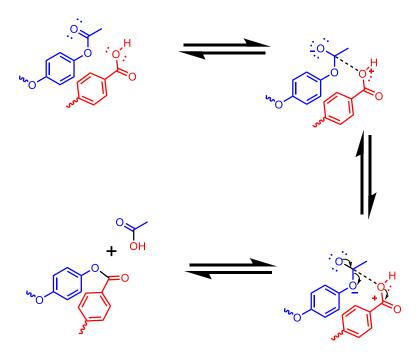

Supporting Information For:

Heat-induced polycondensation reaction with self-generated blowing agent forming aromatic thermosetting copolyester foams

Mete Bakir^a, Jacob L. Meyer^c, James Economy^{b,c}, Iwona Jasiuk^{a,*}


- a) Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 61801, Urbana, IL, USA.
- b) Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 61801, Urbana, IL, USA.
- c) ATSP Innovations, 61820, Champaign, IL, USA.
 - * Correspondence to: Iwona Jasiuk. Email: <u>ijasiuk@illinois.edu</u>

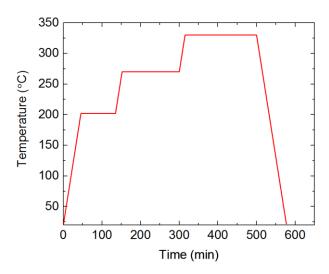

Figure S1. Chemical structures of the monomers **a**) 4-acetoxybenzoic acid (ABA), **b**) biphenol diacetate (BDPA), **c**) trimesic acid (TMA) and **d**) isophthalic acid (IPA).

Figure S2. Chemical structure of aromatic acetoxy end-group oligomer

Figure S3. Chemical structure of aromatic carboxylic acid end-group oligomer

Figure S4. Cure mechanism via interchain transesterification reaction.

Figure S5. Cure cycle run for fabrication of physical foam products. Three temperature-hold stages set at $202~^{\circ}\text{C}$, $270~^{\circ}\text{C}$ and $330~^{\circ}\text{C}$ corresponding to the melting, the bubble growth and the cure steps of the foaming processes.