Supporting Information # $\begin{tabular}{ll} Utilization of CS_2 as a Source of C_1 Chemistry for the Generation of \\ \\ Methyldithioformate \\ \end{tabular}$ Thirumanavelan Gandhi, Munirathinam Nethaji, and Balaji R. Jagirdar* Department of Inorganic & Physical Chemistry, Indian Institute of Science, Bangalore 560 012, India #### **Contents** - I. Synthesis and characterization of the compounds - II. Figure S1: Stack plot of the 1H NMR spectra of the reaction of trans- $[(dppe)_2Ru(H)(SC(SCH_3)H)][OTf] \quad \text{with} \quad H_2; \quad (a) \quad trans- \\ [(dppe)_2Ru(H)(SC(SCH_3)H)][OTf] \quad complex; \quad (b) \quad trans-[(dppe)_2Ru(H)(\eta^2-H_2)][OTf] \quad complex$ - III. Figure S2: Stack plot of the ^{31}P NMR spectra of the reaction of *trans*-[(dppe)₂Ru(H)(SC(SCH₃)H)][OTf] with H₂; (a) *trans*-[(dppe)₂Ru(H)(SC(SCH₃)H)][OTf] complex; (b) *trans*-[(dppe)₂Ru(H)(η^2 -H₂)][OTf] complex - IV. Figure S3: Stack plot of the ¹H NMR spectra of the reaction of *trans*-[(dppe)₂Ru(H)(SC(SCH₃)H)][OTf] with CH₃CN; (a) *trans*-[(dppe)₂Ru(H)(SC(SCH₃)H)][OTf]; (b) *trans*-[(dppe)₂Ru(H)(CH₃CN)][OTf]; (c) CH₃SC(S)H - V. Figure S4: Stack plot of the ³¹P NMR spectra of the reaction of *trans*-[(dppe)₂Ru(H)(SC(SCH₃)H)][OTf] with CH₃CN; (a) *trans*-[(dppe)₂Ru(H)(SC(SCH₃)H)][OTf]; (b) *trans*-[(dppe)₂Ru(H)(CH₃CN)][OTf] - VI. Figure S5: Stack plot of the ¹H NMR spectra of the reaction of *trans*-[(dppe)₂Ru(H)(SC(S)H)] with MeI; (a) *trans*-[(dppe)₂Ru(H)(SC(S)H)]; (b) *trans*-[(dppe)₂Ru(H)(SC(SCH₃)H)][I]; (c) *trans*-[(dppe)₂Ru(H)(I)]; (d) CH₃SC(S)H - VII. Figure S6: Stack plot of the ³¹P NMR spectra of the reaction of *trans*-[(dppe)₂Ru(H)(SC(S)H)] with MeI; (a) *trans*-[(dppe)₂Ru(H)(SC(S)H)]; (b) *trans*-[(dppe)₂Ru(H)(SC(SCH₃)H)][I]; (c) *trans*-[(dppe)₂Ru(H)(I)] - VIII. Figure S7: IR spectrum (CH₂Cl₂) of CH₃SC(S)H - IX. Figure S8: Electronic spectrum (CH₂Cl₂) of CH₃SC(S)H #### **Experimental Section** #### **General Procedures.** All reactions were carried out under N₂ or Ar atmosphere at room temperature using standard Schlenk¹ and inert-atmosphere techniques unless otherwise noted. Solvents were dried and distilled before use. The NMR spectra were obtained using an AMX Bruker or Avance Bruker 400 MHz spectrometer. The shift of the residual protons of the deuterated solvent was used as an internal reference. The ³¹P{¹H} NMR spectra were measured relative to 85% H₃PO₄ (aqueous solution) as an external standard. Elemental analyses were carried out using a Heraues CHNO Rapid elemental analyzer; samples containing fluorine atoms were characterized by mass spectral analysis (Electrospray MS). The *trans*-[(dppe)₂Ru(H)(SC(S)H)] 1 complex was synthesized by a reported procedure.² Preparation of trans-[(dppe)₂Ru(H)(SC(SCH₃)H)][OTf] (2). A solution of trans-[(dppe)₂Ru(H)(SC(S)H)] (1.00 g, 1 mmol) in CH₂Cl₂ (30 mL) was treated with 4 equiv of MeOTf (0.46 mL, 4 mmol). An immediate color change from yellow to orange was observed. The resulting solution was stirred for 15 min and then the volume was reduced to ca. 5 mL. The product trans-[(dppe)₂Ru(H)(SC(SCH₃)H)][OTf] **2** was precipitated by adding excess Et₂O and the precipitate was washed with more Et₂O (3 x 10 mL) and dried in vacuo. Yield 1.00 g (86.0 %). Characterization data for **2** are as follows. ¹H NMR (CDCl₃): δ –12.74 (qnt, 1H, Ru-H, J(H,P) = 20.0 Hz); 2.29 and 2.82 (br s, 8H, PCH₂CH₂P); 2.48 (s, 3H, SCH₃); 6.62-7.59 (m, 40H, Ph₂PCH₂CH₂PPh₂); 8.00 (s, 1H, HC(S)). ³¹P{¹H} NMR (CDCl₃): δ 63.1 (s, 4P, Ph₂PCH₂CH₂PPh₂). ¹³C{¹H} NMR (CDCl₃): δ 17.79 (s, SCH₃); 33.29 (qnt, Ph₂PCH₂CH₂PPh₂, J(C,P) = 12 Hz); 128.01-133.30 (m, Ph₂PCH₂CH₂PPh₂); 135.76 (unres br s, CF₃SO₃); 213.48 (s, HC(S)). MS (ESMS) m/z: 991 (P⁺ of cation); 913 (P⁺–HC(S)SH). #### Reaction of trans-[(dppe)₂Ru(H)(SC(SCH₃)H)][OTf] with H₂ The trans-[(dppe)₂Ru(H)(SC(SCH₃)H)][OTf] complex (20 mg, 0.017 mmol) was dissolved in CDCl₃ (0.7 mL) in a 5 mm NMR tube and then H₂ gas was purged through the solution for ca. 5 min. The resulting solution was analyzed using NMR spectroscopy which indicated the partial formation of a hydride dihydrogen complex trans-[(dppe)₂Ru(H)(η^2 -H₂)][OTf]³ **3** and some free methyldithioformate. #### Reaction of trans-[(dppe)₂Ru(H)(SC(SCH₃)H)][OTf] with CH₃CN A CH₂Cl₂ solution (10 mL) of *trans*-[(dppe)₂Ru(H)(SC(SCH₃)H)][OTf] (0.05 g, 0.043 mmol) was treated with 4 equiv of CH₃CN (9 μL, 0.17 mmol) and the resulting solution was stirred for 1 h at room temperature. During this time, the color of the solution turned from orange to yellow. The volume of the solution was reduced and the product of trans-[(dppe)₂Ru(H)(CH₃CN)][OTf] **4** was precipitated by the addition of excess Et₂O. The solid was vacuum dried. Yield 0.03 g (63 %). Characterization data for **4** are as follows. ¹H NMR (CDCl₃): δ –15.96 (qnt, 1H, Ru-H, J(H,P) = 18.0 Hz); 1.80 (s, 3H, CH_3 CN); 2.06 and 2.64 (br s, 8H, PCH_2CH_2P); 6.61-7.41 (m, 40H, $Ph_2PCH_2CH_2PPh_2$). ³¹P{¹H} NMR (CDCl₃): δ 65.1 (s, 4P, $Ph_2PCH_2CH_2PPh_2$). ¹³C{¹H} NMR (CDCl₃): δ 3.65 (s, CH_3CN); 32.37 (qnt, $Ph_2PCH_2CH_2PPh_2$, J(C,P) = 12 Hz); 123.68 (s, CH_3CN); 134.45 (unres br s, CF_3SO_3). MS (ESMS) m/z: 913 (P⁺–HCN); 897 (P⁺–(HCN+CH₄)). ## Isolation of free MeSC(S)H A reaction of *trans*-[(dppe)₂Ru(H)(SC(SCH₃)H)][OTf] (0.70 g, 0.61 mmol) with 7 equiv of CH₃CN (0.22 mL) was carried as described above. Upon ensuring that the reaction was complete (color change from orange to pale yellow), the volatiles were fractionally distilled and the fractions boiling at 45-46 °C, 55-56 °C, and 65-66 °C were collected separately. The fraction collected at 55-56 °C contained considerable amount of free methyldithioformate. The NMR spectral details of this fraction matched those obtained in the NMR scale experiments. #### Reaction of *trans*-[(dppe)₂Ru(H)(SC(S)H)] with MeI To a CH₂Cl₂ solution (5 mL) of *trans*-[(dppe)₂Ru(H)(SC(S)H)] (0.100 g, 0.1 mmol) was added 5 equiv of MeI (32 μ L, 0.5 mmol) and the resulting solution was stirred for 2 h. The yellow solution turned red. Then the volume of the solution was reduced to ca. 2 mL and excess Et₂O was added to cause complete precipitation of a product of *trans*-[(dppe)₂Ru(H)I] 5 that was dried in vacuo. Yield 0.080 g (76 %). Characterization data for 5 are as follows. ¹H NMR (CDCl₃): δ –16.24 (qnt, 1H, Ru-H, J(H,P) = 20.0 Hz; 2.14 and 2.77 (br s, 8H, PC H_2 C H_2 P); 6.95-7.25 (m, 40H, Ph_2 PC H_2 C H_2 P Ph_2). ³¹P{¹H} NMR (CDCl₃): δ 59.97 (s, 4P, Ph₂PC H_2 C H_2 P Ph_2). MS (ESMS) m/z: 997 (P–C₂H₄). # Reaction of trans-[(dppe)2Ru(H)I] with excess NaBH4 The *trans*-[(dppe)₂Ru(H)I] (0.10 g, 0.097 mmol) was dissolved in a mixture of THF (10 mL) and methanol (5 mL). Under nitrogen pressure, excess NaBH₄ (0.46 g, 12.12 mmol) was added all at once with vigorous stirring. The solution turned color from brown to pale yellow in ca. an hour after which time, the volatiles were removed in vacuo and the residual solid was washed several times with methanol. The solid that was left behind was dried in vacuo and identified using NMR spectroscopy as *cis*-[(dppe)₂RuH₂]. Yield 0.042 g (48 %). Anal. Calcd. for C₅₂H₅₀P₄Ru: C, 69.43; H, 5.56. Found: C, 68.91; H, 5.24. #### Reaction of trans-[(dppe)₂Ru(H)(SC(SCH₃)H)][OTf] with excess NaBH₄ The *trans*-[(dppe)₂Ru(H)(SC(SCH₃)H)][OTf] (0.05 g, 0.043 mmol) was dissolved in a mixture of THF (20 mL) and methanol (10 mL). Under N₂ pressure, excess NaBH₄ (0.20 g, 125 equiv, 5.3 mmol) was added with vigorous stirring. After 1 h of stirring, the solution turned color from orange to pale yellow. The solvents were removed in vacuo and the residual solid was washed several times with methanol. The product was identified as *cis*-[(dppe)₂RuH₂] by comparing its ¹H and ³¹P{¹H} NMR spectral data with that of an authentic sample and from the literature.³ Yield 0.026 g (68 %). Anal. Calcd. for C₅₂H₅₀P₄Ru: C, 69.43; H, 5.56. Found: C, 68.89; H, 5.09. # References - 1. (a) Shriver, D.F.; Drezdon, M.A. *The Manipulation of Air-Sensitive Compounds*, 2nd ed.; Wiley: New York, 1986. - (b) Herzog, S.; Dehnert, J.; Luhder, K. In *Techniques of Inorganic Chemistry*; Johnassen, H.B., Ed.; Interscience: New York, 1969; Vol. VII. - 2. Gandhi, T.; Nethaji, M.; Jagirdar, B.R. Inorg. Chem. 2003, 42, 667-669. - 3. trans-[(dppe) $_2$ Ru(H)(η^2 -H $_2$)][BF $_4$]: Bautista, M. T.; Cappellani, E. P.; Drouin, S. D.; Morris, R. H.; Schweitzer, C. T.; Sella, A.; Zubkowski, J. *J. Am. Chem. Soc.* **1991**, *113*, 4876-4887. FIG. S1 FIG. S3 FIG. S6