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DEDUCTION OF EQUATIONS

1. Basic formulae
To deduce the equations in our present paper, we used the following basic formulae
of statistics. Here, E and V represent expectation and variance, respectively. X and ¥

are independent probability variables, and a is a constant.

Basic properties of expectation.

E(a-X)=a-E(Y) | (A1)

E(X+Y)=EX)+E(Y) (A2)

EQXCY)=E(X) “E(Y) | (A3)
Basic properties of variance.

NaX)=a"V(X) | (A4)

VXEY)=V(X)y+(Y) | (AS)

Definition of expectation and variance for an infinite population.

. 1 &
E(X)=—-2 X =t (A6)
i=1

V(X)znl_l'Z(Xi_:uinf)zzo-iif | (A7)

Expectation and variance of the sum of » probability variables sampled from the above

infinite population.

E(iXijzn.uinf | (A8)

i=l

. V(iXi):n'o-iif | - (A9

Definition of expectation and variance for a finite population whose size is N.

1 N
E(X)=W-ZX.. = Uy, (A10)
i=1
1 N
v(X)= F'Z(Xf —u, ) =0, (All)
i=l

When n samples are sampled form the finite population, “finite population correction”

works, and the variance of their sum becomes:

V(ZX,.}n-]]vv_’l’-a;n. ' - (A12)

i=1 -
/ y
!
L
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Properties of Poisson distribution Po(1), where A is the arithmetic mean of data. -

E(Po(2))= A (A13)
V(Po(4))=1 | (Al4)
Po(4, )+ Po(4,) = Po(4, + 4,) (A15)

If a probability variable X is dependent of a parameter ¥, where Y is a probability
variable, the overall variance V(X) is described as follows [1].

v(x)=E, (X1 7)+7, (B (X)) (A16)

Here, X|Y means the conditional probability of X when Y is given.

2. Premises and definitions :

The expectation of fluorescent X-ray intensity, w, can be basically expressed by this
equation:;

w=kgdt, ' (A17)
where £ is a constant, g is a glancing-angle-dependent term (or the change of the
fluorescent X-ray intensity per unit shift of glancing angle), d is areal density (or
concentration) of the analyte element, and ¢ is integration time. Because fluorescence
emission is a Poisson process, the actual fluorescence, f, includes “counting statistics.”
Then f'is described as: '

Jf=Po(w), : (A18)
where Po symbolizes a Poisson distribution whose parameter 1s w.

We assume an analyte wafer, and divide the surface into N regions, as illustrated in
Fig. A1. Each point has concentration d;, and is measured at a certain glancing angle
where the glancing-angle-dependent term is g;. We define the following terms that
describe statistical properties of d; and g;.

Expectation of g;: _
E(g)=r (A19)
Variance of g;:
r(g)=7, (A20)
Expectation of d;:
N
E(d,.)=%-2d,.=5 (A21)
i=1

Variance of d;:
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. 1 N .
)=— A22
d)=r 20, - | (A22)
Expectation of d’
v ,
E(d,.z):—]\—r-de =A=6+0? (A23)
i=l
Relative standard deviation (RSD) of g;:

v, | - .
<=p, (A24)

Relative standard deviation (RSD) of d;:

2
g
{5_; = p, (A25)

Glancing angle for point i : g
RSD of Glancing angle: P
. . Concentration of point i: d;
’ \ o o i ........... / RSD of Concentration: yo¥,
\ o N ...... y / - Integration time: : t
P Sampling number: n
Total points:

Fig. Al Schematic illustration of the concept of our theoretical treatment.

3. Expectation of the accumulated intensity

For Z Ji (the sum of n measured fluorescent X-ray intensities, sampled from a
i=l

finite population whose size is N), its expectation is:

(OO

=E(Po(§wi]]=E[gwi)=E[Zn:k-g,. -d, -tj=n-k-y-5-t. (A26)

i=1

4. Variance of the accumulated intensity -
For the fluorescent X-ray intensity of point i, £;, its variance is as follows by
applying Eq. (A16).
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(f) E, (Vf fi|Wi))+Vw.(Ef.|w,.(fi))
E(w,)+ (W.)

—E(k g t)+V(k -g,-d, t)
)

=k-t-E(g;-d)+k*-*-V(g, - d,)

=k-y-6-t+k>-1>-V(g,-d,) - (A27)

For Z Jf; (the sum of #n measured fluorescent X-ray intensities, sampled from a finite
=l

population whose size is N), its variance is:

V[gﬁjziz;:V(ﬁ)=zn:(k'7'5'tA +k* -1 'V(gi 'di))

i=l

=n-k-y-S-t+k’-t -i(V(gi‘d.-))

i=1

=n-k-}/-§-t+k2-tZ-V(Zg,.-d,.]. (A28)
i=]
Because Z g, -d; 1s defined for n dis sampled from a finite population whose size is N,

Zn: g;-d, 1is aprobability variable. We define i g;+-d, =Y, and applying Eq. (A16)
i= i=l
yields:

v =E,(,¥14)+7,(E,,(¥)). (A29)

The variance included in the first term of the right side of Eq. (A29) becomes:
Vy(¥1d)=V,(g di+g, dy+..+g,-d,|d)

= dxz 'V(g|)+d22 ~V(g2)+...+dnz 'V(gn)

=@ +di +..+a),. (A30)
Hence the first term of the right side of Eq. (A29) is:
E,v,(r1d)=E, (4> +a2 +..+a2)-7v,)

=V, -E,J,i(all2 +d2+..+d?)
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-7, '(Ed,- (d12)+ E, (dzz)+....+Edi (dz))

n

=n-A-V,. @3

Next, the expectation included in the second term of the fright side of Eq. (A29)

becomes:
EY|d,(Y)= EY]d,(gl di+g,-d,+..+g, 'dn)

=d, -E(g1)+d2 'E(g2)+---+dn 'E(gn)
=(d, +d,+..+d )y. (A32)
Therefore, the second term of the right side of Eq. (A29) is:

Vs, (EYId,- (Y)): V., ((dl +d, +..+ dn)‘Y)

=y*-(V(d)+v(d,)+...+7(d,)). | | - (A33)
Because each d; is sampled from a finite population, “finite population correction” must
be applied to Eq. (A33), yielding:

V, (Epy (1) =n- 22252 52
From Egs. (A31) and (A34), Eq. (A29) becomes:

N-1 <
Y (lg -d)=nV, -a+n=
i=l

By applying Eq. (A35) to Eq. (A28), we obtain:

(A34)

ytol. | (A35)

V(X)=n-k-7-5-t+n-k2-Vg'A-t2+n-x ’l’-kz-yz-aj-tz. (A36)

5. Relative standard deviation (RSD) of the accumulated intensity
By using Egs. (A26) and (A36), the square of the RSD of the accumulated intensity,

/7, becomes:
Lo V)
(E(X))’

2

nk-y-S-t+n-k*V,-A-t*+n-

’;.kz.}/z.o-j.t

n ok yt.57 1

1 1(, A N-n ,
_ _Lf A N-n o) A37
nkyo-1 n (pg st N p") (A37)
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N

Since A is equal to §+0, as defined in Eq. (A23), we can rewrite:

A o
L 141 (A38)
Applying Eq. (A38) to Eq. (A37) yields:
4 2 1 1 2 2 N-n 2}
=t AL+ +n- . . A39
p R i {pg ( pd) ne— T P (A39)
Consequently, the RSD of the fluorescent X-ray intensity, p, is described as follows.
1 1 2 2 N_n 2}
= J———+—- Al+p,)+n- . A40
g \/:.k.y.é'.t n {pg bpl)en N-1 P (A40)
6. Range of 1+pd2

Using the definitions of A and &shown in Eqgs. (A21) and (A23), we can transform
1+p,12 in Eq. (A38) into:
dZ

i 2 2 2
_N. di +d; +..+dy _ (Adl)

idlz (d+dy+..+dy)

i=l

N

)

A

Eq. (A41) represents the nonuniformity of analyte distributioh, because the value

z|= =~

becomes larger as the uniformity of d; worsens.

Here, the following inequality is generally valid for N positive variables x;, X2, ..., Xn.

< X2+ X+t Xy <1

1
- A42
N (x, +x, +.t xy ) (442)

By applying this inequality to Eq. (A41), we can determine the range of 1+pd2 as

follows.

1<1+p2<N. ’ (A43)
NOMENCLATURE

f fluorescence intensity

w expectation of fluorescence intensity

k proportionality coefficient

g glancing angle

¥ average glancing angle

d areal density (concentration) of analyte element
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[

) average areal density (concentration) of analyte element
N number of total measuring points (size of population)
n number of sampling points (sample size)
t integration time of each point
Yol relative standard deviation
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