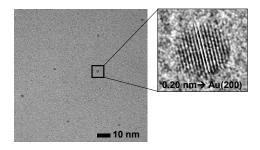
Supporting information for:

Influences of Gas Adsorption and Au Nanoparticles on Electrical Properties of CVD-Grown MoS₂ Thin Films

Yunae Cho,[†] Ahrum Sohn,[†] Sujung Kim,[†] Myung Gwan Hahm,^{‡,§} Dong-Ho Kim, [‡] Byungjin Cho, ^{*,‡} and Dong-Wook Kim^{*,†}


[†] Department of Physics, Ewha Womans University, Seoul 03760, Korea

[‡] Advanced Functional Thin Films Department, Korea Institute of Materials Science (KIMS),

Changwon 51508, Korea

[§] Department of Materials Science & Engineering, Inha University, Incheon 22212, Korea

* E-mail: bjcho@kims.re.kr (Byungjin Cho) and dwkim@ewha.ac.kr (Dong-Wook Kim)

Figure S1. Transmission electron microscope (TEM) images of Au nanoparticles (NPs) on a carbon film, grown in the identical conditions for the preparation of the Au NPs on our MoS₂ thin films. The lattice spacing found from the high-resolution TEM image is identified to be around 0.20 nm, corresponding to the Au (200) atomic plane.

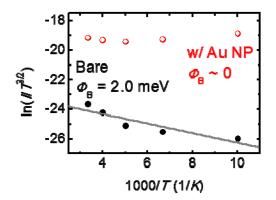


Figure S2. The current (I)-voltage (V) characteristics of our device can be explained by the 2D thermionic model, as described by the following equation:

$$I = A_{2D}^* ST^{3/2} \exp\left[-\frac{q}{k_B T}\left(\phi_B - \frac{V}{n}\right)\right]$$

where A^*_{2D} is the 2D equivalent Richardson constant, *S* is the contact area, *T* is the temperature, *q* is the electron charge, *k*_B is the Boltzmann constant, ϕ_B is the Schottky barrier height, and *n* is the ideality factor [Kim *et al.*, *Sci. Rep.* **2016**, *16*, 1890-1895]. From the Arrhenius plots of $\ln(IT^{-3/2})$ vs. T^{-1} , ϕ_B can be estimated. The estimated ϕ_B values for the bare and coated samples are 2.0 and 0 meV, respectively. This indicates Ohmic contact formation in our devices.