

View of the [N(CH₃)₄][OsO₄F] unit cell showing the packing along the b-axis. Figure S6.

View of the [N(CH₃)₄][OsO₃F₃] unit cell showing the packing along the c-axis. Figure S7.

Table S8. Correlation Diagram for the Vibrational Modes of the a) $N(CH_3)_4^+$ Cation and b) OsO_4F^- Anion in $[N(CH_3)_4][OsO_4F]$.

	Cation Symmetry, T_d	Site Symmetry, C_2	Crystal Symmetry, $C_{2\nu}$ A ₁ (Ra, IR) $2(\nu_1 - \nu_8)$, $2(\nu_9 - \nu_{19})$, 2R, 2T	
$4(v_1 - v_3)$	A_1			
$4v_4$ $4(v_5 - v_8)$	A ₂ E	A	A ₂ (Ra)	$2(v_1 - v_8)$, $2(v_9 - v_{19})$, $2R$, $2\tilde{T}$
$4(v_9 - v_{12}), 4R$ $4(v_{13} - v_{19}), 4T$	T_1 T_2	_B		4(v ₉ - v ₁₉), 4R, 4T 4(v ₉ - v ₁₉), 4R, 4T
	Anion Symmetry, C_s	Site Symmetry, C_s	Crystal Symmetry, $C_{2\nu}$	
4(ν ₁ - ν ₈), 8T, 4R	Α'	— A'	A ₁ (Ra, IR)	$2(v_1 - v_8)$, 4T, 2R
4(v ₉ - v ₁₂), 4T, 8R	A"	- A"	A_2 (Ra, IR) B_1 (Ra)	$2(v_9 - v_{12}), 2T, 4R$ $2(v_1 - v_8), 4T, 2R$
			B ₂ (Ra)	$2(v_9 - v_{12}), 2T, 4R$

^a Correlation of the free anion symmetry of OsO_4F^- (C_s) to the anion site symmetry (C_s) and the unit cell symmetry ($C_{2\nu}$) (space group Abm2) predicts that the A' modes of the free anion are each split into A_1 and B_1 components in the Raman and infrared spectra. The A" modes are expected to split into A_2 and B_2 components in the Raman spectrum while the splitting is not observed in the infrared spectrum. Correlation of the free cation symmetry of $N(CH_3)_4^+$ (T_d) to the cation site symmetry (C_2) and the unit cell symmetry ($C_{2\nu}$) predicts that all bands ($v_1 - v_{19}$) are Raman and infrared active. In the Raman spectrum, the bands $v_1 - v_8$ and $v_9 - v_{19}$ are expected to be factor-group split into A_1 and A_2 and into A_1 , A_2 , B_1 , and B_2 components, respectively. In the infrared spectrum, the bands $v_1 - v_8$ are not expected to be split while the bands $v_9 - v_{19}$ are expected to split into A_1 , B_1 , and B_2 components.

Table S9. Correlation Diagram for the Vibrational Modes of the a) $N(CH_3)_4^+$ Cation and b) $OsO_3F_3^-$ Anion in $[N(CH_3)_4][OsO_3F_3]$.

	Cation Symmetry, T_d	Site Symmetry, C_2	Crystal Symmetry,	, C _{2h}
$4(v_1 - v_3)$	A ₁		A _g (Ra)	$2(v_1 - v_8)$, $2(v_9 - v_{19})$, 2R, 2T
$4v_4$	A_2	A	B _g (Ra)	4(v ₉ - v ₁₉), 4R, 4T
$4(v_5 - v_8)$ $4(v_9 - v_{12}), 4R$ $4(v_{13} - v_{19}), 4T$	E T_1 T_2	B	$A_{u} (IR)$ $B_{u} (IR)$	$2(v_1 - v_8)$, $2(v_9 - v_{19})$, 2R, 2T $4(v_9 - v_{19})$, 4R, 4T
	Anion Symmetry, $C_{3\nu}$	Site Symmetry, C_I	Crystal Symmetry,	C_{2h}
8(v ₁ - v ₄), 8T	A_1		A _g (Ra)	$2(v_1 - v_5)$, $4(v_6 - v_{11})$, 6T, 6R
		\ <u>a</u>	B _g (Ra)	$2(v_1 - v_5)$, $4(v_6 - v_{11})$, 6T, 6R
8v ₅ , 8R	A_2		$ A_u$ (IR)	$2(v_1 - v_5)$, $4(v_6 - v_{11})$, 6T, 6R
8(v ₆ - v ₁₁), 8R, 8T	E		B_{u} (IR)	$2(v_1 - v_5)$, $4(v_6 - v_{11})$, 6T, 6R

^a Correlation of the free anion symmetry of $OsO_3F_3^-(C_{3\nu})$ to the anion site symmetry (C_1) and the unit cell symmetry (C_{2h}) (space group C2/c) predicts that all the vibrational bands are Raman and infrared active and are split into A_g and B_g components and into A_u and B_u components in the Raman and infrared spectrum, respectively. Correlation of the free cation symmetry of $N(CH_3)_4^+(T_d)$ to the cation site symmetry (C_2) and the unit cell symmetry (C_{2h}) predicts that all bands are Raman and infrared active. In the Raman and infrared spectra $v_1 - v_8$ are not expected to show factor-group splitting, while $v_9 - v_{19}$ are expected to be factor-group split into A_g and B_g components and into A_u and B_u components in the Raman and infrared spectrum, respectively.