View of the [N(CH₃)₄][OsO₄F] unit cell showing the packing along the b-axis. Figure S6. View of the [N(CH₃)₄][OsO₃F₃] unit cell showing the packing along the c-axis. Figure S7. **Table S8.** Correlation Diagram for the Vibrational Modes of the a) $N(CH_3)_4^+$ Cation and b) OsO_4F^- Anion in $[N(CH_3)_4][OsO_4F]$. | | Cation Symmetry, T_d | Site Symmetry, C_2 | Crystal Symmetry, $C_{2\nu}$ A ₁ (Ra, IR) $2(\nu_1 - \nu_8)$, $2(\nu_9 - \nu_{19})$, 2R, 2T | | |---|------------------------|----------------------|--|--| | $4(v_1 - v_3)$ | A_1 | | | | | $4v_4$ $4(v_5 - v_8)$ | A ₂ E | A | A ₂ (Ra) | $2(v_1 - v_8)$, $2(v_9 - v_{19})$, $2R$, $2\tilde{T}$ | | $4(v_9 - v_{12}), 4R$
$4(v_{13} - v_{19}), 4T$ | T_1 T_2 | _B | | 4(v ₉ - v ₁₉), 4R, 4T
4(v ₉ - v ₁₉), 4R, 4T | | | Anion Symmetry, C_s | Site Symmetry, C_s | Crystal Symmetry, $C_{2\nu}$ | | | 4(ν ₁ - ν ₈), 8T, 4R | Α' | — A' | A ₁ (Ra, IR) | $2(v_1 - v_8)$, 4T, 2R | | 4(v ₉ - v ₁₂), 4T, 8R | A" | - A" | A_2 (Ra, IR) B_1 (Ra) | $2(v_9 - v_{12}), 2T, 4R$
$2(v_1 - v_8), 4T, 2R$ | | | | | B ₂ (Ra) | $2(v_9 - v_{12}), 2T, 4R$ | ^a Correlation of the free anion symmetry of OsO_4F^- (C_s) to the anion site symmetry (C_s) and the unit cell symmetry ($C_{2\nu}$) (space group Abm2) predicts that the A' modes of the free anion are each split into A_1 and B_1 components in the Raman and infrared spectra. The A" modes are expected to split into A_2 and B_2 components in the Raman spectrum while the splitting is not observed in the infrared spectrum. Correlation of the free cation symmetry of $N(CH_3)_4^+$ (T_d) to the cation site symmetry (C_2) and the unit cell symmetry ($C_{2\nu}$) predicts that all bands ($v_1 - v_{19}$) are Raman and infrared active. In the Raman spectrum, the bands $v_1 - v_8$ and $v_9 - v_{19}$ are expected to be factor-group split into A_1 and A_2 and into A_1 , A_2 , B_1 , and B_2 components, respectively. In the infrared spectrum, the bands $v_1 - v_8$ are not expected to be split while the bands $v_9 - v_{19}$ are expected to split into A_1 , B_1 , and B_2 components. **Table S9.** Correlation Diagram for the Vibrational Modes of the a) $N(CH_3)_4^+$ Cation and b) $OsO_3F_3^-$ Anion in $[N(CH_3)_4][OsO_3F_3]$. | | Cation Symmetry, T_d | Site Symmetry, C_2 | Crystal
Symmetry, | , C _{2h} | |---|----------------------------|----------------------|---------------------------|---| | $4(v_1 - v_3)$ | A ₁ | | A _g (Ra) | $2(v_1 - v_8)$, $2(v_9 - v_{19})$, 2R, 2T | | $4v_4$ | A_2 | A | B _g (Ra) | 4(v ₉ - v ₁₉), 4R, 4T | | $4(v_5 - v_8)$ $4(v_9 - v_{12}), 4R$ $4(v_{13} - v_{19}), 4T$ | E T_1 T_2 | B | $A_{u} (IR)$ $B_{u} (IR)$ | $2(v_1 - v_8)$, $2(v_9 - v_{19})$, 2R, 2T
$4(v_9 - v_{19})$, 4R, 4T | | | Anion Symmetry, $C_{3\nu}$ | Site Symmetry, C_I | Crystal
Symmetry, | C_{2h} | | 8(v ₁ - v ₄), 8T | A_1 | | A _g (Ra) | $2(v_1 - v_5)$, $4(v_6 - v_{11})$, 6T, 6R | | | | \ <u>a</u> | B _g (Ra) | $2(v_1 - v_5)$, $4(v_6 - v_{11})$, 6T, 6R | | 8v ₅ , 8R | A_2 | | $ A_u$ (IR) | $2(v_1 - v_5)$, $4(v_6 - v_{11})$, 6T, 6R | | 8(v ₆ - v ₁₁), 8R, 8T | E | | B_{u} (IR) | $2(v_1 - v_5)$, $4(v_6 - v_{11})$, 6T, 6R | ^a Correlation of the free anion symmetry of $OsO_3F_3^-(C_{3\nu})$ to the anion site symmetry (C_1) and the unit cell symmetry (C_{2h}) (space group C2/c) predicts that all the vibrational bands are Raman and infrared active and are split into A_g and B_g components and into A_u and B_u components in the Raman and infrared spectrum, respectively. Correlation of the free cation symmetry of $N(CH_3)_4^+(T_d)$ to the cation site symmetry (C_2) and the unit cell symmetry (C_{2h}) predicts that all bands are Raman and infrared active. In the Raman and infrared spectra $v_1 - v_8$ are not expected to show factor-group splitting, while $v_9 - v_{19}$ are expected to be factor-group split into A_g and B_g components and into A_u and B_u components in the Raman and infrared spectrum, respectively.