Supporting Information
 Role of Base Sequence Context in Conformational Equilibria and Nucleotide Excision Repair of Benzo[a]pyrene Diol Epoxide Adenine Adducts

Shixiang Yan, ${ }^{\dagger}$ Min Wu, ${ }^{\dagger}$ Tonko Buterin, ${ }^{\ddagger}$ Hanspeter Naegeli, ${ }^{\ddagger}$ Nicholas E. Geacintov, ${ }^{*, \dagger}$ and Suse Broyde ${ }^{*, \S}$
${ }^{\dagger}$ Department of Chemistry, New York University, New York, NY 10003, USA
\ddagger Institute of Pharmacology and Toxicology, University of Zürich-Tierspital, CH-8008, Zürich, Switzerland
§ Department of Biology, New York University, New York, NY 10003, USA

Running Title: Base Sequence Effects in BP-dA Adducts

Abbreviations Used: (+)-anti-BPDE, (+)-(7R, $8 S, 9 S, 10 R)$-7,8-dihydroxy-9,10-epoxy-7,8, 9,10-tetrahydrobenzo[a]pyrene; (-)-anti-BPDE, (-)-(7S,8R,9R,10S)-7,8-dihydroxy-9,10-ep-oxy-7,8,9,10-tetrahydrobenzo[a]pyrene; (+)-syn-BPDE, (+)-(7S,8R,9S,10R)-7,8-dihydroxy9,10 -epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene; BP, benzo[a]pyrene; BPDE, benzo [a]pyrene diol epoxide; DNA, deoxyribonucleic acid; MD, molecular dynamics; MM-PBSA, molecular mechanics Poisson-Boltzmann surface area; NER, nucleotide excision repair; NMR, nuclear magnetic resonance; PAH, polycyclic aromatic hydrocarbon; RESP, restrained electrostatic potential fitting; RMSD, root-mean-square deviation; SASA, solvent-accessible surface area

This research is supported by NIH Grant CA-28038 to S.B., NIH Grant CA-76660 to N.E.G., and Swiss National Science Foundation Grant 31-61494.00 to H.N.

* To whom correspondence should be addressed. (N.E.G.) Telephone: 212-998-8407. Fax: 212-998-8421. Email: ng1@nyu.edu; (S.B.) Telephone: 212-998-8231. Fax: 212-995-4015. Email: broyde@nyu.edu.

Table S1: Distortion Free Energy Analysis of the $10 S(+)$ and $10 R(-)$ Adducts in the $\mathrm{CA}^{*} \mathrm{C}$ Sequence Context ${ }^{a}$

	$10 S(+)($ anti $)$	$10 S(+)($ syn $)$	$10 R(-)$
$\Delta E_{\text {int }}^{d}$	6.1	-1.1	-3.7
$\Delta E_{\text {vdW }}^{d}$	29.4	30.7	30.3
$\Delta E_{\text {electrostatic }}^{d}$	-193.4	-100.0	-123.8
$\Delta G_{\mathrm{PB}}^{d}$	178.4	94.7	110.0
$\Delta G_{\text {nonpolar }}^{d}$	1.2	1.0	1.2
$\Delta E_{\text {electrostatic }}^{d}+\Delta G_{\mathrm{PB}}^{d}$	-15.0	-5.3	-13.9
$\Delta G^{\text {distort }}$	21.8	25.4	13.9
${ }_{a}$ dl			

${ }^{a}$ All energies are in kcal/mol.

Table S2: Comparision of Structural Parameters for CA*C and CA*A Sequence Contexts Near Lesion_Site

	$\underline{\mathrm{CA}^{*} \mathrm{C}}$		CA*A	
	$10 S(+)\left(\right.$ anti) ${ }^{\text {a }}$	$10 \mathrm{R}(-)$	$10 S(+)$	$10 \mathrm{R}(-)$
Rise (\AA)	8.0	8.3	7.6	8.6
Unwinding (${ }^{\circ}$)	28	20	$41^{\text {b }}$	29
Quality of Watson-Crick hydrogen bonding ${ }^{c}$	560	316	599	363
Roll (${ }^{\circ}$)	30	4	13	9
Trajectory average bend angle (${ }^{\circ}$)	60^{d}	22	25	23
${ }^{a}$ syn conformers are not amenable to reliable helical parameter calculations which depend on Watson-Crick base pairing (73, 74).				
${ }^{b} 26^{\circ}$ at intercalation pocket, 15° at adjacent site stemming from steric effect of BP hydrox groups (36).				
${ }^{c}$ Computed as detailed in previous work (36). A value of 0 represents ideal Watson-Crick base pairs. In syn conformers this index is in the range of 5000 or higher. ${ }^{d} 25^{\circ}$ in syn conformer.				

Figure S1: Root mean sequare deviations (RMSDs) for the $10 S(+$) adduct anti conformer (red), $10 S$ $(+)$ adduct syn conformer (orange), $10 R(-)$ adduct (blue), and the unmodified control structure (green) in the CA* ${ }^{*}$ sequence context over the 2.5 -ns production MD simulation. The RMSDs were computed relative to the respective average structures over $1-2.5 \mathrm{~ns}$.

Figure S2: Watson-Crick hydrogen bond angles and distances (heavy atom to heavy atom) for the A* $6-\mathrm{T} 17$ base pair of the $10 S(+)$ adduct anti conformer in the CA* ${ }^{*}$ sequence context over the 2.5 -ns production MD simulation. The angles and distances for the $N^{6}-\mathrm{H} 6$ ($\mathrm{A} * 6$) $\cdots \mathrm{O} 4$ (T17) hydrogen bond are in magenta; the angles and distances for the N3-H3 (T17) $\cdots \mathrm{N} 1(\mathrm{~A} * 6)$ hydrogen bond are in red.

Figure S3: Average helicoidal parameters for the structures of the $10 S(+)$ adduct anti conformer (red circles), $10 R(-)$ adduct (blue squares), and the unmodified control duplex (green diamonds) over $1-2.5 \mathrm{~ns}$ (3000 structures). The standard deviations are shown as error bars. The numbering scheme for the nucleotide base pair steps is that the C1-G22 to G2-C21 is step 1, the T2-A21 to C3-G20 is step $2, \ldots$, and so on.

Figure S4: Average backbone torsional parameters for the structures of the $10 S(+)$ adduct anti conformer (red circles), $10 R(-)$ adduct (blue squares), and the unmodified control duplex (green diamonds) over $1-2.5 \mathrm{~ns}$ (3000 structures). The standard deviations are shown as error bars. The red and blue bars on the axes indicate the intercalation pocket of the $10 S(+$) adduct ($\mathrm{A} * 6$ - T17 and C7-G16) and the intercalation pocket of the $10 R(-)$ adduct (C5-G18 and A*6-T17), respectively. It should be noted that the residue numbers in Dials and Windows (56) differ from the IUPAC convention as follows: For α, β and γ, residue numbers $1-10$ should be shifted +1 , and for ϵ and ζ, residues $13-22$ should be shifted -1 to accord with the IUPAC convention.

Figure S5: Time dependence of the overall axis bend of the $10 S(+)$ adduct anti conformer (red), $10 S(+)$ syn conformer (orange), $10 R(-)$ adduct (blue), and the unmodified control structure (green) in the $\mathrm{CA} * \mathrm{C}$ sequence context over the 2.5 -ns production MD simulation.

$10 S(+)$ Adduct (CA*A, syn domain)

Figure S6: Stereo view of representative syn glycosidic conformation $\left[\chi=47.1^{\circ}\right.$, see also Figure 8 of Yan et al. (36)] of the $10 S(+)$ adduct $\left[\mathrm{d}\left(\mathrm{A}^{*} \mathrm{~A}\right) \cdot \mathrm{d}(\mathrm{TT})\right]$ in the CA^{*} A sequence context (36). BP is in red, $\mathrm{A}^{*} 6-\mathrm{T} 17$ in green, and A7-T16 in blue. The backbone and sugar atoms are in grey. The O9 on BP and O4 on T16 are in yellow, and the N^{6} on A7 is in orange; the hydrogen atoms of the O9-HO9 hydroxyl group on BP and the N^{6} amino group on A7 are in white. The weak hydrogen bond/electrostatic interaction between N^{6} (A7) and O9-HO9 (BP) is shown as solid pink dots. The N^{6} (A7) to O9 (BP) distance is $3.67 \AA$.

Figure S7: Time dependence of the pseudorotation phase angle P for C5 of the $10 S(+)$ adduct anti conformer in the $\mathrm{CA} * \mathrm{C}$ sequence context over the 2.5 -ns production MD simulation.

