© 2002 American Chemical Society, Chem. Mater., Noda cm0116323 Supporting Info Page 1

Supporting information

- 1. Figure 1 shows the time-course of the fabrication of mercapto-functionalized hemisphere.
- 2. Figure 2 indicates that aggregation of hemispheres was not observed by measuring the particle size distribution.
- 3. Figure 3 indicates how the morphology would be varied by the pyrolysis at 900°C.
- 4. Figure 4 shows that the second weight loss of hemispheres increases as the amount of $RSiO_{3/2}$ and $RSi(OH)O_{2/2}$ units formed by GTS increases.
- 5. Figure 5 indicates SEM images of microstructures patterned by compression micromolding using a rigid structure on the mold rather than an elastometric one.
- 6. Figure 6 shows SEM images of microstructure fabricated by curable compression micromolding and curable cast micromolding using the thin-layer materials as a master.
- 7. Table 1 indicates the recipes for polymerization of particles 1-10 described in Figures 1, 2, 4, 5 and 6.

Figure 1. The time-course of the fabrication of mercapto-functionalized hemisphere 10 with an average major axis of $5.0 \,\mu\text{m}$. The thin-layer materials were obtained by casting a colloid solution of the particles on the metal at regular time intervals. (A) SEM images after a period of approximately $10 \, \text{hr}$. (B) after approximately $24 \, \text{hr}$. (C) after about $36 \, \text{hr}$.

Figure 2. Particle size distribution of organic-functionalized hollow hemispheres 1-6 of methylsilsesquioxane derivatives obtained by suspension polymerization were measured by LA-700 and CAPA-700, respectively.

Figure 3. SEM images of methylsilsesquioxane derivatives upon curing at 900 °C under nitrogen atmosphere. All photographs enlarged $\times 10000$ times. The marker bars are 1.0 μ m. Empirical formulas of particles I - V were, $R_{0.9}SiO_{1.55}$, $R_{0.8}SiO_{1.60}$, $R_{0.7}SiO_{1.65}$, $R_{0.6}SiO_{1.70}$, and $R_{0.5}SiO_{1.75}$, respectively.

Figure 4. TGA curves of particles 5, 7, and 8 compared with hemisphere 6.

Figure 5. SEM images of nanostructure of hemisphere 1 on a master, polycarbonate replicas prepared by soft-compress and hard-compress micromolding, as shown in Scheme 1. (A, B) The thin-layer material as a rigid structure on the master rather than an elastometric one. (C, D) polycarbonate replica patterned by soft-compress micromolding. (E, F) polycarbonate replica embossed by hard-compress micromolding.

Figure 6. SEM images of microstructures of hemisphere **10** with an average major axis of 5.0 μm on a master, polymer replica fabricated by curable compression micromolding, and polymer replica obtained by curable cast micromolding. (A, B) The thin-layer material on a glass. (C, D) The replica of poly(4-acryloylmorpholine) obtained by curable compression micromolding. (E, F) The replica of poly(4-acryloylmorpholine) pattered by curable cast micromolding.

Table 1. Particles 1-10 Prepared by Polymerization under Constant Concentration of NaOH (0.020wt% per water)

		·				-		
-		MTS	TOES	GTS	MATS	MCTS	median diameter (µm)	
	particle	(mol)	(mol)	(mol)	(mol)	(mol)	LA-700	CAPA-700
-	1	0.43	0.38	· · · · · · · · · · · · · · · · · · ·	0.032		2.14	1.18
	2	0.43	0.38	0.034			2.25	1.34
	3	0.57	0.38				2.25	1.44
	4	0.52	0.29		0.032		2.11	1.64
	5^{a}	0.52	0.29	0.034			2.18	1.68
	6	0.67	0.29				2.13	1.72
	7	0.43	0.29	0.069			2.43	1.99
	8	0.35	0.29	0.104			2.21	1.71
	9 ^a	0.43	0.38			0.046	2.41	1.64
	10	0.43	0.38			0.046	5.02	3.76

^a Particle 5 and 9 correspond to particles 8 and 10 in this report, respectively. ^bParticle 10 was obtained by polymerization using sodium hydroxide (0.0069 wt% per water).