		bR					early M				late M		
	1C8R	1C8R (Explicit)	1C3W	1KG9	1M0M-1	1DZE	1DZE (Explicit)	1KG8	1M0M-2	1C8S	1C8S (Explicit)	1F4Z	
Arg7	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Glu9	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Lys30	1.00	1.00	1.00	0.96	0.89	0.99	0.99	0.96	0.90	1.00	1.00	1.00	
Asp36	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Asp38	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Lys40	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Lys41	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Glu74	0.99	0.99	0.99	0.98	0.99	1.00	1.00	0.81	0.99	0.97	0.89	0.99	
Arg82	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Asp85	0.98	0.83	0.93	1.00	0.73	0.67	0.73	0.14	0.39	0.07	0.01	0.00	
Asp96	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Asp102	0.98	0.97	0.99	0.98	0.98	0.96	0.97	0.98	0.99	0.99	1.00	0.98	
Asp104	1.00	1.00	1.00	1.00	0.99	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Asp115	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Lys129	1.00	1.00	1.00	1.00	1.00	0.86	0.86	1.00	1.00	1.00	0.99	1.00	
Arg134	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Lys159	N.A.	N.A.	N.A.	N.A.	N.A.	1.00	1.00	N.A.	N.A.	N.A.	N.A.	N.A.	
Glu161	N.A.	N.A.	N.A.	N.A.	N.A.	1.00	1.00	N.A.	N.A.	N.A.	N.A.	N.A.	
Arg164	1.00	1.00	1.00	1.00	1.00	1.00	1.00	N.A.	1.00	N.A.	N.A.	1.00	
Glu166	1.00	1.00	1.00	1.00	1.00	1.00	1.00	N.A.	1.00	N.A.	N.A.	1.00	
Lys172	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	N.A.	N.A.	1.00	
Arg175	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	N.A.	N.A.	1.00	
Glu194	0.00	0.00	0.01	0.17	0.01	0.00	0.01	0.00	0.00	0.51	0.64	0.79	
Glu204	1.00	1.00	1.00	0.83	0.99	1.00	0.99	1.00	1.00	0.65	0.74	0.21	
A s p 2 1 2	0.97	1.00	0.90	0.99	0.90	0.43	0.33	0.91	0.92	0.92	0.95	1.00	
SB216	0.95	0.84	0.83	0.99	0.62	0.12	0.06	0.05	0.32	0.13	0.14	0.00	
Arg225	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	N.A.	N.A.	1.00	
Arg227	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	N.A.	N.A.	1.00	

Appendix I. MCCE calculated fractional residue ionization at pH 7

All structures are calculated by filling cavities with continuum water (dielectric constant 80). (Explicit) 1C8R, 1DZE and 1C8S in bR, early and late M respectively also calculated with explicit waters in cavities. The central and release cluster residues are highlighted, as are all cases where less than 90% of the residue is ionized. No Tyr are ionized. *N.A.* Residues not resolved in the crystal structures.

The following ionizable residues are not resolved in the crystal structures:

All structures: E232, E234, E237 and D242 in C terminus

All structures except 1DZE: K159 and E161 in E-F loop

1KG8: Arg164 and Glu166 in E-F loop

1C8S: Arg164, Glu166, Lys172 and Arg175 in E-F loop and Arg 225 and 227 in C terminus

	SB				Asp85			Asp212	2		Glu194		Glu204		
	bR (1C8R)	early M (1DZE)	late M (1C8S)												
Thr5	-	N.A.	-												
Arg7	0.3	0.1	0.3	-0.5	-0.1	-0.6	-0.5	-0.1	-0.5	-0.5	-0.1	-0.5	-0.6	-0.1	-0.5
Glu9	-0.5	-0.5	-0.6	0.7	0.6	0.8	0.8	1.0	1.0	1.2	1.1	1.2	1.5	1.5	1.6
Thr17	-	-	-	-	-	-	-0.1	-0.1	-0.1	-	-	-	-0.1	-0.1	-
Thr24	0.1	0.1	-	-0.1	-0.1	-	-0.1	-0.1	-0.1	-	-	-	-	-	-
Tyr26	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Lys30	0.2	0.2	0.2	-0.2	-0.2	-0.3	-0.2	-0.2	-0.2	-	-0.1	-0.1	-	-	-0.1
Ser35	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Asp36	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Asp38	-0.1	-	-0.1	0.1	0.1	0.1	0.1	-	0.1	-	-	-	-	-	-
Lys40	-	-	-	-0.1	-0.1	-0.1	-	-	-	-	-	-	-	-	-
Lys41	0.1	0.1	0.1	-0.1	-0.1	-0.2	-0.1	-0.1	-0.1	-	-	-	-	-	-
Tyr43	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Thr46	-0.1	-0.1	-0.1	-	-	-	0.1	-	0.1	-	-	-	-	-	-
Thr47	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Thr55	0.1	0.1	0.1	-0.2	-0.3	-0.3	-0.1	-0.1	-0.1	-	-	-	-	-	-
Tyr57	0.4	0.1	0.3	-0.6	-0.1	-0.6	-2.1	-1.8	-1.4	0.1	-	-	0.1	-	-
Ser59	0.1	0.1	0.1	-0.3	-0.3	-0.3	-0.2	-0.2	-0.2	-	-	-	-0.1	-	-
Tyr64	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Thr67	-	-	-	-	-	-	-	-	-	0.1	0.1	0.1	-	0.1	-
Glu74	-	-0.1	-0.1	-	-	-	-	0.1	0.1	0.1	0.2	0.3	0.2	0.3	0.3
Gln75	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Asn76	-	-	-	-	-	-	-	-	-	-0.2	-0.1	-0.1	-	-	-
Tyr79	-	-	-	-	-	-	-	-	-	-0.3	-0.2	-0.2	-0.2	-0.2	-0.2
Arg82	<u>3.5</u>	<u>3.0</u>	2.7	<u>-4.6</u>	<u>-3.9</u>	<u>-3.9</u>	<u>-6.3</u>	<u>-6.4</u>	<u>-5.2</u>	<u>-6.3</u>	<u>-8.5</u>	<u>-7.1</u>	<u>-6.2</u>	<u>-7.8</u>	<u>-6.8</u>
Tyr83	0.1	-0.1	-0.2	-0.1	-	-	-0.1	-	0.1	-0.2	-1.0	-1.8	-0.1	-0.2	-0.2
Asp85	<u>-6.6</u>	<u>-4.9</u>	-0.1	x	x	x	<u>6.3</u>	<u>6.6</u>	-0.2	1.5	1.5	-0.1	1.4	1.2	-0.1
Thr89	0.7	-	0.5	-1.9	-2.1	-0.7	-0.4	-0.2	-0.4	-	-	-	-	-	-
Thr90	0.1	-	0.1	-0.4	-0.3	-0.4	-0.1	-0.1	-0.2	-	-	-	-	-	-
Asp96	0.1	-	-	-0.1	-	-0.1	-0.1	-	-0.1	-	-	-	-	-	-
Asp102	-	-	-0.1	-	-	0.1	-	-	-	-	-	-	-	-	-
Asp104	-	-	-0.1	-	-	0.1	-	-	-	-	-	-	-	-	-
Gln105	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Thr107	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Asp115	-	-	-	-0.1	-0.1	-0.1	-	-0.1	-0.1	-	-	-	-	-	-
Thr121	-	-	-	-0.1	-	-	-	-	-	-	-	-	-	-	-

Appendix II. Per residue mean field interactions with the central and proton release cluster residues in calculations with explicit waters in cavities at pH 7.

Song, Mao and Gunner (2003)

Thr128	-	0.1	0.1	-	-0.1	-0.1	-	-0.1	-0.1	-0.1	-0.2	-0.2	-	-0.1	-0.1
Lys129	0.1	0.1	0.1	-0.1	-0.1	-0.1	-	-0.1	-0.1	-0.1	-0.3	-0.3	-0.1	-0.1	-0.2
Tyr131	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ser132	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Tyr133	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Arg134	0.9	1.0	1.0	-0.6	-0.6	-0.6	-0.6	-0.8	-0.8	-4.0	<u>-3.9</u>	<u>-4.0</u>	-2.2	-2.3	-2.1
Ser141	-0.2	-0.3	-	-	-	-	-	-	-	-	0.1	-0.1	-	0.1	-
Thr142	0.1	-	0.1	-	-	-	-	-	-	-	-0.1	-0.1	-	-	-
Tyr147	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Tyr150	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Thr157	<i>N</i> . <i>A</i> .	-	N.A.	<i>N</i> . <i>A</i> .	-	N.A.	<i>N</i> . <i>A</i> .	-	<i>N</i> . <i>A</i> .	<i>N</i> . <i>A</i> .	-	N.A.	<i>N</i> . <i>A</i> .	-	<i>N</i> . <i>A</i> .
Ser158	<i>N</i> . <i>A</i> .	-	N.A.	<i>N</i> . <i>A</i> .	-	N.A.	<i>N</i> . <i>A</i> .	-	<i>N</i> . <i>A</i> .	<i>N</i> . <i>A</i> .	-	N.A.	<i>N</i> . <i>A</i> .	-	<i>N</i> . <i>A</i> .
Lys159	<i>N</i> . <i>A</i> .	0.1	N.A.	<i>N</i> . <i>A</i> .	-	N.A.	<i>N</i> . <i>A</i> .	-	N.A.	<i>N</i> . <i>A</i> .	-	N.A.	<i>N</i> . <i>A</i> .	-	N.A.
Glu161	<i>N</i> . <i>A</i> .	-0.1	N.A.	<i>N</i> . <i>A</i> .	-	N.A.	<i>N</i> . <i>A</i> .	-	N.A.	<i>N</i> . <i>A</i> .	-	N.A.	<i>N</i> . <i>A</i> .	-	N.A.
Ser162	-	-	N.A.	-	-	N.A.	-	-	N.A.	-	-	N.A.	-	-	N.A.
Arg164	-	-	N.A.	-	-	N.A.	-	-	N.A.	-	-	N.A.	-	-	N.A.
Glu166	-	-	N.A.	-	-	N.A.	-	-	N.A.	-	-	N.A.	-	-	N.A.
Ser169	-	-	N.A.	-	-	N.A.	-	-	N.A.	-	-	N.A.	-	-	N.A.
Thr170	-	-	N.A.	-	-	N.A.	-	-	N.A.	-	-	N.A.	-	-	N.A.
Lys172	-	0.1	N.A.	-	-0.1	<i>N</i> . <i>A</i> .	-	-0.1	N.A.	-	-	N.A.	-	-	N.A.
Arg175	0.5	0.5	N.A.	-0.3	-0.3	N.A.	-0.3	-0.4	N.A.	-0.1	-0.2	N.A.	-0.1	-0.1	N.A.
Asn176	-0.1	-	-	0.1	-	-	0.1	-	-	-	-	-	-	-	-
Thr178	-0.1	-0.1	-	-	0.1	-	0.1	0.1	-	-	-	-	-	-	-
Ser183	0.1	0.1	-	-	-	-	-0.1	-0.1	-0.1	-	-	-	-	-	-
Tyr185	0.2	-	-0.1	-0.3	-0.2	-0.2	<u>-5.0</u>	-1.2	-6.2	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1
Ser193	0.1	0.1	0.1	-0.1	-0.1	-0.1	-0.1	-0.2	-0.2	-0.4	-0.9	-0.7	-2.6	-2.5	-2.1
Glu194	0.1	-0.2	-1.4	-	0.2	1.2	-0.1	0.2	1.4	x	S	x	<u>-7.3</u>	<u>-4.5</u>	<u>4.3</u>
Asn202	-	-	-0.1	-	-0.1	0.1	0.1	-0.1	0.2	-	-0.1	0.1	-	-0.1	0.2
Glu204	-1.9	-1.7	-0.9	1.6	1.5	0.9	2.4	2.6	1.3	<u>14.0</u>	<u>13.3</u>	<u>5.9</u>	x	<i>x</i>	x
Thr205	-0.1	-0.1	-0.1	0.1	0.1	0.1	0.2	0.2	0.2	-0.1	-	0.1	-0.3	-0.4	-
Asp212	<u>-8.9</u>	-1.9	<u>-6.8</u>	<u>8.8</u>	1.5	<u>8.4</u>	x	x	<i>x</i>	2.6	0.8	2.6	2.7	0.8	2.7
Ser214	-	0.1	0.2	-	-0.1	-0.2	-	-0.3	-0.5	-	-	-0.1	-	-0.1	-0.1
SB(216)	x	x	x	<u>-6.2</u>	-1.3	-0.9	<u>-6.5</u>	-1.0	-1.5	-1.9	-0.5	-0.4	-1.8	-0.3	-0.3
Arg225	0.1	0.2	N.A.	-0.1	-0.2	N.A.	-0.1	-0.2	N.A.	-	-0.1	N.A.	-	-0.1	N.A.
Ser226	-	-	N.A.	-	-	N.A.	-	-	N.A.	-	-	N.A.	-	-	N.A.
Arg227	-	-	N.A.	-	-	N.A.	-	-	N.A.	-	-	N.A.	-	-	N.A.

Mean field interactions of all ionizable and polar side chains with the central and proton release cluster residues. All energies in ΔpK_a units. 1 pK_a unit = 1.36 kcal/mol. Cluster residues in bold. The mean-field interaction energy of a residue with a cluster residue (i) is $\sum \rho_k \Delta G_{ik}$ where r_k is the occupancy of the kth conformer of the residue in full Monte Carlo sampling and ΔG_{jk} the interaction of the cluster residue conformer (i) with conformer k. r_k can be pH dependent. The difference in interaction energy of the external residue with the ionized and neutral cluster residue are given. Values <0.1 ΔpK_a unit are not shown. Values >±1 ΔpK unit in bold. Those >±3 ΔpK units bold and underlined. *N.A.* residues are missing from the structure. *x:* cluster residue interaction with itself.

APPENDIX III. Terms contributing to cluster microstate energies in the reduced model of the central cluster.

	Waters in cavities	Residue	Solution pK _a	Reaction field energy loss	Backbone Interaction	MFE'	pK'
		SB	7.00	4.10	2.09	4.80	-3.98
	continuum	Asp85	4.75	8.69	-3.77	-8.40	1.27
		Asp212	4.75	9.02	-2.49	-10.30	0.97
bR							
		SB	7.00	4.30	2.13	5.60	-5.01
	explicit	Asp85	4.75	9.96	-3.44	-10.00	1.27
		Asp212	4.75	9.96	-2.52	-16.50	-4.31
		SB	7.00	4.10	1.25	3.10	-1.45
	continuum	Asp85	4.75	9.11	-4.46	-6.20	3.20
		Asp212	4.75	9.33	-1.77	-8.10	4.21
early M				-			
		SB	7.00	4.25	1.31	3.60	-2.17
	explicit	Asp85	4.75	9.94	-2.75	-9.70	2.23
		Asp212	4.75	9.96	-1.75	-8.80	4.16
		SB	7.00	3.99	1.74	2.60	-1.33
	continuum	Asp85	4.75	8.59	-2.55	-4.70	6.09
		Asp212	4.75	7.87	-1.62	-11.30	-0.30
late M				-			
		SB	7.00	4.34	2.11	2.80	-2.26
	explicit	Asp85	4.75	9.84	-3.49	-4.60	6.50
		Asp212	4.75	10.01	-2.64	-13.20	-1.08

A. Interactions with the rest of the protein and the surrounding water.

|--|

	Waters in cavities		SB ⁰	SB^+	Asp212 ^o	Asp212
		SB ⁰	-	-	-0.27	1.02
bR	continuum	SB ⁺	-	-	0.06	-7.72
		Asp85 ⁰	-0.32	0.31	0.00	-0.47
		Asp85 ⁻	0.77	-7.35	0.04	8.11
	explicit	SB^{0}	1	-	-0.58	0.96
		SB^+	1	I	0.35	-7.94
		Asp85 ⁰	0.20	-0.26	0.13	0.88
		Asp85	0.78	-7.49	0.38	8.27

early M	continuum	SB ⁰	-	-	-0.14	-0.69
		SB ⁺	-	-	0.13	-7.13
	continuum	Asp85 ⁰	-0.08	0.09	-0.02	-0.47
		Asp85 ⁻	-0.77	-6.56	0.36	8.13
		SB ⁰	-	-	-0.20	-0.68
	explicit	SB ⁺	-	-	-0.85	-7.25
	explicit	Asp85 ⁰	-0.06	0.21	0.04	-0.43
		Asp85	-0.81	-6.95	0.15	8.36

		SB^{0}	-	-	-0.58	-1.26
	continuum	SB ⁺	-	-	-0.26	-7.56
late M		Asp85 ⁰	-0.24	-0.47	0.08	0.77
		Asp85 ⁻	-0.44	-5.94	0.54	7.40
		SB^0	1	-	-0.56	-1.31
	evolicit	SB ⁺	1	-	-0.24	-8.28
	explicit	Asp85 [°]	-0.02	-0.21	-0.21	-0.95
		Asp85	-0.41	-6.35	0.41	7.58

				Continuu	m Water in Int	ternal Cav	ities			
	Microsta	ite	Net		BR	E	arly M	Late M		
Ionization		n	charge	Energy	Occupancy	Energy	Occupancy	Energy	Occupancy	
D85 ⁰	D212 ⁰	0	-0.6	0.000	-0.2	0.000	-0.7	0.000		
SB_0	D05	D212 ⁻	-1	-5.8	0.011	-4.0	0.279	-8.0	0.976	
20	D85 ⁻	D212 ⁰	-1	-5.2	0.003	-4.3	0.587	-1.4	0.000	
		D212 ⁻	-2	-1.9	0.000	0.1	0.000	-2.5	0.000	
	D85 ⁰	D212 ⁰	1	11.3	0.000	8.7	0.000	7.7	0.000	
SD+	D05	D212 ⁻	0	-3.0	0.000	-1.8	0.002	-6.2	0.016	
50	D95-	D212 ⁰	0	-2.0	0.000	-1.4	0.001	1.8	0.000	
	005	D212 ⁻	-1	-7.8	0.986	-3.7	0.132	-6.0	0.009	

\sim	T '	1	• •	1 0	•	C 1	1	.1 1	1 11
	Linorator	nd again	analas at	tho V	mioroctotoc	ot control	aluctor in	the reduced	I modal
	Ellervies a		ancies or	THE A	Information	ог сештат	CHISTEL II	т ше теспісес	
\sim .		ma occup			morostates	or contrat		I the reacted	* 11100001.
	0								

	Explicit Water in Internal Cavities												
	D85 ⁰	D212 ⁰	0	-0.3	0.000	-0.2	0.000	-0.8	0.000				
SB ⁰	D05	D212 ⁻	-1	-9.3	0.001	-4.0	0.022	-10.4	0.992				
	D82-	D212 ⁰	-1	-5.2	0.000	-5.6	0.932	-1.1	0.000				
	D05	D212 ⁻	-2	-7.1	0.000	-0.7	0.000	-2.8	0.000				
SB^+	D85 ⁰	D212 ⁰	1	12.3	0.000	8.6	0.000	8.6	0.000				
		D212 ⁻	0	-6.7	0.000	-1.1	0.000	-8.3	0.008				
	D85-	D212 ⁰	0	-0.6	0.000	-3.2	0.004	2.5	0.000				
	200	D212 ⁻	-1	-12.3	0.999	-4.2	0.042	-6.4	0.000				

The most occupied neutral and ionized side chain position in the full MCCE analysis is used for Asp 85 and 212. The energy of each microstate is then obtained from three terms: (1) the reaction field energy and electrostatic and Lennard-Jones interactions with the backbone and side chains with no conformational degrees of freedom for the SB and Asp 85 and 212 (A); (2) a mean field approximation of the contribution of the non-cluster side chains at pH 7 calculated using the MCCE position and ionization state conformer occupancies for all other residues (Eqn. 3, A); and (3) the appropriate pair-wise interactions amongst the 3 residues in each of the eight microstates (Eqn. 5, B).

Solution pK_a : pK_a of this residue type in isolation in solution. Contributions of the rest of the protein to the ionization of the cluster residues. Reaction field energy loss: the difference in the interactions with continuum water for the residue at its location in the protein and isolated in solution. Backbone interaction: sum of electrostatic and non-electrostatic interactions with backbone amides. These two energy terms are the same in full Monte Carlo sampling and in the reduced model. MFE': mean-field interaction energy of the rest of the protein conformers, is $\Sigma \rho_k \Delta G_{ik}$ where ρ_k is the occupancy of the kth conformer in full Monte Carlo sampling and ΔG_{ik} the interaction energy with cluster conformer j. ρ_k can be pH dependent. The contribution of each residue to MFE' for calculations with explicit water are found in Appendix II. pK': pH when a group is 50% ionized inside the protein if there are no intra-cluster interactions (Eqn. 4). All energies are the difference in free energy of ionized and neutral conformer (Eqn. 1). All energies in ΔpK_a units. 1 ΔpK_a unit = 1.36 kcal/mol.

The central cluster, composed of 3 residues has eight microstates with different charge distributions. Microstate energy in ΔpK_a units (C) derived with equation 5 using the data in (A, B). Microstate occupancies are the Boltzmann distribution given these microstate energies. Significant values of the fractional occupancy are in bold. All energies in ΔpK_a units. 1 pK_a unit = 1.36 kcal/mol.

APPENDIX IV. Terms contributing to cluster microstate energies in the reduced model of the proton release cluster.

	Waters in cavities	Residue	Solution pK _a	Reaction field energy loss	Backbone Interaction	MFE'	pK'
	continuum	Glu194	4.75	8.74	-3.23	-8.8	1.46
	continuum	Glu204	4.75	8.68	-5.54	-9.4	-1.51
bR							
	explicit	Glu194	4.75	9.39	-3.25	-10.4	0.49
	explicit	Glu204	4.75	9.19	-5.3	-10.4	-1.76
	continuum	Glu194	4.75	9.49	-2.54	-12.7	-0.99
	continuum	Glu204	4.75	8.73	-5.64	-10.9	-3.07
early M							
	avaliait	Glu194	4.75	9.78	-2.8	-13.1	-1.37
	explicit	Glu204	4.75	9.12	-5.79	-11.6	-3.53
	continuum	Glu194	4.75	7.99	-1.81	-10.5	0.42
	continuum	Glu204	4.75	7.81	-5.81	-8.9	-2.14
late M							
	explicit -	Glu194	4.75	9.28	-2.4	-17.3	-5.66
		Glu204	4.75	8.87	-5.23	-10.6	-2.2

A. Interactions with the rest of the protein and the surrounding continuum water.

B. Pair-wise interactions between ionized and neutral conformers of the residues in the proton release cluster.

	Waters in cavities		Glu204 ^o	Glu204-	
bR	continuum	Glu194 ⁰	1.32	-2.41	
	continuum	Glu194 ⁻	-1.51	14.00	
	evolicit	Glu194 ⁰	0.52	-2.32	
	explicit	Glu194 ⁻	1.34	13.98	

	continuum	Glu194°	1.84	-3.19
	continuum	Glu194 ⁻	-2.11	9.96
early M				
	explicit	Glu194°	1.81	-3.28
	explicit	Glu194 ⁻	-2.11	10.21

late M	continuum	Glu194 ^o	-0.37	-0.64	
	continuum	Glu194 ⁻	0.56	7.20	
	evolicit	Glu194°	0.55	-1.73	
	explicit	Glu194-	-0.22	8.19	

Continuum Water in Internal Cavities											
Microstates Net charge		Net	BR		Early M		Late M				
		Energy	Occupancy	Energy Occupancy		Energy	Occupancy				
E10/10	E204 [°]	0	1.3	0.000	1.8	0.000	-0.4	0.000			
L194	E204 ⁻	-1	-10.9	1.000	-13.3	0.999	-9.8	0.949			
F10/-	E204 [°]	-1	-7.0	0.000	-10.1	0.001	-6.0	0.000			
L194	E204 ⁻	-2	0.0	0.000	-8.1	0.000	-8.5	0.051			

C. Energies and occupancies of the 4 microstates of the central cluster in the reduced model.

Explicit Water in Internal Cavities										
E194 ⁰	E204 ^o	0	0.5	0.000	1.8	0.000	0.5	0.000		
	E204-	-1	-16.9	1.000	-13.8	1.000	-11.0	0.002		
E194 ⁻	E204 ^o	-1	-12.8	0.000	-10.5	0.000	-12.9	0.138		
	E204-	-2	-7.2	0.000	-8.7	0.000	-13.7	0.860		

All energy terms as described in Appendix III.

Appendix V. Position of the Schiff base relative to Asp85 and 212

A. Schiff Base orientation.

An angle, δ , is defined for the SB C15-NZ-CE dipole using the CGs of Asp85 (C_G^{D85}) and Asp 212 (C_G^{D212}), the NZ of the Schiff base (N_Z^{SB}), and the midpoint of the SB C15 and CE (C_{mid}^{SB}). Asp85 and 212 CG positions change little between structures. δ is the angle between $\overline{C_G^{D85}C_G^{D212}}$ and the projection of vector $\overline{C_{mid}^{SB}N_Z^{SB}}$ onto the plane of C_G^{D85} , C_G^{D212} and N_Z^{SB} . When the Schiff base is pointing down towards the two acids, δ is negative. A value between –90 and 90 indicates the N is pointing towards Asp 212 rather than Asp 85 (Appendix I).

B. Distance between the Schiff base nitrogen and Asp85 and 212

PDB	1C8R	1C3W	1KG9	1M0M-1	1DZE	1KG8	1M0M-2	1C8S	1F4Z
Average Distance (Å)	4.34	4.29	4.36	4.27	4.97	5.15	4.30	4.91	4.84
Difference (Å)	-0.15	-0.33	-0.26	-0.54	-0.53	-0.34	0.13	0.27	-0.45

Average distance: between NZ of the Schiff base and CGs of Asp85 and 212. Difference: $(SB_{NZ} \text{ to } 212_{CG} \text{ distance}) - (SB_{NZ} \text{ to } 85_{CG} \text{ distance})$.