Supporting Information

for

"Synthesis and Characterization of a Pt₃Ru₁/Vulcan Carbon Powder Nanocomposite and Reactivity as a Methanol Electrooxidation Catalyst"

Joshua T. Moore, James D. Corn, Deryn Chu, Rongzhong Jiang, Deborah L. Boxall, Edward A. Kenik, and C. M. Lukehart*

- Figure 1. A drawing of the molecular structure of the precursor complex, [Ru(dpq)₃(PtCl₂)₃](BF₄)₂, 1a.
- Figure 2. A UV-Vis absorption spectrum of a 4.04×10^{-4} M solution of the precursor complex, $[Ru(dpq)_3(PtCl_2)_3](BF_4)_2$, 1a, in acetonitrile, as recorded on a HP Agilent Model 8453 Photodiode Spectrophotometer with solvent subtraction.
- Figure 3. A UV-Vis absorption spectrum of a 4.97 x 10⁻⁵ M solution of the reagent complex, Pt(DMSO)₂Cl₂, in acetonitrile, as recorded on a HP Agilent Model 8453 Photodiode Spectrophotometer with solvent subtraction.

Figure 1. A drawing of the molecular structure of the precursor complex, $[Ru(dpq)_3(PtCl_2)_3](BF_4)_2,\,1a.$

Figure 2. A UV-Vis absorption spectrum of a 4.04 x 10⁻⁴ M solution of the precursor complex, [Ru(dpq)₃(PtCl₂)₃](BF₄)₂, 1a, in acetonitrile, as recorded on a HP Agilent Model 8453 Photodiode Spectrophotometer with solvent subtraction.

Figure 3. A UV-Vis absorption spectrum of a 4.97 x 10⁻⁵ M solution of the reagent complex, Pt(DMSO)₂Cl₂, in acetonitrile, as recorded on a HP Agilent Model 8453 Photodiode Spectrophotometer with solvent subtraction.