Hydrothermal crystallization of uranyl coordination polymers involving an imidazolium dicarboxylate ligand: effect of pH on the nuclearity of uranyl-centered sub-units.

Nicolas P. Martin,^a Clément Falaise,^a Christophe Volkringer,^{a,b} Natacha Henry,^a Pierre Farger,^c Camille Falk,^c Emilie Delahaye,^c Pierre Rabu,^c Thierry Loiseau.^{a,*}

Contribution from ^aUnité de Catalyse et Chimie du Solide (UCCS) – UMR CNRS 8181, Université de Lille, ENSCL, Bat C7, BP 90108, 59652 Villeneuve d'Ascq, France. ^bInstitut Universitaire de France, 1 rue Descartes, 75231 Paris Cedex 05. ^cIPCMS UMR7504 CNRS-UNISTRA, Département de Chimie des Matériaux Inorganiques,

23, rue du Loess, BP43, Strasbourg cedex 2, France.

* To whom correspondence should be addressed. E-mail: thierry.loiseau@ensc-lille.fr. Phone: (33) 3 20 434 434, Fax: (33) 3 20 43 48 95.

SUPPLEMENTARY INFORMATION

To be submitted to Inorg. Chem. Version May 20, 2016. Revised version june 16, 2016. Revised version july 22, 2016.

Figures

Figure S1a: View of the coordination of uranyl center U1 in $(UO_2)_2(imdc)_2(ox) \cdot 3H_2O(1)$.

Figure S1b: Detailed view of the disorder of the imidazol ring and water molecules in $(UO_2)_2(imdc)_2(ox)\cdot 3H_2O(1)$.

Figure S1c: View of the coordination of uranyl center U1 in $(UO_2)(imdc)_2$ (2).

Figure S1d: Representation of a layer in the (b,c) plane in $(UO_2(imdc)_2)$ (2).

Figure S1e: View of the coordination of uranyl centers U1, U2 & U3 in $(UO_2)_3O_2(H_2O)(imdc) \cdot H_2O$ (3).

Figure S1f: view of the coordination of uranyl centers U1, U2 & U3 in $(UO_2)_3O(OH)_3(imdc) \cdot 2H_2O$ (4).

Figure S1g: View of the hydrogen bond scheme in $(UO_2)_3O(OH)_3(imdc) \cdot 2H_2O(4)$

Figure S2a: Comparison between the calculated (black line) and experimental (red line) XRD patterns of $(UO_2)_2(imdc)_2(ox) \cdot 3H_2O(1)$ – Copper radiation.

Figure S2b: Comparison between the calculated (black line) and experimental (red line) XRD patterns of $UO_2(imdc)_2$ (2)– Copper radiation.

Figure S2c: Comparison between the calculated (black line) and experimental (red line) XRD patterns of $(UO_2)_3O(OH)_3(imdc) \cdot 2H_2O$ (4)– Copper radiation.

Figure S3: Evolution of the powder XRD patterns of compounds 1-4 & $Na(UO_2)O(OH) \cdot H_2O$, as a function of reaction pH.

Thermal anaylsis. The thermogravimetric experiments have been carried out on a thermoanalyzer TGA 92 SETARAM under air atmosphere with a heating rate of 5° C.min⁻¹ from room temperature up to 800°C.

Figure S4a: Thermogravimetric curve of the compound $(UO_2)_2(imdc)_2(ox) \cdot 3H_2O$ (1) under air atmosphere (heating rate 5°C.min⁻¹).

Figure S4b: Thermogravimetric curve of the compound $UO_2(imdc)_2$ (2) under air atmosphere (heating rate 5°C.min⁻¹).

Figure S4c: Thermogravimetric curve of the compound $(UO_2)_3O(OH)_3(imdc) \cdot 2H_2O$ (4) under air atmosphere (heating rate 5°C.min⁻¹).

Infrared spectroscopy.

Figure S5a: Infrared spectra of $(UO_2)_2(imdc)_2(ox) \cdot 3H_2O(1)$ collected at room temperature.

Figure S5b: Infrared spectra of $UO_2(imdc)_2$ (2) collected at room temperature.

Figure S5c: Infrared spectra of $(UO_2)_3O(OH)_3(imdc) \cdot 2H_2O$ (4) collected at room temperature.

Figure S5d: Evolution of the *in situ* IR spectra of $(UO_2)_2(imdc)_2(ox) \cdot 3H_2O$ (1) between 20-130°C in the range 4000-2750 cm⁻¹.

Figure S5e: Evolution of the in situ IR spectra of $(UO_2)_3O(OH)_3(imdc) \cdot 2H_2O$ (4) between 20-200°C in the range 4000-2750 cm⁻¹.

Table S2: Comparison of U=O bond distance calculated from the position of $v_{asym(U=O)}$ vibration and the crystal structure data.

Phase	V _{asym} (U=O)	Distance U=O		
		Exp.	Calc.*	
1	923	1.73-1.77	1.76	
2	903	1.79-1.80	1.78	
3	918	1.76-1.78	1.77	

*after J.R. Bartlett, R.P. Cooney, J. Mol. Struct. 193 (1989) 295.

Sample					
1	490.5	511	533	558	585
	20408	19569	18762	17921	17094
2	494	514.5	537.5	561.5	589
	20243	19455	18622	17825	16978
4	/	520 (s) 19231	535(max) 18692	558 (s) 17921	585 (s) 17094

Table S3: Positions of the bands (in nm – top – and cm⁻¹ – bottom –) in the fluorescence spectra of compounds 1, 2 & 4.

(s) shoulder