Supporting Information

Retention in porous layer pillar array planar separation platforms

Danielle R. Lincoln \dagger, Nickolay V. Lavrik \ddagger, Ivan I. Kravchenko \ddagger, and Michael J. Sepaniak* \dagger
\dagger Department of Chemistry, University of Tennessee, Knoxville, TN 37996, USA
\ddagger Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
*Email: msepania@utk.edu, Fax: 865-974-9332

Contents

1. Determination by simple modeling of surface area increase due to PSO deposition S-2

Determination by simple modeling of surface area increase due to PSO deposition

Each pillar was assumed to be a cylinder with a height of 20 um and a radius of 1 um . The PSO coating was then assumed to be a close-packed arrangement of spheres around this cylinder, adding 0.05 , 0.1 , or 0.15 um to the cylinder radius depending on the thickness of PSO deposited. Figure S-1 illustrates this model.

Figure S-1: Depiction of the model used to calculate surface area increase.
The volume of PSO, $\mathrm{V}_{\text {PSO }}$, was calculated by subtracting the volume of the smaller cylinder, without PSO, from that of the larger cylinder. The volume of PSO that is not void, $\mathrm{V}_{\text {porous, }}$, was then calculated using the 34% void fraction determined by ellipsometry

$$
\begin{equation*}
V_{\text {porous }}=V_{P S O} *(1-\text { void fraction }) \tag{1}
\end{equation*}
$$

The volume of one sphere, $\mathrm{V}_{\text {1sphere }}$, was calculated by assuming that one PSO granule has a radius of 0.0025 um . This allowed us to calculate the number of spheres present, $\mathrm{N}_{\text {spheres }}$, using

$$
\begin{equation*}
N_{\text {spheres }}=\frac{V_{\text {porous }}}{V_{1 \text { sphere }}} \tag{2}
\end{equation*}
$$

The surface area of all the spheres, $\mathrm{A}_{\text {porous }}$, could then be calculated by

$$
\begin{equation*}
A_{\text {porous }}=A_{1 \text { sphere }} * N_{\text {spheres }} * R g \tag{3}
\end{equation*}
$$

where $\mathrm{A}_{1 \text { sphere }}$ is the surface area of one sphere, assuming a radius of 0.0025 um , and Rg is a surface roughness factor assumed to be 3. This value could then be compared to the surface area of the small pillar, $\mathrm{A}_{\text {pillar }}$, by computing a ratio

$$
\begin{equation*}
\text { increased area }=\frac{A_{\text {porous }}+A_{\text {pillar }}}{A_{\text {pillar }}} \tag{4}
\end{equation*}
$$

