Supporting Information:

[AsCl₃([9]aneS₃)]: Addition of a CH₂Cl₂ solution (5 cm³) of [9]aneS₃ (0.045 g, 0.25 mmol) to a CH₂Cl₂ solution (5 cm³) of AsCl₃ (0.045 g, 0.25 mmol) produced a clear pale yellow solution. Concentration of the solution *in vacuo* produced a yellow solid which was filtered, washed with CH₂Cl₂ and dried *in vacuo*. Yield 54%. Calculated for C₆H₁₂AsCl₃S₃: C, 19.9; H, 3.3%. Found: C, 20.3; H, 3.5%. ¹H NMR: δ 3.1 (s, CH₂). IR/cm⁻¹: 418 br (As-Cl).

[AsBr₃([9]aneS₃)]: Procedure as above, giving a bright yellow crystalline solid. Yield 83%. Calculated for $C_6H_{12}AsBr_3S_3$: C, 14.6; H, 2.4%. Found: C, 15.0; H, 2.5%. ¹H NMR: δ 3.1 (s, CH₂). IR/cm⁻¹: 284 br (As-Br).

[AsI₃([9]aneS₃)]: Procedure as above but using thf in place of CH₂Cl₂. Yellow/orange solid. Yield 62%. Calculated for C₆H₁₂AsI₃S₃: C, 11.3; H, 1.9%. Found: C, 11.4; H, 2.1%. ¹H NMR: δ 3.1 (s, CH₂).

[AsCl₃([14]aneS₄)]: Method as above using CH₂Cl₂. White solid. Yield 77%. Calculated for $C_{10}H_{20}AsCl_3S_4$: C, 24.2; H, 4.1%. Found: C, 23.9; H, 4.3%. ¹H NMR: δ 1.94 (quintet, 4H, CH₂CH₂CH₂), 2.67 (t, 8H, SCH₂), 2.78, (s, 8H, SCH₂). IR/cm⁻¹: 409, 390 (As-Cl)

[AsCl₃([8]aneSe₂)]: Method as above, giving a deep red gum which was triturated with hexane to give a waxy red solid. Yield 45%. Calculated for $C_6H_{12}AsCl_3Se_2$: C, 17.0; H, 2.9. Found: C, 16.9; H, 3.0. ¹H NMR: δ 2.24 (m, CH₂CH₂CH₂, 4H), 2.88 (m, SeCH₂, 8H). IR/cm⁻¹: 402, 392 (As-Cl).

[AsBr₃([8]aneSe₂)]: Method as above. Burgandy solid. Yield 55%. Calculated for $C_6H_{12}AsBr_3Se_2$: C, 12.9; H, 2.2%. Found: C, 12.8; H, 2.2. IR/cm⁻¹: 297, 282 (As-Br).

[AsI₃([8]aneSe₂)]: Method as above, but using thf in place of CH₂Cl₂. Burgandy powder. Yield 77%. Calculated for C₆H₁₂AsI₃Se₂: C, 10.3; H, 1.7. Found: C, 10.0; H, 1.9%.

[(AsCl₃)₂([16]aneSe₄)]: Method as above using CH₂Cl₂. Pale yellow solid. Yield 92%. Calculated for $C_{12}H_{24}As_2Cl_6Se_4$: C, 17.0; H, 3.1. Found: C, 16.7; H, 3.2. ¹H NMR: δ 2.07

(quin, CH₂CH₂CH₂, 8H), 2.70 (t, SeCH₂, 16H). IR/cm⁻¹: 401 br (As-Cl).

[(AsBr₃)₂([16]aneSe₄)]: Method as above. Yellow solid. Yield 71%. Calculated for $C_{12}H_{24}As_2Br_6Se_4$: C, 12.9; H, 2.2%. Found: C, 13.5; H, 2.3%. ¹H NMR: δ 2.07 (quin, $CH_2CH_2CH_2$, 8H), 2.70 (t, SeCH₂, 16H). IR/cm⁻¹: 298, 281, 268 (As-Br).

[(AsBr₃)₂([24]aneSe₆)]: Method as above. Bright yellow solid. Yield 95%. Calculated for $C_{18}H_{36}As_2Br_6Se_6$: C, 15.9; H, 2.7%. Found: C, 15.6; H, 2.6%. ¹H NMR: δ 2.04 (*quin.*, 12H, $CH_2CH_2CH_2$), 2.70 (t, SeCH₂, 24H). IR/cm⁻¹: 297, 260 (As-Br).

[AsBr₃{MeS(CH₂)₂SMe}]: Method as above. Yellow solid. Yield 84%. Calculated for $C_4H_{10}AsBr_3S_2$: C, 11.0; H, 2.3%. Found: C, 10.9; H, 2.3%. ¹H NMR: δ 2.16 (s, 6H, Me), 2.74 (s, 4H, CH₂). IR/cm⁻¹: 298, 281, 261 (As-Br).