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Table S1. Structure parameters for γ-FeOOH (JCPDS card, No. 44−1415. a = 12.52 

Å, b = 3.87 Å, c = 3.07 Å) showing fractional coordinates (x, y, z) and occupancies 

(g). 

 

Atom x y z g 

Fe 0.678 0.25 0 1 

O 0.282 0.25 0 1 

OH 0.075 0.25 0 1 
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Figure S1. TEM image of the product synthesized at a high FeCl2 concentration of 

0.6 g L–1.  
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Figure S2. Band structure of γ-FeOOH 3D bulk. The Brillouin paths are chosen the 

same as that of 2D γ-FeOOH nanosheet for a direct comparison.  
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 Fig. S3. FTIR spectra of FeOOH and FeOOH@rGO composite 
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Figure S4. XPS spectra of (a) γ-FeOOH@rGO nanocomposites, (b–d) high resolution 

XPS spectra for C, O and Fe elements, respectively. Two peaks at 713.8 and 727.6 eV 

can be assigned to Fe 2p3/2 and Fe 2p1/2 main peaks, respectively. The appearance of 

satellite bands near the Fe 2p main peaks is generally regarded as an indicator of the 

valence state of Fe3+. [1] In addition, The C1s spectrum of FeOOH@rGO 

nanocomposites can be resolved into two peaks centered at 284.5 and 287.8 eV, 

assigning to C-C and C=O bonds, respectively. The intensity of C-C bond is much 

higher than that of C=O bond, demonstrating the successful reduction of GO into rGO 

in our process. 
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Figure S5. The TEM image of the sample prepared by mixing γ-FeOOH nanosheets 

and GO at a hydrothermal temperature of 170 ºC. Higher hydrothermal temperature of 

170 °C is disadvantageous for the homogenous dispersion of γ-FeOOH on rGO. 
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Table S2. Comparison of the cycling stability of the as-obtained γ-FeOOH@rGO and 

previously reported FeOOH-based materials (>50 cycles). This fast activation process 

of γ-FeOOH@rGO nanocomposites is superior to other reported FeOOH systems, 

which always suffer from longstanding activation process. 

Anode 

activation 

cycle 

number           

valley 

capacity  

(mAh g-1) 

stable 

capacity 

(mAh 

g-1) 

fluctuation 

ratio  
Ref 

      

Mn-doped α-FeOOH 

nanorods 
~200 ~500 883 ~43% 2 

β-FeOOH nanorods ~300 285 ~500 ~45% 3 

10 wt.% graphite 

doped β-FeOOH 

nanorods 

~300 ~300 ~600 ~50% 3 

amorphous FeOOH 

particle/rGO 
~100 ~600 767 ~21% 4 

ultrathin γ-FeOOH 

nanosheets@rGO 
~10 790 860 8% 

This 

work  
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