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Section 1. Probabilistic aspects of the point-statistics SMO.

The probability that n adjacent SCs form a n-tet cluster peak (n 1) is given"'3 by:

P, (cc) = F2 (a)[,-F~ )]n-1 (Is)

with the properties:

ZPn(a) = F() (2s)

and:

YnP,(a) = 1 (3s)
n=1

n is called the peak multiplicity value. Eqs. 2s and 3s (as well as others in the following) were

evaluated by using mathematical symbolic package (Mathematicae 2.2.1 for Windows 2 2). From Eq.

3s one can write:

mnP, (a) = m (4s)

and P (a) is thus the following limiting frequency':

n (C) = limm" rLJ (5s)

where N[n] is the number of peaks of multiplicity n in a chromatogram of m SCs. Note that the limit

to an irifinitely great number of SCs means considering an infinitely long chromatogran However, in

a finite length piece of this infinitely long chromatogram, m is a random quantity' because the SC

sequence is determined by the IM defined by Eqs. 5 and 6 of Principal Paper (equation numbers

without "s" refer to Principal Paper). Thus, the SMO theory essentially gives expected quantities, i.e.

mean quantities. In this instance Eq. 5s can be rewritten as:
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N Y[n]P] (a) = _ (6s)

In Eq. 6s, the average quantities are computed over a set of repeated finite length chromatograms all

having the same statistical properties, i.e. the same IM and the same value of a. The total number of

peaks in the chromatogram, p, is thus:

p = [n] (7s)
n=1

The sum is here extended to m since this is the theoretical maximum multiplicity.

For the subsequent treatment it can prove useful to interpret the peak appearance within the

chromatogram as an event associated with its outcome, peak multiplicity, and to introduce its

probability distribution. The event of n multiplicity value appearance is represented as f M,}. One is

interested in the peak multiplicity probability, Pr{M,}, i.e. the limiting frequency of the number of

peaks of given multiplicity, N[n], in reference to the total number of peaks p, i.e.:

Pr M } = limm- (N[] (8s)
(P

Note that the limit in Eq. 8s means considering an infinitely long chromatogram. From Eqs. 6s-8s

one has:

Pr{Mr = P() (9s)
Y Pi (a)
1=1I

and by introducing Eqs. ls and 2s into Eq. 9s one has:

PrfM. } = F(cc)[1-F(c)] n-1  (10s)

Moreover since:
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F(a)[l - F(a) = 1 (11s)

one has:

ZPr{M,,} = 1 (12s)
n=1I

According to Eq. 12s, the collection of the events { MJ}, {M 2} .{. Mn} have the important

property of being exhaustive. Moreover, they are also mutually exclusive. In fact, every peak in the

chromatogram will belong to one, and only one, of the f M,, } multiplicity cases. In terms of

Probability Theory, {AM 2,.... ,M,} constitutes a "complete and countable system of mutually

exclusive sets of events" and is, thus, a "partition"". This is also expressed as:

S = kz M, (13s)

where S means the sure event and 1 means the union of mutually exclusive events I M, I. These

properties are a basic requirement for subsequent development. The point is important since this

provides the basis for building the quantitative SMO model.

It is of interest to compute the statistics of the multiplicity value, n. By considering Eq. 10s,

Pr{M,} is recognized as a geometric type distribution":

r, = z(l - z)' s = 0,1,2.....o (14s)

with:

z = F(a) (15s)

s= n-1 (16s)

where z is the distribution parameter (0 z 1).

The mean and variance, defined as:

i= ZnPr{M,,} (17s)
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Cy =J>n_-;72 Pr{ M,,} (1 8s)

are'4 , respectively:

1
(19s)

F(cc)

n F (a) (20s)

By combining Eqs. 4s, 5s, 8s, and 17s one can show that the meaning of W is:

W = lim -M (21s)

Eq. 21s can be rewritten as:

m
= - (22s)

where T is the expected number of peaks or the set average quantity, where the set is made by

repeated finite length chromatograms.

Section 2. Probabilistic aspects of the pulse-point statistics SMO.

Let us first derive the amplitude frequency function , gj(y), of multiplet peaks of the same n

multiplicity value. The amplitude frequency function of the singlet peaks, g,(y), will be simply:

gE(y) = g(y) (23s)

The amplitude frequency function of doublet peaks is a case of addition of identically distributed,

independent random variables and is given by the convolution products of the frequency functions":

y

92 (y) = fg(x)g(y - x)dx (24s)
0

This convolution integral will be symbolically written as:

92 =g(y)*g(Y) =g 2* (y) (25s)
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In general, for an n-tet peak, there will be:

g"(y) = gn*(y) (26s)

which is related to the probability, Pr{ A(y)} , of observing a peak within the range between y and

y + dy, given a multiplicity value equal to n, I M} I:

PrfA(y) M"} = g"*(y)dy (27s)

where Pr{A(y)IMn} is the conditional probability.

In the observed chromatogram a given amplitude value equal to y can correspond either to a

singlet or a multiplet peak. The problem of determining its frequency is handled by rigorous

probabilistic methods. This well founded approach is suitable for any future development of the

theory which aims at deriving the more complex chromatogram attributes such as determination

limits"'. The unconditional event of peak amplitude occurrence of a value between y and y+dy,

f A(y)} , has an occurrence probability defined as follows:

Pr{A(y)} = gobs(y)dy (28s)

I A(y)} , implies (c) one of the multiplicities M; i.e. one can write:

A(y) c kM, (29s)

In terms of set theory, then, since f MI, 2,... M r I is a "partition" (see Eq. 13s) and because of Eq.

29s, the following equation can be written ( see Theorem P8 in ref iS):

PrA(y) = ZPrA(y)M,,} (30s)
n=1

where {A(y)M,) means the intersection of the two events, i.e. the simultaneous occurrence of both

events {A(y)} and {M,,}. According to the conditional probability rule 's, one can set:
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Pr{A(y Mj = Pr{A(y) M,} (31s)
Pr{MJ}

Thus, by combining Eqs. 30s and 3 Is, one has:

Pr{A(y) = ZPr A(y) M,,PrMI (32s)
n=1

By combining Eqs. 32s, 27s and 28s, one has:

gob, (y) = XPrIM,, }g* (y) (33s)
n=1

It must be underlined that gobs(y) depends on IM and c, because Pr{ M} is dependent on both IM

and cx (see Eq. 10s). Eq. 33s is the most general representation of SC peak overlapping on peak

amplitude.

Section 3. Characteristic Function and Statistical Attributes of the observed peak

amplitude distribution.

Eq. 33s is the most general representation of SC peak overlapping on peak amplitude. This

type of distribution belongs to an important and well exploited class of distributions, the compound

distributions , representing a random sum of identically distributed independent random variables.

The random variable added here is the SC amplitude, represented by its frequency function

g(y),Pr(M,,} being the weighting factor for this process. For these distributions the so-called

Characteristic Function (CF) - the Fourier Stiltjes Transform - can be generally expressed and

from this both the statistical attributes and, in certain cases, the full expression of ga,(y) can be

obtained 17, . The CF of a continuous frequency function, such as g(y) expressing the type of

AM, is defined as":
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(D)M = exp(igy)g(y)dy (34s)

and that of a discrete distribution, such as Pr { M,} is expressed as:

u(J) = Zexp(ign) PrI M,} (35s)
n=1I

where i is the imaginary unit and is the auxiliary variable. The CF of gobsjy) (see Eq. 33s) can be

generally expressed by using a In-exp transformation procedure reported elsewhere in handling

similar cases of compound distribution17
,
8 :

jDobs M (36s)

where Du and QAM are the CFs of the multiplicity distribution and of the AM, respectively, defined

in Eqs. 34s and 35s. The distinct feature in Eq. 36s is that the argument of CD. is the complex

function lnDm( ) / i. By using the relationship between the derivatives in =O of CF and the

moments of the corresponding frequency function, the statistical attributes of gobs(y) can be

obtained"'"8 . The result is:

Yobs = {IM = all, AM = all} (37s)

for the mean peak amplitude value in the chromatogram. As one can see, yobs is simply the product

of the mean multiplicity value, W, and the SC mean area value, 57. {IM = all, AM = all} specifies

that this expression holds for all the IM and AM types. Likewise, by applying the same procedure for

obtaining variance, one has:

2 2-2 -- 2 =
0 4, = eYnY +n { JIM = all, AM = all} (38s)

where a is the variance of g(y).
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The a dependence of either gos (y) or its statistical attributes can be singled out if one

assumes that the subsequent SC positions can be described by a continuous IM function. First of all

the CF of Pr{ M,} can be computed by noting that it has a shifted geometric distribution, the shifting

being equal to +1 (see Eqs. 14s-16s). The CF of Pr{M,} is thus that of the geometric distributionl 4

multiplied by exp(i ), the latter factor accounting for the shifting effect :

(D 'f) = -Fc)epO(39s)
[1 -(1- F(a)) exp(i )]

By combining Eq. 36s and 39s, one obtains the general CF expression for the peak amplitude

distribution:

Fob() = IAM W M = all, AM = all) (40s)
[1 - (1 - F(o:))mI( )]

holding for any type of IM and AM, provided that they are independent of one another. Eq. 40s will

be exploited later on for specific AM and IM types.

The statistical attributes of gobs(y) are obtained by introducing Eqs. 19s and 20s into Eqs. 37s and

38s:

Yobs = Y (LM = all, AM = all} (41s)
F(oc)

o - +F ( _ - IM= all, AM = all} (42s)

where the dependence on cc is singled out.

Section 4. Model Exploitation: Multicomponent Chromatograms with Poissonian

Retention Pattern.

In the case of Poissonian Retention Pattern, the frequency function of the interdistance is:
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f (x)= exp(- )IM = E} (43s)

and from Eqs. 5 and 7 one has:

F(a) = exp(-a) {IM = E} (44s)

Under such conditions Eq. 41s becomes:

Fobs = Y exp(a) {IM = E, AM = all} (45s)

or, using Eqs. 2 and 4 and taking the logarithm, one has

ln(obs) = In(y) + iIiM = E, AM = all} (46s)

where m was replaced by its average value ii.

The dependence of peak amplitude relative dispersion, (aobs Ybs), on both a and (a/) is

given by Eq. 42s. This is made explicit in Table I for a series of AM types: the Exponential (E),

Uniform (U), Constant (C) and Mixed Exponential (ME), all under {IM = E}.

Provided cY, / Y# 1, i.e. with the exclusion of {AM = E} , by introducing Eqs. 2, 4 and 44s and

taking the logarithm, Eq. 42s can be rewritten as:

In ~(r 1i. -Jo- =I 1-a o IM =E, AM: cr / y<11 (47s)

[2 2

as ~ y. X

.2 2

I 1- 1]= n{C# 1 - fIM = E, AM: a,/ > 1} (48s)

Section 5. Model Exploitation: Multicomponent Chromatograms with

Exponentially distributed SC amplitudes.

The case of the multicomponent chromatogram where the {AM = E} is fully exploited under

both general and specific IM type conditions, by using the Characteristic Function method.

10



In this case the amplitude frequency function is:

g(y)= exp Z - {AM= E} (49s)

The peak area distributions within the chromatogram, go, (y), is obtained here by using the CF

approach outlined above (see Eqs 36s, 39s, 40s). The CF for the exponential distribution (Eq. 49s)

* 3sis :

({ AM = E} (50s)

By introducing Eq. 50s into Eq. 40s, the CF of gos (y) is obtained:

(D=,F _ {AM= E, IM= all} (51s)

L F(a)

By introducing Eq. 41s into Eq. 51s one has:

Dobs(4) = 1 JAM = E, IM = all} (52s)
1 -jiobs

By comparing Eq. 52s with Eq. 50s one can identify Gobs(4) as a CF of an exponential type

distribution and thus:

gobs(y)= exp -Y1 {AM= E, IM= all} (53s)
Yob s Yobs

Section 6. Entropy Function Approach to pulse-point statistics SMO.

The entropy functions for gbs (y) and g(y) will be respectively:

H(Yb) fobs (y) 10g2 g obs (y)dy (54s)

H(Y) = f-g(y)log 2 g(y)dy (55s)

Separation can be accounted for though the relative entropy function:
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He (Ybs) = H(Ybs) - H(Y) (56s)

i.e. by estimating the entropy function changes. This way of considering the separation process is

close to what was presented by Martin and Guiochon4 s who established a parallel between separation

and depolymerization. Evaluation of Hei(Ybs) requires that both gobs(y) and g(y) be expressed in

analytical form and the integrals of Eqs. 54s and 55s be evaluated.

The entropy function for the exponential SC amplitude distribution, {AM = E}, is":

H(Y)= Iney JAM = E} (57s)

where e is the natural logarithm base. Moreover, one important property of E distribution is that it is

the maximum entropy distribution under the positive constraint value for the variable (y>O) and for

the distribution mean constant 9 . In practical terms one can conceive that for a series of mixtures, all

having the same number of components and with the same mean concentration, y7, those having

components exponentially distributed in the concentration can be arranged in the highest number of

ways, i.e. the E distribution is the most likely one. Under such conditions, the exponential amplitude

distribution is most suitable for theoretical investigation since it appears to be the most common, just

as observed in practical experience (Refs 9 and 23). In addition, the point emphasizes the interest in

studying the entropy function properties. It has been observed that if g(y) is of type E, gobs ()

remains the same under all cc separation conditions and for all IM type cases (see Eq. 53s) and thus

its entropy function is:

Hobs(Y) = Ineyobs {AM = E, IM = all} (58s)

It is remarkable that separation follows a condition of maximum entropy function for the peak

amplitude distribution.

By considering Eqs. 41s, 53s and 57s, one has:
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H(Yo,) = In e - In F(a) {AM = E, IM = all} (59s)

and thus by introducing Eqs. 57s and 59s into Eq. 56s and further introducing Eqs. 29s and 22s, one

has:

Hei(Ysb,) = InWi = InM-Inp {AM = E, IM = all} (60s)

for an infinitely long chromatogram, i.e. for m -+ 00. The relative entropy is thus a positive quantity

related to the logarithmic difference between components, j7, and peaks, P.

By combining Eq. 56s, 57s, 59s and 44s, the relative entropy function under {IM = E:

HreI(lobS) = { JAM = E, IM = E} (61s)

By introducing Eqs. 2 and 4 one has:

H(Ybs) = one+lnj + - { AM = E, IM = E} (62s)x
Eq. 61s establishes a meaning to a.

Section 7. Equivalence between the Davis-Giddings and the present approach for

determining the number of Single Components.

The present approach base on Eq. 46s for determining the number of SCs is similar to that

previously proposed by Davis and Giddings"' based on the peak number:

- X0Inp= InW-m {IM=E} (63s)

In fact, Eq. 46s and Eq 63s can be derived from one another since both YRo and p, and y and Iare

interrelated throughout the total area y,, of the chromatogram:

P

Yror = Y7tos (64s)
i= 1

Pro, = 37; (65s)
i=1
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Yobs = Yto / p (66s)

= y"o / M (67s)

and thus it is understood that Eq. 63s must hold true for all the AM types. The i index in Eqs. 63s

and 65s refer to individual SCs or to individual peaks in the chromatogram. Note that the mean

symbol refers to expected quantities as discussed above.

Any deviation in the logarithmic plot of Eq. 63s, when applied to a real chromatogram, will

only be due to discrepancies (random or systematic) between the true interdistance distribution in the

real multicomponent chromatogram and the assumed exponential IM of the Davis-Giddings

statistics. The point is even more clearly elucidated by introducing Eqs. 56s and 59s into Eq. 12:

f (x = d0) {IM=all, AM=all} (68s)
m dx

where the dependence of the peak number on x is unambiguously referred to the IM type under

most general conditions. Eq. 68s corresponds to Eq. 12 previously derived by using the pulse-point

statistics SMO. Because of this close correspondence, Eq. 68s holds under the same general

conditions of {IM=all, AM=all}.
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ADDITIONAL GLOSSARY FOR SUPPORTING INFORMATION

A(y) peak area of value equal to y

i imaginary unit

M peak multiplicity

n value of the peak multiplicity

N[ 3 Number of cases of type [ I

P (cc) Probability of the n-tet cluster as a function of ax

r geometric distribution in the s variable

S sure event

z parameter (O<z <1)

auxiliary variable

CID Characteristic Function

event union

C inclusion (Ac B, event A implies event B)

conditioning

* symbol for convolution integral
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Fig. 1s. Amplitude distribution of PBC in Aroclors. Source: Ref. 29. Histogram: original data.

Continuous function: Exponential approximating function of mean equal to the histogram mean.
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Fig. 2s. Amplitude vs differences between subsequent -log Po values of PCB in Aroclors.
Po, vapour pressure at 25 C (mmHg). Source: Ref. 28.
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