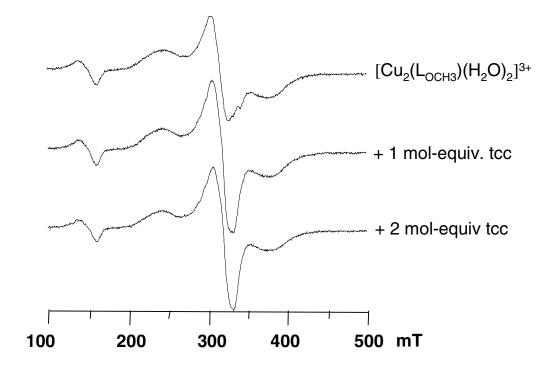
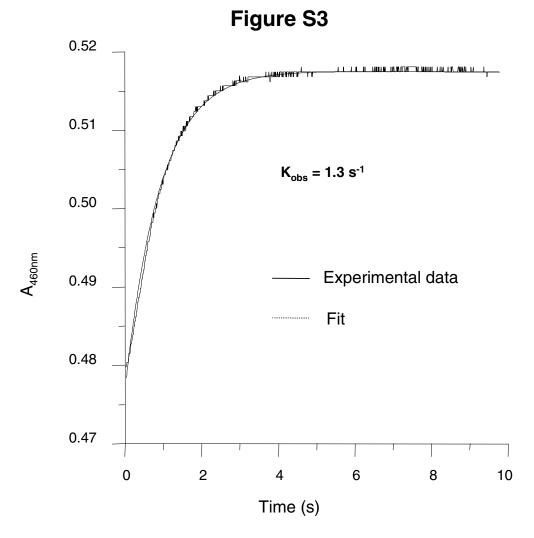

Substrate Binding in Catechol Oxidase Activity : Biomimetic Approach

Stéphane Torelli, Catherine Belle, Sylvain Hamman, Jean-Louis Pierre and Eric Saint-Aman


Submitted to Inorg. Chem

- Figure S1 Evolution of the UV-Visible spectrum of $[Cu_2(L_{OCH3})(H_2O)_2]^{3+}$ (0.5 mM in acetone) upon progressive addition of tcc at 25 ° C. Upper spectrum obtained after addition of 2 mol-equiv of substrate.
- **Figure S2** Evolution of the EPR (77 K) spectrum of $[Cu_2(L_{OCH3})(H_2O)_2]^{3+}$ (3 mM in acetone) upon progressive addition of tcc.
- Figure S3 Kinetic of the fixation of the second mol-equiv. of tcc on $[Cu_2(L_{OCH3})(H_2O)_2]^{3+}$ (25°C in acetone) followed at 460 nm.



Evolution of the UV-Visible spectrum of $[Cu_2(L_{OCH3})(H_2O)_2]^{3+}$ (0.5 mM in acetone) upon progressive addition of tcc at 25 ° C. Upper spectrum obtained after addition of 2 mol-equiv of substrate

Figure S2

Evolution of the EPR (77 K) spectrum of $[Cu_2(L_{OCH3})(H_2O)_2]^{3+}$ (3 mM in acetone) upon progressive addition of tcc.

Kinetic of the fixation of the second mol-equiv. of tcc on $[Cu_2(L_{OCH3})(H_2O)_2]^{3+}$ (25°C in acetone) followed at 460 nm. The corresponding curve is described by the following equation :

$$A = A_e$$
 $A_t = A_e \exp(k_{obs} \times t)$

Where \mathbf{A}_{e} is the absorbance at the equilibrium and \mathbf{A}_{t} the absorbance at the t instant