm{Cr}(\mathrm{IV})$ (1, followed by UVvisible spectroscopy at 550 nm) and $\mathrm{Cr}(\mathrm{V}$) (2, followed by EPR spectroscopy) in the reaction mixtures $0.1 \mathrm{mM} \mathrm{Cr}(\mathrm{VI})+5 \mathrm{mM} \mathrm{As}($ III $)+100 \mathrm{mM} \mathrm{Lig}\left(1 \mathrm{M} \mathrm{NaClO}_{4}, 21\right.$ ${ }^{\circ} \mathrm{C}$). (a) $\mathrm{Lig}=\mathrm{qa}, \mathrm{pH}=3.5$; (b) $\mathrm{Lig}=\mathrm{qa}, \mathrm{pH}=6.3$; and (c) $\mathrm{Lig}=$ ehba, $\mathrm{pH}=3.5$.

