Supporting Information

Vaduvescu, S.; Potvin, P.G.: "Synthesis and characterization of a novel linear trinuclear ruthenium(II) complex: variation of photosensitization ability with chain length in a homologous series."

Characterization Details:

L: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.83\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{H}-4{ }^{\prime}\right), 8.79(\mathrm{~d}, 4 \mathrm{H}, \mathrm{H}-6, \mathrm{~J}=4.2 \mathrm{~Hz}), 8.74(\mathrm{~d}, 4 \mathrm{H}, \mathrm{H}-3, \mathrm{~J}=7.0 \mathrm{~Hz}), 8.09(\mathrm{~s}$, $\left.4 \mathrm{H}, \mathrm{H}-2^{\prime \prime}\right), 7.92$ (dd, 4H, H-4, J = 7.0 Hz), 7.39 (dd, 4H, H-5, J = 4.2 Hz) ppm. MALDI-MS: m/z [\%] 541 [100, M+1], 443 [27], 324 [10], 221 [17]. EA: Found: C, 79.57, H, 4.73, N, 12.31\%, Calc'd for $\mathrm{C}_{36} \mathrm{H}_{24} \mathrm{~N}_{6}$: C, 79.98, H, 4.47, N, 15.54\%. [(ttpy)RuL][PF $\mathbf{6}_{2}:{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{CN}, 400 \mathrm{MHz}\right): \delta 9.12\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}-\mathrm{B} 4{ }^{\prime}\right), 9.02\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}-\mathrm{C} 4{ }^{\prime}\right), 8.97$ ($\left.\mathrm{s}, 2 \mathrm{H}, \mathrm{H}-\mathrm{A} 4^{\prime}\right), 8.79(\mathrm{~m}$, $4 \mathrm{H}, \mathrm{H}-\mathrm{C} 3, \mathrm{H}-\mathrm{C} 6), 8.70(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-\mathrm{B} 3, \mathrm{H}-\mathrm{A} 3), 8.46$ (d, 2H, H-B2", J = 7.8 Hz), 8.35 (d, 2H, H-B3", J = 7.8 Hz), 8.13 (m, 4H, H-A2", H-C4), 7.97 (m, 4H, H-B4, H-A4), 7.60 (m, 4H, H-A3", H-C5), 7.48 (m, 4H, H-B6, H-A6), 7.22 (m, 4H, H-B5, H-A5), $2.57\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) \mathrm{ppm}$. ESI-MS: m/z [\%] 483 [100, M], 374 [5], 347 [7], 322 [12]. EA: Found: C, 55.86, H, 3.50, $\mathrm{N}, 9.77 \%$, Calc'd for $\mathrm{RuC}_{58} \mathrm{H}_{41} \mathrm{~N}_{9} \mathrm{P}_{2} \mathrm{~F}_{12}$: C, $55.51, \mathrm{H}, 3.29, \mathrm{~N}, 10.04 \%$.
[(ttpy)RuLRu(ttpy)][PF $\mathbf{f}_{4}:{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{CN}, 400 \mathrm{MHz}\right): \delta 9.19$ (s, 4H, H-B4'), 9.05 ($\left.\mathrm{s}, 4 \mathrm{H}, \mathrm{H}-\mathrm{A} 4{ }^{\prime}\right), 8.78$ (d, 4H, H-B3, J $=8 \mathrm{~Hz}), 8.71(\mathrm{~d}, 4 \mathrm{H}, \mathrm{H}-\mathrm{A} 3, \mathrm{~J}=8 \mathrm{~Hz}), 8.62\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{H}-\mathrm{B} 2^{\prime \prime}\right), 8.17\left(\mathrm{~d}, 4 \mathrm{H}, \mathrm{J}=7.6, \mathrm{H}-\mathrm{A} 2^{\prime \prime}\right), 8.03(\mathrm{~m}, 8 \mathrm{H}, \mathrm{H}-\mathrm{A} 4, \mathrm{H}-\mathrm{B} 4), 7.64$ (d, 4H, H-A3", J = 7.5 Hz), 7.51 (m, 8H, H-A6, H-B6), 7.26 (m, 8H, H-A5, H-B5), 2.58 (s, 6H, CH ${ }_{3}$) ppm. ESI-MS: m/z [\%] 348 [70, M+1], 322 [8], 271.5 [7], 198.5 [7], 173.5 [10], 157.5 [100], 152 [35], 135.5 [30]. EA reported by Constable et al., J. Chem Soc. Dalton Trans. 1992, 3467.
[(ttpy)RuLRuLRu(ttpy)][PF $\left.]_{6}\right]_{6}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{CN}, 400 \mathrm{MHz}\right): \delta 9.23\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{H}-\mathrm{C} 4{ }^{\prime}\right), 9.21\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{H}-\mathrm{B} 4{ }^{\prime}\right), 9.06(\mathrm{~s}, 4 \mathrm{H}, \mathrm{H}-$ A4'), 8.79 (t, 8H, H-B3, H-C3), 8.71 (d, 4H, H-A3, J = 7.9 Hz), 8.64 ($\mathrm{s}, 8 \mathrm{H}, \mathrm{H}-\mathrm{B} 2^{\prime \prime}, \mathrm{H}-\mathrm{B} 3^{\prime \prime}$), 8.17 (d, 4H, H-A2", J = 7.4 $\mathrm{Hz}), 8.03$ (m, 12H, H-A4, H-B4, H-C4), 7.64 (d, 4H, H-A3", J = 7.4 Hz), 7.58 (d, 4H, H-C6, J = 5.3 Hz), 7.52 (m, 8H, HA6, H-B6), 7.28 (m, 12H, H-A5, H-B5, H-C5), 2.58 (s, 6H, CH3 $)$ ppm. ESI-MS: m/z [\%] 339.2 [40, M+1], 200.5 [7], 146.2 [70]. EA: Found: C, 47.52, H, 2.89, N, 7.89%, Calc'd for $\mathrm{Ru}_{3} \mathrm{C}_{116} \mathrm{H}_{82} \mathrm{~N}_{18} \mathrm{P}_{6} \mathrm{~F}_{36}$: C, 48.03, H, 2.85, N, 8.69\%.

Table S1. Estimations of the energies of activation for electron transfer ΔG^{*}.

	$\left[\operatorname{Ru}(\text { bpy })_{3}\right]^{2+}$	$\left[\mathrm{Ru}(\mathrm{ttpy})_{2}\right]^{2+}$	$[(\mathrm{ttpy}) \mathrm{Ru}(\mathbf{L})]^{2+}$	$\left[\{(\mathrm{ttpy}) \mathrm{Ru}\}_{2}(\mathbf{L})\right]^{4+}$	$\left[\{(\mathrm{ttpy}) \mathrm{Ru}(\mathbf{L})\}_{2} \mathrm{Ru}\right]^{6+}$
$\Lambda / \mathrm{eV}^{\mathrm{a}}$	0.955	0.955	0.955	0.955	0.955
$W_{R} / \mathrm{eV}^{\mathrm{b}}$	0.119	0.119	0.119	0.172	0.207
$W_{P} / \mathrm{eV}^{\mathrm{b}}$	0.089	0.089	0.089	0.129	0.155
$\Delta G_{\text {PET }}^{0} / \mathrm{eV}^{\mathrm{c}}$	-0.42	-0.24	-0.22	-0.22	-0.22
$\Delta G_{\text {BET }}^{0} / \mathrm{eV}^{\mathrm{c}}$	-1.71	-1.70	-1.72	-1.72	-1.72
$\Delta G_{\text {PET }}^{*} / \mathrm{eV}^{\mathrm{d}}$	0.19	0.24	0.25	0.29	0.32
$\Delta G_{\text {BET }}^{*} / \mathrm{eV}^{\mathrm{d}}$	0.23	0.22	0.23	0.25	0.26

${ }^{\text {a }}$ Reorganizational energy calculated as $\Lambda \approx \Lambda_{\text {out }}=e^{2}\left(1 / 2 R_{A}+1 / 2 R_{B}-1 /\left(R_{A}+R_{B}\right)\left(1 / n^{2}-1 / \rho\right)\right.$ since the inner sphere component is near zero. ${ }^{1} R_{B}=3.3 \AA$ for $\mathrm{MV}^{2+} / \mathrm{MV}^{++}$and $R_{A}=7 \AA$ for all complexes at closest approach. ${ }^{2}$ The refractive index n for $\mathrm{CH}_{3} \mathrm{CN}$ is 1.3441 and the dielectric constant ρ is 37.5.
${ }^{\mathrm{b}}$ By an end-on approach, the electrostatic work term is $W=q_{B} f\left\{q_{A} / a+q_{A} /(a+c)+2 i /(a+b)+2 i /(a+b+c)+2 j /(a+2 b)+\right.$ $2 j /(a+2 b+c)\}$ where q_{A} is the proximal metal charge, q_{B} is the charge on each nitrogen of the acceptor $\mathrm{MV}^{2+\iota+}, a$ is the distance of closest approach to the proximal metal (corresponding to $R_{A}+R_{B}=10.3 \AA$), b is the distance between metals, estimated at $15.3 \AA,{ }^{3} c$ is the $\mathrm{N} \cdots \mathrm{N}$ separation in MV ${ }^{2+\rho+}$, estimated at $7.0 \AA$ from a crystal structure; ${ }^{4} i=j=0$ for $[(t \operatorname{tpy}) \operatorname{Ru}(\mathbf{L})]^{3+2+}, i=1$ and $j=0$ for $\left[\{(\operatorname{ttpy}) \operatorname{Ru}\}_{2}(\mathbf{L})\right]^{5+/ 4+}$ and $i=j=1$ for $\left[\{(\operatorname{ttpy}) \operatorname{Ru}(\mathbf{L})\}_{2} \operatorname{Ru}\right]^{7+/ 6+} ; f=e^{2} /\left(4 \pi \rho \varepsilon_{0}\right)$, where $e=$ $1.602 \times 10^{-19} \mathrm{C}$ and ε_{0} is the vacuum permittivity constant, and f has a value in $\mathrm{CH}_{3} \mathrm{CN}$ of $37.0 \mathrm{eV} \AA \mathrm{mol}^{-1}$. W_{R} refers to the reactant state ($q_{A}=+2$ and $q_{B}=+1$) and W_{P} refers to the product state ($q_{A}=+3$ and $q_{B}=+1 / 2$). For an end-on attack of the middle metal in the trinuclear complex, $W=q_{B} f\left\{q_{A} / a+q_{A} /(a+c)-4 \arctan (a / b) / b-4 \arctan ((a+c) / b) / b\right\} ; W_{R}$ increases to 0.289 eV and W_{P} increases to 0.172 eV . For an end-on attack of the dinuclear complex at its middle, $W=q_{B} f\left\{\left(q_{A}+2\right) / a-\right.$ $\left.\left(q_{A}+2\right) \arctan (a / c) / c\right\}$ where a is now $15.3 / 2 \AA$; W_{R} then increases to 0.338 eV and W_{P} increases to 0.211 eV .
${ }^{\mathrm{c}}$ Using $\Delta G^{\circ}{ }_{\mathrm{PET}}=E_{\mathrm{ox}}\left(\mathrm{Ru}^{3+2+}\right)-E_{\text {red }}\left(\mathrm{MV}^{2+/++}\right)-E_{\text {o0 }}$ and $-\Delta G^{\circ}{ }_{\text {BET }}=E_{\text {ox }}\left(\mathrm{Ru}^{3+/ 2+}\right)-E_{\text {red }}\left(\mathrm{MV}^{2+/++}\right) . E_{\text {red }}\left(\mathrm{MV}^{2+/++}\right)=-0.45 \mathrm{~V}$ (vs. SCE in $\mathrm{CH}_{3} \mathrm{CN}$) and $E_{\text {ox }}$ is +1.26 V for $\left[\mathrm{Ru}(\mathrm{bpy})_{3}\right]^{3+2+2+6}+1.25 \mathrm{~V}$ for $\left[\mathrm{Ru}(\mathrm{ttpy})_{2}\right]^{3+2+2+}$, and +1.27 V for the others (see Table 1), all vs. SCE in $\mathrm{CH}_{3} \mathrm{CN} E_{00}$ for $\left[\mathrm{Ru}(\text { bpy })_{3}\right]^{2+}$ is $2.12 \mathrm{eV} .{ }^{8} E_{00}$ for $\left[\mathrm{Ru}(\mathrm{ttpy})_{2}\right]^{2+}$ is calculated at 1.94 eV from the emission $\lambda_{\text {max }}$ at $640 \mathrm{~nm},{ }^{9}$ and the same E_{00} value was used for the other cases.
${ }^{\mathrm{d}} \Delta G^{*}=W_{R}+\left(\Delta G^{\circ}+\Lambda+W_{P}-W_{R}\right) / 4 \Lambda .{ }^{1} \Delta G^{*}$ pet increases to 0.39 eV for attack of the middle metal in the trinuclear case, and to 0.44 eV for attack of the dinuclear complex at its middle; ΔG^{*} вहт correspondingly increases to 0.29 and 0.32 eV , respectively.

[^0]
[^0]: 1 Marcus, R. A.; Sutin, N. Biochim. Biophys. Acta 1985, 811, 265.
 ${ }^{2}$ Sun, H.; Yoshimura, A.; Hoffman, M. Z. J. Phys. Chem. 1994, 98, 5058.
 ${ }^{3}$ Average of three values from crystal structures in Chamchoumis, C. M.; Potvin, P. G. J. Chem. Soc. Dalton Trans. 1999, 1373 and in Mikel, C.; Potvin, P. G. Polyhedron 2002, 21, 49.
 4 Russell, J. H.; Wallwork, S. C. Acta Cryst. 1972, B28, 1527.
 5 Rehm, D.; Weller, A. Ber. Bunsges. Phys. Chem. 1969, 73, 834.
 ${ }^{6}$ Kavarnos, G. J. Fundamentals of Photoinduced Electron Transfer; VCH: New York, 1993.
 ${ }^{7}$ K. Kalyanasundaram, M.K. Nazeeruddin, M. Grätzel, G. Viscardi, P. Savarino, E. Barni, Inorg. Chim. Acta 1992, 198, 831.
 8 Balzani, V.; Barigelletti, F.; De Cola, L. Top. Curr. Chem. 1990, 158, 31.
 9 Barigelletti, F.; Flamigni, L.; Balzani, V.; Collin, J.-P.; Sauvage, J.-P.; Sour, A.; Constable, E. C.; Cargill
 Thompson, A. M. W. J. Chem. Soc. Chem. Commun. 1993, 942.

