SUPPORTING INFORMATION FOR

The Construction of a Functional Layered Solid using the Tetrakis(imidazolyl)borate Coordinating Anion

Barton H. Hamilton, Kathryn A. Kelly, Todd A. Wagler, Matthew P. Espe and Christopher J. Ziegler*.

Department of Chemistry, University of Akron, Akron, Ohio 44325

Crystal Structure Experimental Details

A colorless plate-like crystal of $C_{12}H_{14.65}BN_9O_{4.32}Pb$, approximate dimensions 0.02~x 0.18~x $0.23~mm^3$, was used for X-ray crystallographic analysis. The X-ray intensity data were measured at 100K (Bruker KRYO-FLEX) on a Bruker SMART APEX CCD-based X-ray diffractometer system equipped with a Mo-target X-ray tube ($\lambda = 0.71073$) operated at 2000 watts power. The detector was placed at a distance of 5.009 cm. from the crystal.

A total of 1497 frames were collected with a scan width of 0.3... in and an exposure time of 20 sec./frame. The total data collection time was 10.90 hours. The frames were integrated with the Bruker SAINT software package using a narrow-frame integration algorithm. The integration of the data using a triclinic unit cell yielded a total of 9837 reflections to a maximum 20 angle of 66.13° (0.65 resolution), of which 5991 were independent (redundancy 1.64, completeness = 86.7%, R_{int} = 2.70%, R_{sig} = 5.04%) and 5391 (90.0%) were greater than $4\sigma(F)$. The final cell constants of \underline{a} = 8.5337(8) , \underline{b} = 10.7463(9) , \underline{c} = 11.2476(10) , α = 74.6840(10) $_{i}$, β = 79.2840(10) $_{i}$, γ = 67.0120(10) $_{i}$, volume = 911.84(14) 3 , are based upon the refinement of the XYZ-centroids of 5744 reflections above 20 $\sigma(I)$. Analysis of the data showed negligible decay during data collection. The data were corrected for absorption with the SADABS program (ratio of minimum to maximum apparent transmission: 0.690050).

The structure was solved and refined using the Bruker SHELXTL (Version 6.1) Software Package, using the space group P-1, with Z=2 for the formula unit $C_{12}H_{14.65}BN_9O_{4.32}Pb$. The final anisotropic full-matrix least-squares refinement on F^2 converged at R1=3.16%, wR2 = 7.21% and a goodness-of-fit of 1.075. The largest peak on the final difference map was 2.690 e $^{-}/^{3}$. The calculated density for $C_{12}H_{14.65}BN_9O_{4.32}Pb$ is 2.084 g/cm 3 and F(000) is 543 e $^{-}$.

© 2002 American Chemical Society, Inorg. Chem., Hamilton ic025796c Supporting Info Page 2

Solid-State NMR Experimental Details

Solid-state NMR spectra were obtained on a Varian Unityplus-200 (4.7T) spectrometer using Doty Scientific supersonic and standard MAS probes. All samples were packed into 7 mm silicon nitride rotors with Kel-F end caps. ¹⁵N Bloch decay spectra were acquired using a 200 sec relaxation delay and a spinning speed of 2.7 kHz. ²⁰⁷Pb spectra were acquired using a Hahn-echo sequence with a 5 sec relaxation delay and a spinning speed of 8 kHz. ¹⁵N and ²⁰⁷Pb chemical shifts were referenced to solid ¹⁵NH₄¹⁵NO₃ (δ_{NH_4} = 0 ppm) and 0.5 M Pb(NO₃)₂ (δ_{Pb} = -2941 ppm) as an external reference, respectively. A 55 kHz decoupling field strength was used in all experiments.