Supporting Information

Kinetics and Mechanism of Oxygen Atom Transfer from Methyl Phenyl Sulfoxide to Triarylphosphines Catalyzed by an Oxorhenium(V) Dimer

Nobuyoshi Koshino and James H. Espenson*

Figure S1. UV/Vis spectral changes accompanying the formation of **D**–L (L = methyl phenyl sulfoxide). Arrows indicate the direction of the absorbance change. $[\{MeReO(mtp)\}_2] = 0.49 \text{ mmol L}^{-1} \text{ and } [MeS(O)Ph]_T = 0-0.244 \text{ M in benzene at } 23.0 \,^{\circ}\text{C}.$

Figure S2. Plots of absorbance at selected wavelengths against the total concentrations of MeS(O)Ph. The solid lines represent the best fit based on the $\mathbf{D} + \mathbf{L} = \mathbf{D} - \mathbf{L}$ model.

Figure S3. Plots of [Sulfide]_t against $\{1-\exp(-k_m t)\}$ at different concentrations of MeS(O)Ph.

Figure S4. Plots of [Sulfide]_t against $\{1-\exp(-k_{\rm m}t)\}$ at different concentrations of PPh₃. $[\{\text{MeReO(mtp)}\}_2] = 0.49 \text{ mM}$ and [MeS(O)Ph] = 9.9 mM in C_6D_6 at 23 °C.

Figure S5. Plots of [Sulfide]_t against $\{1-\exp(-k_m t)\}$ at different concentrations of $P(C_6H_4-4-Cl)_3$. [$\{MeReO(mtp)\}_2$] = 0.50 mM and [MeS(O)Ph] = 10.2 mM in C_6D_6 at 23 °C.

Figure S6. Plots of [Sulfide]_t against $\{1 - \exp(-k_m t)\}$ at different concentrations of $P(C_6H_4-4-F)_3$ for the oxygen atom transfer reaction from MeS(O)Ph to $P(C_6H_4F)_3$. (a) [{MeReO(mtp)}₂] = 0.83 mM and [MeS(O)Ph] = 3.6 mM, (b) [{MeReO(mtp)}₂] = 0.76 mM and [MeS(O)Ph] = 9.4 mM in C_6D_6 at 23 °C.

Figure S7. Dependence of $k_{\rm m}$ on [PPh₃] in the monomerization reaction of **D**. [{MeReO(mtp)}₂] = 0.49 mM and [MeS(O)Ph] = 9.9 mM in C₆D₆ at 23 °C.

Figure S8. Dependence of k_{obs} for monomerization of **D** by PPh₃ in the presence of (a) [MeS(O)Ph] and (b) [DMF]. (a) [**D**] = 0.4 mM and [PPh₃] = 10.8 mM, (b) [**D**] = 0.2 mM and [PPh₃] = 17.3 mM.

Figure S9. Hammett plot for the monomerization rate constant, k_{mp} for $P(C_6H_4-4-R)_3$ in C_6D_6 at 23 °C.