Material for Electronic Supplement

- 3 Derivation of the tissue-gas-film 3 phase resistance model to describe the relationship
- 4 between thin-film equilibration times and K_{OA}
- 6 In this model, the total resistance (R_{TOTAL}) that a chemical substance encounters when
- 7 diffusing from the sample matrix into the thin film can be represented by the t₉₅. The total
- 8 resistance can be viewed as the sum of the resistances for mass transport of the chemical in
- 9 the biological tissue (R_T) , the gas-phase (R_G) and the thin film (R_F) :

$$11 \quad R_{TOTAL} = R_T + R_G + R_F \tag{5}$$

- 13 Following the fugacity approach, R_{TOTAL} can be represented by the reciprocal of the chemical
- 14 conductivity, expressed by the film-to-tissue transport parameter D_{FT} (mol.Pa⁻¹.hr⁻¹). D_{FT} is
- related to the chemical transport parameters in the biological tissue (D_T) , the gas-phase (D_G)
- 16 and the thin film (D_F):

1

2

5

10

12

17

19

22

18
$$1/D_{FT} = 1/D_{F} + 1/D_{G} + 1/D_{T}$$
 (6)

- 20 Chemical transport in the biological tissue and the film is mainly through diffusion. As a result
- 21 D_F and D_G can be expressed as:

23
$$D_F = \kappa_F ... A_{-F} Z_F$$
 and $D_T = \kappa_T .A_T .Z_T$ (7)

- 2 Where κ_F and κ_T are the mass transfer coefficients (m/hr) for diffusion in the film and tissue
- 3 respectively; A_F and A_T are the areas of diffusion (m²) and Z_F and Z_T are the fugacity
- 4 capacities (mol.m⁻³.Pa⁻¹) of the film and tissue for the chemical.
- 5 Chemical transport in the gas phase is through a combination of diffusion and flow generated
- 6 by rotating the vials. D_G can be expressed as:

7

9

12

14

16

18

21

23

$$8 D_G = Q_G Z_G (8)$$

- 10 Where Q_G is a hypothetical flow rate (m³/hr), representing diffusion and gas circulation in the
- vial. Substitution of equation 7 and 8 in equation 6, gives:

13
$$1/D_{FT} = (1/\kappa_F.A_{.F}Z_F) + (1/Q_G.Z_G) + (1/\kappa_T.A_T.Z_T)$$
 (9)

15 The equilibration time t_{95} can be expressed as :

17
$$t_{95} = 3/k_{FT}$$
 (10)

- where k_{FT} is the rate constant (hr⁻¹) for film-to-tissue transfer. Following the fugacity approach,
- 20 k_{FT} can be represented by:

22
$$k_{FT} = D_{FT}/(V_F.Z_F)$$
 (11)

- 1 where D_{FT} is the transport parameter (mol.Pa⁻¹.hr⁻¹) for film-to-tissue transfer. Combining
- 2 equations 9, 10 and 11, results in:

4
$$t_{95} = 3. (V_F.Z_F)/D_{FT} = 3. (V_F.Z_F).\{(1/\kappa_F.A_F.Z_F) + (1/Q_G.Z_G) + (1/\kappa_T.A_T.Z_T)\}$$
 (12)

6 which can be simplified to:

8
$$t_{95} = 3.(V_F.Z_F)/D_{FT} = 3.\{(d_F/\kappa_F) + (V_F.K_{FG}/Q_G) + (V_F.K_{FT}/\kappa_T.A_T)\}$$
 (13)

where d_F is the thickness of the film, K_{FG} is the film to gas phase partition coefficient (Z_F/Z_G)

and K_{FT} is the film to tissue partition coefficient (Z_F/Z_T). Equation 13 illustrates that since K_{FG} is

correlated to K_{OA} and K_{OA} varies from 10^{6.3} to 10^{9.2} for the test chemicals in this study, the gas-

phase resistance (V_F, K_{FG}/Q_G) can be expected to increase substantially relative to film and

tissue phase resistance. K_{FT} representing the film/tissue partition coefficient is not expected to

vary substantially among the test chemicals. An increase in film thickness is expected to result

in a proportional increase in the overall resistance and hence in the value of test.