Ferromagnetic ordering and metamagnetism in malonate bridged 3D diamond-like and honeycomb-like networks: $[\mathrm{Cu}(\mathrm{mal})(\mathrm{DMF})]_{n}$ and $\left\{[\mathrm{Cu}(\mathrm{mal})(0.5 \mathrm{pyz})] \cdot \mathrm{H}_{2} \mathrm{O}\right\}_{n}$ (mal $=$ malonate dianion, DMF = N, N-dimethylformamide, pyz = pyrazine) Tian-Fu Liu, ${ }^{\dagger}$ Hao-Ling Sun, ${ }^{\dagger}$ Song Gao, ${ }^{,, \dagger}$ Shi-Wei Zhang ${ }^{\dagger}$ and Tai-Chu Lau ${ }^{*, \ddagger}$

Supporting materials

Synthesis of 1 and 2:

Caution: Whilst no problems were encountered in the course of this work, perchlorate mixtures are potentially explosive and should therefore be handled with appropriate care.

Synthesis of the compound $1[\mathrm{Cu}(\mathrm{mal})(\mathrm{DMF})]_{\mathrm{n}}$. An aqueous solution of Malonic acid $(0.104 \mathrm{~g}, 1 \mathrm{mmol}, 10 \mathrm{ml})$ and sodium hydroxide ($0.080 \mathrm{~g}, 2 \mathrm{mmol}$) was mixed with an aqueous solution of copper(II) perchlorate ($0.372 \mathrm{~g}, 1 \mathrm{mmol}, 10 \mathrm{ml}$). After 30 min stirred, 20 ml DMF (dimethyl formamide) was added to the mixture. Deep-blue prismatic single crystals were obtained after three days (Yield 53\%). Anal. Calc. for $\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{NO}_{5} \mathrm{Cu}$: C, 30.16; H, 3.77; N, 5.87. Found: C, 30.23; H, 3.68; N, 5.90\%; IR ($\mathrm{KBr} \mathrm{cm}^{-1}$) 1657(m), 1618(m), 1588(m), 1566(s); 1442(m), 1368(m), 1356(m); 737(w),701(w).

Compound $2[\mathrm{Cu}(\mathrm{mal})(0.5 \mathrm{pyz})] \cdot \mathrm{H}_{2} \mathrm{O}$: An aqueous solution of sodium malonate (1 $\mathrm{mmol}, 10 \mathrm{ml}$) was mixed with an aqueous solution of copper perchlorate ($1 \mathrm{mmol}, 10 \mathrm{ml}$). After 30 min stirred, a DMF solution of pyrazine ($1 \mathrm{mmol}, 5 \mathrm{ml}$) was added to the mixture. Deep blue block single crystals were obtained after one months (Yield 43\%). Anal. Calc. for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{10} \mathrm{Cu}_{2}$: C, 26.84; H, 2.68; N, 6.26\%. Found: C, 26.74; H, 2.92; N, 6.08. IR ($\mathrm{KBr} \mathrm{cm}^{-1}$) 3599(w), 3444(w), 1582(vs), 1565(vs), 1457(w), 1428(w), 1376(m).

(a)

(b)

Figure S1. (a) An ORTEP drawing of 2 (Hydrogen atoms are omitted for clarity); (b) Projection of $\mathbf{2}$ from c-axis formed by copper ions.

Figure S2. Temperature dependence of $\chi_{M} T$ and $\chi_{M}{ }^{-1}$ of $\mathbf{1}$ at 10 kOe field. The solid line represents the best fit to the Curie-Weiss expression.

Figure S3. Temperature dependence of $\chi_{M} T$ and $\chi_{M}{ }^{-1}$ of 2 at 20 kOe field. The solid line represents the best fit to the Curie-Weiss expression.

Figure S4. Real $\left(\chi_{M^{\prime}}\right)$ and imaginary $\left(\chi_{M^{\prime \prime}}\right)$ ac magnetic susceptibilities as a function of temperature in zero applied $d c$ field and an $a c$ field of 2 Oe at different frequencies (199, $355,633,1111 \mathrm{~Hz}$) for 2.

Figure S5. Real $\left(\chi_{\mathrm{m}^{\prime}}\right)$ and imaginary $\left(\chi_{\mathrm{m}^{\prime \prime}}\right)$ ac magnetic susceptibilities as a function of field are taken at 1.8 K and 3.1 K for 2.

