Supporting Information for:

Short Metal-Metal Separations in a Highly Luminescent Trimetallic Ag(I) Complex Stabilzed by Bridging NHC Ligands.

Vincent J. Catalano* and Mark A. Malwitz
vjc@unr.edu

Preparation of $\left[\left(\left(\mathbf{p y C H}_{\mathbf{2}}\right)_{\mathbf{2}} \mathbf{i m}\right)_{\mathbf{2}} \mathbf{A g}\right] \mathbf{C l}, \mathbf{1}^{\bullet} \mathbf{C l}$. Method A: A 100 mL round bottom flask was charged with $2.51 \mathrm{~g}(8.75 \mathrm{mmol})$ of $\left[\mathrm{H}\left(\mathrm{pyCH}_{2}\right)_{2} \mathrm{im}\right] \mathrm{Cl}, 1.01 \mathrm{~g}(4.38 \mathrm{mmol})$ of $\mathrm{Ag}_{2} \mathrm{O}$ and 50 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The flask was removed from light and stirred at room temperature for 4 hours. The mixture was then filtered through Celite, reduced in volume and precipitated with $\mathrm{Et}_{2} \mathrm{O}$ leaving $0.66 \mathrm{~g}(1.02 \mathrm{mmol})$ of $1 \bullet \mathrm{Cl}$ as a beige powder (23%). Method B: A 50 mL round bottom flask was charged with $1.00 \mathrm{~g}(3.49 \mathrm{mmol})$ of $\left[\mathrm{H}\left(\mathrm{pyCH}_{2}\right)_{2} \mathrm{im}\right] \mathrm{Cl}$, a catalytic amount of $\left[\mathrm{Bu}{ }_{4} \mathrm{~N}\right] \mathrm{Cl}$, and 15 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The flask was then chaged with a mixture of 15 mL of 1 M NaOH and $0.202 \mathrm{~g}(0.872 \mathrm{mmol})$ of $\mathrm{Ag}_{2} \mathrm{O}$. The flask was removed from light and stirred at room temperature for 4 hours. The organic layer was separated and the aqueous layer extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The organic layers were combined, filtered through Celite, reduced in volume and precipitated with $\mathrm{Et}_{2} \mathrm{O}$ leaving 0.47 g of $1^{\bullet} \mathrm{Cl}$ as a beige powder (38\%).

Preparation of $1 \bullet \mathbf{B F}_{4}$. Method A: A 50 mL round bottom flask was charged with 0.50 (0.78 mmol) of $1 \cdot \mathrm{Cl}$ and excess NaBF_{4}. To this was added 20 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and 5 mL of MeOH . This mixture was placed in an ultrasonic cleaner for 5 minutes. The volatiles were then removed with a rotary evaporator. To the remaining brown residue was added $15 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ of and this mixture was then filtered through Celite. The remaining light brown solution was reduced in volume and precipitated with $\mathrm{Et}_{2} \mathrm{O}$ affording $0.48 \mathrm{~g}(0.69$ $\mathrm{mmol})$ of $1 \bullet \mathrm{BF}_{4}$ as a beige powder (89%). Method B : A 100 mL round bottom flask was charged with $1.66 \mathrm{~g}(4.85 \mathrm{mmol})$ of $\left[\mathrm{H}\left(\mathrm{pyCH}_{2}\right)_{2} \mathrm{im}\right]\left(\mathrm{BF}_{4}\right)$, a catalytic amount of $\left[\mathrm{Bu}_{4} \mathrm{~N}\right]\left(\mathrm{BF}_{4}\right)$, and $30 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$. To this was added a mixture of 20 mL of 1 M NaOH and $0.282 \mathrm{~g}(1.22 \mathrm{mmol})$ of $\mathrm{Ag}_{2} \mathrm{O}$. The flask was removed from light and the mixture stirred at room temperature for 4 hours. The organic layer was separated and the
aqueous layer extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The organic layers were combined, filtered through Celite, reduced in volume and precipitated with $\mathrm{Et}_{2} \mathrm{O}$ affording 1.34 g (1.93 mmol) of $1 \bullet \mathrm{BF}_{4}$ as a beige solid (79\%). Anal. Calcd $\left(\mathrm{C}_{30} \mathrm{H}_{28} \mathrm{~N}_{8} \mathrm{AgBF}_{4}\right)$: C, 51,83; H, 4.06; N, 16.12. Found: C, 51.60; H, 3.97; N, 15.86. ${ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl_{3}, $\left.25^{\circ} \mathrm{C}\right): \delta=8.46(\mathrm{~m}), 7.65(\mathrm{~m}), 7.30(\mathrm{~m}), 7.21(\mathrm{~s}), 7.19(\mathrm{~m}), 5.41(\mathrm{~s}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}(75$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right): \delta=? ? ?(\mathrm{~m}), 155.5,149.8,137.7,123.6,122.8,122.6,57.1 . \mathrm{UV}$ $\left(\mathrm{CH}_{3} \mathrm{CN}\right) \lambda_{\max }, \mathrm{nm}(\varepsilon): 243$ (14123), 249 (14868), 254 (15463), 260 (13774), 266 (sh, 9614), 360 (905).

Preparation of $\left[\left(\left(\mathbf{p y C H}_{2}\right)_{\mathbf{2}} \mathbf{i m}\right)_{3} \mathbf{A g}_{3}\right]\left(\mathbf{B F}_{4}\right)_{3}, \mathbf{2}$. Method A: A 50 mL round bottom flask was charged with $1.00 \mathrm{~g}(2.92 \mathrm{mmol})$ of $\left[\mathrm{H}\left(\mathrm{pyCH}_{2}\right)_{2} \mathrm{im}\right]\left(\mathrm{BF}_{4}\right)$ and $3.38 \mathrm{~g}(14.6 \mathrm{mmol})$ of $\mathrm{Ag}_{2} \mathrm{O}$ in 30 mL of $\mathrm{CH}_{3} \mathrm{CN}$. The mixture was removed from light and brought to reflux overnight. The mixture was cooled, filtered through Celite, reduced in volume and precipitated with $\mathrm{Et}_{2} \mathrm{O}$ affording $1.04 \mathrm{~g}(0.779 \mathrm{mmol})$ of $\mathbf{2}$ as an off-white powder (79%). Method B: A 100 mL round bottom flask was charged with $2.66 \mathrm{~g}(3.83 \mathrm{mmol})$ of $\mathbf{1} \bullet \mathbf{B F}_{\mathbf{4}}$, $1.49 \mathrm{~g}(7.65 \mathrm{mmol})$ of AgBF_{4} and 50 mL of $\mathrm{CH}_{3} \mathrm{CN}$. This mixture was removed from light and brought to reflux for 6 hours. The mixture was cooled, filtered through Celite, reduced in volume and precipitated with $\mathrm{Et}_{2} \mathrm{O}$ affording $0.981 \mathrm{~g}(0.735 \mathrm{mmol})$ of $\mathbf{2}$ as an off-white powder (51\%). Anal. Calcd $\left(\mathrm{C}_{45} \mathrm{H}_{42} \mathrm{~N}_{12} \mathrm{Ag}_{3} \mathrm{~B}_{3} \mathrm{~F}_{12}\right)$: C, 40.49; H, 3.17; N, 12.59. Found: C, 40.69; H, 3.09; N, 12.55. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 25^{\circ} \mathrm{C}$): $\delta=7.95$ (m), $7.66(\mathrm{~m}), 7.63(\mathrm{~s}), 7.32-7.26(\mathrm{~m}), 5.20(\mathrm{~s}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 25^{\circ} \mathrm{C}\right): \delta=$ 175.4 (m), 154.0, 151.2, 140.8, 126.5, 126.2, 125.8, 56.5. UV $\left(\mathrm{CH}_{3} \mathrm{CN}\right) \lambda_{\max }, \mathrm{nm}(\varepsilon): 254$ (28353), 260 (27282), 266 (21436), 296 (sh, 4422).

Figure S1. Thermal ellipsoid plot of $\left[\left(\left(\mathbf{p y C H}_{\mathbf{2}}\right)_{\mathbf{2}} \mathbf{i m}\right)_{\mathbf{2}} \mathbf{A g}\right] \mathbf{B F}_{4}$ drawn at 40%. The nearest $\mathrm{Ag} \cdot \cdots \mathrm{Ag}$ interaction is over $8.45 \AA$.

Figure S2. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of carbene region for 2 (bottom) and simulated spectrum (top) using ${ }^{1} \mathrm{~J}_{109_{\mathrm{Ag}-\mathrm{C}}}=104.5 \mathrm{~Hz},{ }^{2} \mathrm{~J}_{109_{\mathrm{Ag}-\mathrm{C}}}=8.0 \mathrm{~Hz}$ and ${ }^{3} \mathrm{~J}_{109} 9_{\mathrm{Ag}-\mathrm{C}}=$ 3.0 Hz .

