Supporting Information for BI026327P

Nitric Oxide induced formation of the S₋₂ state in the oxygen evolving complex of photosystem II from *Synechococcus elongatus*

Josephine Sarrou, Sabina Isgandarova, Jan Kern, Athina Zouni, Gernot Renger, Wolfgang Lubitz and Johannes Messinger

Extentions to the Kok model to account for a possible direct electron donation of Y_D -NO to $P680^+$

To simulate the effects of direct Y_D -NO oxidation by P680⁺ on flash-induced oxygen yield patterns, the initial Y_D -NO population, $[Y_D$ -NO]₀, and the miss probability for its oxidation by P680⁺, α_{YD-NO} , were introduced as additional free parameters. The miss probability results from the relative rates by which Y_Z and Y_D -NO are able to reduce P680⁺ after single flash excitation at room temperature and from the Q_A^- concentration prior to flash excitation. For simplicity it is assumed that α_{YD-NO} is S-state independent (see main text). Because in a given PSII center Y_D -NO can be oxidized only once within a flash train, the absolute Y_D -NO fraction that is oxidized per flash, $\gamma_{YD-NO}(n)$, declines with flash number, n, during the flash train according to:

$$\gamma_{\text{YD-NO}}(n) = (1 - \alpha_{\text{YD-NO}}) \cdot [Y_{\text{D}} - NO]_{n-1}$$

where $[Y_D-NO]_{n-1} = [Y_D-NO]_{n-2} - \gamma_{YD-NO}(n-1)$ is the fraction of Y_D-NO present in PSII before the n-th flash. It is furthermore assumed that in the fraction of centers $(1 - \gamma_{YD-NO}(n))$ in which the OEC is oxidized the miss and double hit probabilities are the same as in the control. Since the oxidation of Y_D -NO leads to a miss for the OEC, the now flash number dependent miss parameter can be calculated to be:

$$\alpha(n) = \alpha (1 - \gamma_{\text{YD-NO}}(n)) + \gamma_{\text{YD-NO}}(n).$$

Similarly it follows that the double hit, β , and single hit, γ , probabilities of the OEC are:

$$\begin{split} \beta(n) &= \beta \; (1 - \gamma_{\text{YD-NO}}(n)) \\ \gamma(n) &= (1 - \alpha - \beta) \; (1 - \gamma_{\text{YD-NO}}(n)). \end{split}$$

Extentions to the Kok model to account for possible reductions of the S_2 and S_3 states by Y_D -NO during the flash train

Fast reductions of the S₂ and S₃ states by Y_D-NO were implemented into the extended Kok model described in Materials and Methods by splitting the initial S-state populations into a fraction A, where the nitroso tyrosine had been formed, and a fraction B = 1-A, in which back reactions do not take place during the flash train. Once the Y_D-NO centers of fraction A reach the S₂ or S₃ state they were allowed to convert from fraction A into fraction B according to:

$$d[S_{2}(A)]/dt = -k_{21} \bullet [S_{2}(A)]$$

$$d[S_{3}(A)]/dt = -k_{32} \bullet [S_{3}(A)]$$

$$d[S_{1}(B)]/dt = k_{21} \bullet [S_{2}(A)]$$

$$d[S_{2}(B)]/dt = k_{32} \bullet [S_{3}(A)].$$