SUPPORTING INFORMATION Reactivity of the B–H bond in *Tris*(pyrazolyl)hydroborato Zinc Complexes: An Unexpected Example of Zinc Hydride Formation in a Protic Solvent and its Relevance towards Hydrogen Transfer to NAD+ Mimics by *Tris*(pyrazolyl)hydroborato Zinc Complexes in Alcoholic Media Catherine Bergquist, Lawrence Koutcher, Amanda L. Vaught, and Gerard Parkin,* Department of Chemistry, Columbia University, New York, New York 10027, USA. Received xxxx xx, 2001. **Experimental Details** ## **General Considerations** $[Tp^{Bu^t,Me}]ZnOH,^1$ { $[Tp^{Bu^t,Me}]ZnOH_2$ } $[HOB(C_6F_5)_3],^2$ 10-methylacridinium perchlorate³ (*caution!*) and 10-methylacridan,⁴ were prepared by literature methods. Reduction of 10-Methylacridinium Perchlorate by [Tp^{But,Me}]ZnOH in ROH [Tp^{But,Me}]ZnOH (3 mg, 0.006 mmol) was added to a solution of 10-methylacridinium perchlorate (3 mg, 0.01 mmol) in *ca*. 0.6 mL deutero-ROH (R = Me, Et, Prⁱ). The mixture was heated at 80°C for 15 hours,⁵ resulting in the formation of 10-methylacridan and 3-*tert*-butyl-5-methylpyrazole, as demonstrated by ¹H NMR spectroscopy. The spectroscopic yield of 10-methylacridan (based on total amount of added [Tp^{But,Me}]ZnOH) was *ca*. 85%. In the absence of [Tp^{But,Me}]ZnOH, no reaction was observed between 10-methylacridinium perchlorate and ROH under the same conditions. The analogous reaction between deuterium labeled [DTp^{But,Me}]ZnOH and 10-methylacridinium perchlorate in CH₃OH was monitored by ²H NMR spectroscopy, confirming that deuterium was incorporated into the methylene group. Reduction of 10-Methylacridinium Perchlorate by [Tp^{But,Me}]ZnOH in THF A suspension of [Tp^{But,Me}]ZnOH (3 mg, 0.006 mmol) and 10-methylacridinium perchlorate (3 mg, 0.01 mmol) in d_8 –THF (ca. 0.6 mL) was heated at 80°C for 1 day, resulting in the formation of 10-methylacridan, as demonstrated by ¹H NMR spectroscopy. Reduction of 10-Methylacridinium Perchlorate by [Tp^{But,Me}]Tl in MeOH [Tp^{But,Me}]Tl (3 mg, 0.005 mmol) was added to a solution of 10-methylacridinium perchlorate (3 mg, 0.01 mmol) in CD₃OD (*ca.* 0.6 mL). The reaction was monitored by ¹H NMR spectroscopy which demonstrated the presence of 10-methylacridan and 3-*tert*-butyl-5-methylpyrazole upon mixing. The mixture was heated at 80°C for 2.5 hours to complete the reaction forming a *ca.* 1:3 molar ratio of 10-methylacridan and 3-*tert*-butyl- 5-methylpyrazole. The analogous reaction between deuterium labeled [DTp^{But,Me}]Tl and 10-methylacridinium perchlorate in CH₃OH was monitored by ²H NMR spectroscopy, confirming that deuterium was incorporated into the methylene group. ## Reaction of {[Tp^{Bu^t,Me}]ZnOH₂}[HOB(C₆F₅)₃] towards Methanol - (a) A solution of $\{[Tp^{Bu^t,Me}]ZnOH_2\}[HOB(C_6F_5)_3]$ (ca. 3 mg) in CD₃OD (ca. 0.6 mL) was monitored by 1H NMR and ${}^{19}F$ spectroscopy. After ca. 30 minutes, 1H NMR spectroscopy demonstrated the presence of $[Tp^{Bu^t,Me}]ZnH$, 6 3-tert-butyl-5-methylpyrazole, and an unidentified complex which has a spectrum consistent with $\{[Tp^{Bu^t,Me}]ZnL\}^+$, where L is possibly MeOH or H₂O. Over a period of hours, small quantities of $[Tp^{Bu^t,Me}]ZnF^7$ were generated as the mixture decomposed. 1H NMR spectrum of $[Tp^{Bu^t,Me}]ZnH$ (CD₃OD): 1.37 [s, 3(C(C \underline{H}_3)₃)], 2.39 [s, 3(C \underline{H}_3)], 4.56 [s, Zn \underline{H}] 5.83 [s, 3(C₃N₂ \underline{H})], $\underline{H}B$ not observed. 1H NMR spectrum of $[Tp^{Bu^t,Me}]ZnF$ (CD₃OD): 1.35 [s, 3(C(C \underline{H}_3)₃)], 2.41 [s, 3(C \underline{H}_3)], 5.91 [d, J = 0.3, 3(C₃N₂ \underline{H})], $\underline{H}B$ not observed. 1H NMR spectrum of $\{[Tp^{Bu^t,Me}]ZnL\}^+$ (CD₃OD): 1.38 [s, 3(C(C \underline{H}_3)₃)], 2.40 [s, 3(C \underline{H}_3)], 5.95 [s, 3(C₃N₂ \underline{H})], $\underline{H}B$ not observed. - (b) A similar experiment was performed with the deuterium labeled $\{ [Tp^{Bu^t,Me}] ZnOD_2 \} [DOB(C_6F_5)_3] \text{ in } CD_3OD. \text{ Formation of the protio complex } \\ [Tp^{Bu^t,Me}] ZnH \text{ was demonstrated by 1H NMR spectroscopy.}$ - (c) An analogous experiment was performed with the deuterium labeled complex, $\{[DTp^{Bu^t,Me}]ZnOH_2\}[HOB(C_6F_5)_3], \text{ in }CD_3OD. \text{ Formation of the deutero complex} \\ [DTp^{Bu^t,Me}]ZnD \text{ was demonstrated by removing the volatile components and obtaining the }^2H \text{ NMR spectrum in }C_6H_6.$ ## References Looney, A.; Han, R.; McNeill, K.; Parkin, G. J. Am. Chem. Soc. 1993, 115, 4690-4697. - (2) Bergquist, C.; Parkin, G. J. Am. Chem. Soc. 1999, 121, 6322-6323. - (3) Fukuzumi, S.; Fujita, M.; Maruta, J.; Chanon, M. J. Chem. Soc., Perkin Trans. 2 1994, 1597-1602. - (4) Ostovic, D.; Lee, I. H.; Roberts, R. M. G.; Kreevoy, M. M. J. Org. Chem. 1985, 50, 4206-4211. - (5) The initial spectrum at room temperature in CD₃OD indicated the presence of 10-methylacridan and 3-*tert*-butyl-5-methylpyrazole. - (6) Bergquist, C.; Parkin, G. Inorg. Chem. 1999, 38, 422-423. - (7) (a) Kläui, W.; Schilde, U.; Schmidt, M. Inorg. Chem. 1997, 36, 1598-1601. - (b) The ¹H NMR data that was reported in the literature is incorrect due to an error in the solvent referencing (Kläui, W., personal communication).