

Inorg. Chem., 1996, 35(17), 4989-4994, DOI:10.1021/ic9601044

Terms & Conditions

Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machine-readable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permission.html

Copyright © 1996 American Chemical Society

Summary of Structure Determination and Solution Refinement. A blue crystal of [5]I was mounted on a glass fiber with epoxy cement, at room temperature and cooled to 193 K in a N₂ cold stream. Cell parameters were calculated from the least-squares fitting of the setting angles for 25 reflections ($2\theta_{avg}=23.3$). Lorentz and polarization corrections were applied to 3726 reflections. A semi-empirical absorption correction was applied. All crystallographic calculations were performed on a Nicolet R3m single-crystal X-ray diffractometer using graphite-monochromated MoKa radiation and P3VAX3.42 software supplied by Nicolet Analytical X-ray Instruments, Madison, WI. A total of 2013 unique reflections were used in further calculations. The molecular structure was solved by Direct Methods and refined anisotropically for all non-hydrogen atoms with full-matrix least-squares method. Direct methods program used was SHELXS, SHEXTL-PLUS. Hydrogen atoms were placed in idealized positions with isotropic thermal parameters fixed at 0.08 Å². Neutral atom scattering factors and anomalous scattering correction terms were taken from a standard source (Ibers, J.A.; Hamilton, W.C. International Tables for X-Ray Crystallography Kynoch Press, Birmingham, England, 1974, Vol. 4, pp 99, 149).

2.1

.

Table IS.Summary of Crystallographic Data for [(tbtp-daco)Ni^{II}][I]•H2O

Complex	[(tbtp-daco)Ni ^{II}][I]•H ₂ O
Molecular formula	C ₁₃ H ₂₇ N ₂ O ₃ S ₂ NiI
Formula weight (g/mol)	509.1
Crystal size (mm)	0.1x0.22x0.23
Space group	orthorhombic
	Pbca(No.61)
<i>a</i> , (Å)	10.898(3)
b, (Å)	18.103(5)
c, (Å)	19.020(5)
$V, (Å^3)$	3752(2)
Z	8
ρ (calcd), (g cm ⁻³)	1.802
Temp. (K)	193
Radiation	Mo-K α (λ=0.71073Å)
Min./Max. transmission coeff.	0.7727/0.9660
No. reflections collected	3726
Observed reflections	2010
	IFI ≥ 4.0σF
Unique reflections ^a	1728 ($R_{int} = 4.41\%$)
μ, (mm ⁻¹)	2.892
Index ranges	$0 \le h \le 12$
	$-21 \le k \le 0$
	0 ≤1≤22
Data to parameter ratio	10.0:1
R (%) ^a	5.3
wR (%) ^a	5.5
Sa	1.47
Largest, mean Δ/σ final	0.0023, 0.0004
Largest pos., neg. peak (e ^{-Å3})	0.68, -0.84
g $(w^{-1} = (\sigma F)^2 + gF^2)$	0.0003

^a Residuals: $R_{int} = [\Sigma F^2 - (F_{mean})^2] / [\Sigma F^2]; R = \Sigma |F_0 - F_c| / \Sigma F_o; wR = \{[\Sigma w (F_0 - F_c)^2] / [\Sigma w (F_0)^2]\}^{1/2}; S = \{[\Sigma w (F_0 - F_c)^2] / [N_{data} - N_{parameters}]\}^{1/2}$

	x	У	Z	U(eq) ^{a,b}
I(1)	1409(1)	313(1)	1649(1)	55(1)
Ni(1)	3176(1)	-2474(1)	4512(1)	20(1)
S(1)	2700(2)	-2569(2)	5742(1)	28(1)
S(2)	2648(3)	-1170(1)	4418(1)	31(1)
O(1)	4945(5)	-2298(3)	4858(3)	23(2)
O(2)	6306(5)	-2433(4)	5731(3)	28(2)
O(3)	4533(8)	-514(4)	1912(5)	68(4)
N(1)	3539(7)	-3618(4)	4473(4)	29(3)
N(2)	3549(7)	-2480(5)	3429(4)	33(3)
C(1)	5235(7)	-2387(5)	5485(5)	18(3)
C(2)	4257(8)	-2454(6)	6065(5)	28(3)
C(3)	2539(11)	-3566(5)	5685(6)	40(4)
C(4)	3503(10)	-3917(5)	5211(5)	35(4)
C(5)	4766(10)	-3813(6)	4183(6)	41(4)
C(6)	5041(10)	-3576(6)	3423(6)	45(4)
C(7)	4832(10)	-2759(6)	3277(6)	40(4)
C(8)	2543(11)	-3973(6)	4067(6)	44(4)
C(9)	2339(10)	-3723(6)	3303(6)	46(4)
C(10)	2596(10)	-2923(7)	3042(5)	44(4)
C(11)	3542(11)	-1705(6)	3153(5)	45(4)
C(12)	2565(12)	-1228(6)	3461(5)	47(4)
C(13)	4059(10)	-662(6)	4556(7)	46(4)

Table IIS. Atomic coordinates (x10⁴) and equivalent isotropic displacement parameters (Å²x10³) for [(tbtp-daco)Ni^{II}][I]•H₂O, [**5**]I.

^a U_{eq} is defined as one third of the trace of the orthogonalized U_{ij} tensor.

^b Estimated standard deviations are given in parenthesis.

•

Ni(1)-S(1)	2.402(3)	Ni(1)-S(2)	2.438(3)
Ni(1)-O(1)	2.062(6)	Ni(1)-N(1)	2.108(8)
Ni(1)-N(2)	2.100(8)	Ni(1)-O(2A)	2.096(6)
S(1)-C(2)	1.817(9)	S(1)-C(3)	1.82 (1)
S(2)-C(12)	1.83 (1)	S(2)-C(13)	1.81 (1)
O(1)-C(1)	1.24 (1)	O(2)-C(1)	1.26 (1)
O(2)-Ni(1A)	2.096(6)	N(1)-C(4)	1.50 (1)
N(1)-C(5)	1.49 (1)	N(1)-C(8)	1.48 (1)
N(2)-C(7)	1.51 (1)	N(2)-C(10)	1.50 (1)
N(2)-C(11)	1.50 (1)	C(1)-C(2)	1.54 (1)
C(3)-C(4)	1.52 (1)	C(5)-C(6)	1.54 (2)
C(6)-C(7)	1.52 (2)	C(8)-C(9)	1.54 (2)
C(9) - C(10)	1.55 (2)	C(11)-C(12)	1.49 (2)

Table IIIS. Complete list of bond lengths (Å)^a for [(tbtp-daco)Ni^{II}][I]•H₂O, [5]I.

^a Estimated standard deviations are given in parenthesis.

.

S(1)-Ni(1)-S(2)	95.1(1)	S(1)-Ni(1)-O(1)	84.4(2)
S(2)-Ni(1)-O(1)	95.4(2)	S(1)-Ni(1)-N(1)	90.3(2)
S(2)-Ni(1)-N(1)	173.2(2)	O(1)-Ni(1)-N(1)	89.3(3)
S(1)-Ni(1)-N(2)	175.5(3)	S(2)-Ni(1)-N(2)	88.8(2)
O(1)-Ni(1)-N(2)	97.7(3)	N(1)-Ni(1)-N(2)	85.7(3)
S(1)-Ni(1)-O(2A)	89.9(2)	S(2)-Ni(1)-O(2A)	80.3(2)
O(1)-Ni(1)-O(2A)	172.5(2)	N(1)-Ni(1)-O(2A)	95.5(3)
N(2)-Ni(1)-O(2A)	88.4(3)	Ni(1)-S(1)-C(2)	96.9(3)
$N_{i}(1)-S(1)-C(3)$	91.9(3)	C(2)-S(1)-C(3)	102.9(5)
Ni(1)-S(2)-C(12)	91.6(4)	Ni(1)-S(2)-C(13)	106.3(4)
C(12)-S(2)-C(13)	102.4(6)	Ni(1)-O(1)-C(1)	121.6(5)
C(1)-O(2)-Ni(1A)	145.5(6)	Ni(1)-N(1)-C(5)	108.5(6)
Ni(1)-N(1)-C(4)	114.5(6)	C(4)-N(1)-C(5)	106.5(8)
Ni(1)-N(1)-C(8)	107.9(6)	C(5)-N(1)-C(8)	108.1(8)
C(5)-N(1)-C(8)	111.3(8)	Ni(1)-N(2)-C(7)	111.5(6)
Ni(1)-N(2)-C(10)	110.3(6)	C(7)-N(2)-C(10)	111.5(8)
Ni(1)-N(2)-C(11)	109.7(6)	C(7)-N(2)-C(11)	104.6(8)
C(10)-N(2)-C(11)	109.0(8)	O(1)-C(1)-O(2)	126.9(8)
O(1)-C(1)-C(2)	121.4(7)	O(2)-C(1)-C(2)	111.7(8)
S(1)-C(2)-C(1)	114.4(6)	S(1)-C(3)-C(4)	112.6(7)
N(1)-C(4)-C(3)	114.8(8)	N(1)-C(5)-C(6)	117.2(9)
C(5)-C(6)-C(7)	114.4(9)	N(2)-C(7)-C(6)	115.4(9)
N(1)-C(8)-C(9)	118.1(9)	C(8)-C(9)-C(10)	123.2(9)
N(2)-C(10)-C(9)	117.8(9)	N(2)-C(11)-C(12)	114.1(9)
S(2)-C(12)-C(11)	113.0(8)		

Table IVS. Complete list of bond angles (deg.)^a for [(tbtp-daco)Ni^{II}][I]•H₂O, [5]I.

^a Estimated standard deviations are given in parenthesis.

2

•

Fable VS.	Anisotropic displacement parameters $(Å^2 \times 10^3)^{a,b}$ for [(tbtp-daco)Ni ^{II}][I]•H ₂ O,
	[5]I.

•						
	U ₁₁	U ₂₂	U33	U ₂₃	U ₁₃	U ₁₂
I(1)	54(1)	56(1)	56(1)	-28(1)	-11(1)	7(1)
Ni(1)	16(1)	22(1)	23(1)	1(1)	0(1)	-1(1)
S(1)	19(1)	38(2)	27(1)	5(1)	2(1)	0(1)
S(2)	23(1)	27(1)	44(2)	9(1)	4(1)	1(1)
O(1)	13(3)	33(4)	22(4)	1(3)	1(3)	-1(3)
O(2)	16(3)	35(4)	34(4)	-1(3)	-10(3)	0(4)
O(3)	61(6)	46(5)	97(7)	11(5)	5(5)	2(5)
N(1)	21(5)	26(4)	42(5)	-7(4)	2(5)	2(4)
N(2)	25(5)	47(5)	27(4)	1(4)	0(4)	-2(5)
C(1)	8(5)	19(5)	28(5)	-4(5)	9(4)	-3(4)
C(2)	18(5)	44(6)	22(5)	8(5)	3(4)	5(6)
C(3)	42(7)	35(6)	43(6)	10(5)	4(6)	-12(6)
C(4)	27(6)	25(6)	53(7)	2(5)	-11(6)	-1(5)
C(5)	29(7)	28(6)	66(8)	-16(6)	-2(6)	13(5)
C(6)	22(6)	62(8)	50(8)	-19(7)	-11(6)	9(6)
C(7)	33(7)	53(8)	34(6)	2(6)	12(6)	3(6)
C(8)	31(7)	39(7)	61(8)	-14(6)	-2(6)	-5(6)
C(9)	28(6)	57(8)	52(7)	-22(7)	-3(7)	-3(6)
C(10)	23(6)	76(9)	35(6)	-20(6)	5(6)	-2(6)
C (11)	49(8)	61(8)	25(6)	21(5)	6(6)	4(7)
C(12)	61(8)	44(7)	35(7)	21(5)	-4(7)	15(7)
C(13)	30(6)	26(6)	82(9)	15(6)	4(7)	-2(5)

^aThe anisotropic displacement exponent takes the form: $-2\pi^2(h^2a^{*2}U_{11} + ... + 2hka^*b^*U_{12})$

^bEstimated standard deviations are given in parenthesis.

.

, 1

•

•

<u></u>	x	у	Z	U _{iso}		
H(1O3)	3835	-392	1749	80		
H(2O3)	4588	-981	1948	80		
H(2A)	4443	-2873	6355	80		
H(2B)	4279	-2022	6357	80		
H(3A)	1734	-3681	5512	80		
H(3B)	2609	-3772	6148	80		
H(4A)	4298	-3865	-5422	80		
H(4B)	3324	-4436	5181	80		
H(5A)	4837	-4341	4204	80		
H(5B)	5389	-3611	4485	80		
H(6A)	4533	-3853	3107	80		
H(6B)	5880	-3695	3319	80		
H(7A)	5399	-2485	2794	80		
H(7B)	5025	-2658	2794	80		
H(8A)	1787	-3909	4320	80		
H(8B)	2717	-4493	4059	80		
H(9A)	1493	-3823	3198	80		
H(9B)	2815	-4046	3010	80		
H(10A)	2831	-2954	2557	80		
H(10B)	1836	-2655	3060	80		
H(11A)	3448	-1715	2652	80		
H(11B)	4325	-1486	3254	80		
H(12A)	2644	-739	3271	80		
H(12B)	1777	-1417	3326	80		
H(13A)	3887	-143	4523	80		
H(13B)	4390	-771	5012	80		
H(13C)	4644	-798	4201	80		

.

Table VIS.	H-atom coordinates $(x10^4)$ and isotropic displacement parameters $(Å^2x10^3)$ for
	$[(tbtp-daco)Ni^{II}][I]$ •H2O, [5]I.

-

•

.

. .

,

.

÷

.

Table VIIS.Torsion angles (°)^a less those to Hydrogen atoms for [(tbtp-daco)Ni^{II}][I]•H₂O,[5]I.

-

		and the second	
S(2)-Ni(1)-S(1)-C(2)	-97.2(4)	S(2)-Ni(1)-S(1)-C(3)	159.5(4)
O(1)-Ni(1)-S(1)-C(2)	-2.3(4)	O(1)-Ni(1)-S(1)-C(3)	-105.5(4)
N(1)-Ni(1)-S(1)-C(2)	87.0(4)	N(1)-Ni(1)-S(1)-C(3)	-16.3(5)
N(2)-Ni(1)-S(1)-C(2)	115(3)	N(2)-Ni(1)-S(1)-C(3)	11(3)
O(2A)-Ni(1)-S(1)C(2)	-177.5(4)	O(2A)-Ni(1)-S(1)-C(3)	79.2(4)
S(1)-Ni(1)-S(2)-C(12)	-163.3(4)	S(1)-Ni(1)-S(2)-C(13)	93.2(4)
O(1)-Ni(1)-S(2)-C(12)	111.9(4)	O(1)-Ni(1)-S(2)-C(13)	8.4(5)
N(1)-Ni(1)-S(2)-C(12)	-22(2)	N(1)-Ni(1)-S(2)-C(13)	-125(2)
N(2)-Ni(1)-S(2)-C(12)	14.3(5)	N(2)-Ni(1)-S(2)-C(13)	-89.2(5)
O(2A)-Ni(1)-S(2)-C(12)	-74.3(4)	O(2A)-Ni(1)-S(2)-C(13)	-177.7(5)
S(1)-Ni(1)-O(1)-C(1)	9.5(6)	S(2)-Ni(1)-O(1)-C(1)	104.1(6)
N(1)-Ni(1)-O(1)-C(1)	-80.8(7)	N(2)-Ni(1)-O(1)-C(1)	-166.4(7)
O(2A)-Ni(1)-O(1)-C(1)	50(2)	S(1)-Ni(1)-N(1)-C(5)	-7.4(6)
S(1)-Ni(1)-N(1)-C(5)	-126.1(6)	S(1)-Ni(1)-N(1)-C(8)	109.5(6)
S(2)-Ni(1)-N(1)-C(5)	-149.3(17)	S(2)-Ni(1)-N(1)-C(5)	92(2)
S(2)-Ni(1)-N(1)-C(8)	-33(2)	O(1)-Ni(1)-N(1)-C(5)	77.0(6)
O(1)-Ni(1)-N(1)-C(5)	-41.7(7)	O(1)-Ni(1)-N(1)-C(8)	-166.2(6)
N(2)-Ni(1)-N(1)-C(5)	174.7(6)	N(2)-Ni(1)-N(1)-C(5)	56.0(7)
N(2)-Ni(1)-N(1)-C(8)	-68.4(6)	O(2A)-Ni(1)-N(1)-C(5)	-97.3(6)
O(2A)-Ni(1)-N(1)-C(5)	144.0(7)	O(2A)-Ni(1)-N(1)-C(8)	19.5(6)
S(1)-Ni(1)-N(2)-C(7)	-86(3)	S(1)-Ni(1)-N(2)-C(10)	38(3)
S(1)-Ni(1)-N(2)-C(11)	158(3)	S(2)-Ni(1)-N(2)-C(7)	125.2(6)
S(2)-Ni(1)-N(2)-C(10)	-110.4(6)	S(2)-Ni(1)-N(2)-C(11)	9.8(6)
O(1)-Ni(1)-N(2)-C(7)	29.9(7)	O(1)-Ni(1)-N(2)-C(10)	154.4(6)
O(1)-Ni(1)-N(2)-C(11)	-85.5(6)	N(1)-Ni(1)-N(2)-C(7)	-58.8(7)
N(1)-Ni(1)-N(2)-C(10)	65.6(7)	O(2A)-Ni(1)-N(2)-C(7)	-154.4(6)
N(1)-Ni(1)-N(2)-C(11)	-174.2(7)	O(2A)-Ni(1)-N(2)-C(11)	90.2(6)
O(2A)-Ni(1)-N(2)-C(10)	-30.0(7)	C(3)-S(1)-C(2)-C(1)	90.6(8)
Ni(1)-S(1)-C(2)-C(1)	-3.0(7)	C(2)-S(1)-C(3)-C(5)	-57.6(8)
Ni(1)-S(1)-C(3)-C(5)	39.9(7)	C(13)-S(2)-C(12)-C(11)	67.8(9)
Ni(1)-S(2)-C(12)-C(11)	-39.3(8)	NI(1)-O(1)-C(1)-C(2)	-14.7(11)
Ni(1)-O(1)-C(1)-O(2)	165.6(7)	Ni(1A)-O(2)-C(1)-C(2)	171.0(8)

.

•

.

Ni(1A)-O(2)-C(1)-O(1)	-9.3(17)	C(5)-N(1)-C(5)-C(3)	160.1(8)
Ni(1)-N(1)-C(5)-C(3)	36.4(10)	Ni(1)-N(1)-C(5)-C(6)	-60.8(10)
C(8)-N(1)-C(5)-C(3)	-80.3(10)	C(8)-N(1)-C(5)-C(6)	61.8(11)
C(5)-N(1)-C(5)-C(6)	179.3(8)	C(5)-N(1)-C(8)-C(9)	176.5(9)
Ni(1)-N(1)-C(8)-C(9)	59.4(10)	Ni(1)-N(2)-C(7)-C(6)	68.9(10)
C(5)-N(1)-C(8)-C(9)	-67.0(11)	C(11)-N(2)-C(7)-C(6)	-172.6(8)
C(10)-N(2)-C(7)-C(6)	-55.0(11)	C(7)-N(2)-C(10)-C(9)	72.0(11)
Ni(1)-N(2)-C(10)-C(9)	-52.5(10)	Ni(1)-N(2)-C(11)-C(12)	-39.3(10)
C(11)-N(2)-C(10)-C(9)	-173.1(9)	C(10)-N(2)-C(11)-C(12)	81.7(10)
C(7)-N(2)-C(11)-C(12)	-159.0(9)	O(2)-C(1)-C(2)-S(1)	-169.0(7)
O(1)-C(1)-C(2)-S(1)	11.3(12)	N(1)-C(5)-C(6)-C(7)	53.0(12)
S(1)-C(3)-C(5)-N(1)	-56.2(10)	N(1)-C(8)-C(9)-C(10)	-31.5(15)
C(5)-C(6)-C(7)-N(2)	-57.4(12)	N(2)-C(11)-C(12)-S(2)	57.3(11)
C(8)-C(9)-C(10)-N(2)	27.0(15)		

.

.

.

.

ł

^aEstimated standard deviations are given in parenthesis.

Figure IS. Crystal structure of [(tbtp-daco)Ni^{II}][I]•H₂O, [5]I (thermal ellipsoids at 50% probability)

Packing diagram of [(tbtp-daco)NiII][I]•H₂O, [5]I, viewed down the b axis. Figure IIS.