Preparation of Optically Pure Tertiary Phosphine Oxides via Addition of P-Stereogenic Secondary Phosphine Oxide to Activated Alkenes

Ji-Ping Wang, Shao-Zhen Nie, Zhong-Yang Zhou, Jing-Jing Ye, Jing-Hong Wen, Chang-Qiu Zhao*

College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China

Table of Contents

General Chemistry:	S2
Reagent and solvents:	S2
31P NMR Yield measurements:	S2
Part 1. Investigation of the reaction under alkali condition	S 3
Part 2. Investigation of the reaction thermal condition	S6
Part 3. Crystallographic Information	S7
Part 4. Selected 1H, 31P and 13C NMR spectroscopy of 3 and 5	S 9

General Chemistry:

¹H NMR spectra were recorded on a 400-MHz spectrometer. Chemical shift for ¹H NMR spectra (in parts per million) relative to internal tetramethylsilane (Me₄Si, δ = 0.00 ppm) with Chloroform-d. ¹³C NMR spectra were recorded at 101 mHz Chemical shifts for ¹³C NMR spectra are reported (in parts per million) relative to Chloroform-d (δ = 77.0 ppm). ³¹P NMR spectra were recorded at 162 MHz, and chemical shifts reported (in parts per million) relative to external 85% phosphoric acid (δ = 0.0 ppm). TLC plates were visualized by UV.

Reagent and solvents:

All starting material were purchased from commercial sources and used as received. The solvents were distilled under N_2 and dried according to standard procedures.

³¹P NMR Yield measurements:

³¹P NMR spectra were referenced to phosphoric acid. The NMR yields of the article are determined by integration of all the resonances in the ³¹P spectra. The yields obtained by the approach are generally accurate and reproducible

Part 1. Investigation of the reaction under alkali condition General procedure, in DMSO or DMF:

To the solution of **1** (50 mg, 0.189 mmol), **2a** (33 mg, 0.227 mmol) in some solvent (0.5 ml), the base was added and the mixture was stirred at the temperature for the time as indicated in Table S-1. The suspension (0.1 ml) was added to saturated aqueous ammonium chloride, extracted with dichloromethane, washed with water and dried over anhydrous magnesium sulfate. After removing solvent, the residue was analyzed with proton and ³¹P-NMR spectra, and the results were summarized in Table S-1. The ³¹P and proton NMR spectroscopy of **3a/3a'** were shown in Figure S-1 and S-2.

		O R ^{⊮™P} ∼H Ph	+ Ph	$\xrightarrow{\text{base}} \operatorname{Ph}^{\mu} \xrightarrow{\alpha} \operatorname{Ph}^{\beta}$	+ R ^{wy} P Ph i H Ph O	/
		1	2a	3a	3a'	
entry	solvent	Catalyst (mol %)	temp. /time	Peak of $3a$ on ³¹ P-NMR (45.07 ppm) $\%^{[a]}$	Peak of 3a' (46.68 ppm) $\frac{6}{a}$	Peak of unconsumed 1 on ³¹ P-NMR (33.26 nnm) $\%^{[a]}$
1	DMSO	KOH (25)	34°C/25h	53	45	2
2	DMSO	КОН (25)	80°C/21h			97
3	DMSO	LiOH (25)	80°C/70h	47	53	
4	DMF	Ca(OH) ₂ (25)	15°C/21 h	87	13	
5	DMF	Ca(OH) ₂ (25)	-5°C/21 h	87	10	3
6	iPrOH	КОН (25)	60°C/19h	30	70	
7	iPrOH	КОН (25)	40°C/0.5h	79	21	
			40°C/5h	62	38	
			40°C/11h	54	46	
8	iPrOH	КОН (25)	40°C/48h	38	62	
9	THF	<i>n</i> BuLi (20)	-78°C/3h	64	4	15 ^[b]
10	THF	<i>n</i> BuLi (50)	-78°C/3h	74	6	7 ^[b]
11	THF	nBuLi (100)	-78°C/3h	74	9	7 ^[b]

Table S-1. Base-catalyzed addition of 1 to benzaacetone 2a.

[a] The photocopy of NMR spectroscopy of **3a** and **3a'** were presented in Figure S-1 and S-2. [b] By-products other than **3a/3a'** were detected.

General procedure, in isopropanol:

The KOH (0.047 mmol) was dissolved previously in isopropanol (0.5 ml) with stirring. If necessary, the mixture can be heated to accelerate the dissolving, and the resulting solution was cooled to room temperature before using. To the clear solution of KOH, **1** (0.05 g, 0.189 mmol) and **2a** (0.033 g, 0.227 mmol) were added. The mixture was stirred at the temperature for the time as indicated in Table S-1. The suspension (0.1 ml) was added to saturated aqueous ammonium chloride, extracted with dichloromethane, washed with water and dried over anhydrous magnesium sulfate. After removing solvent, the residue was analyzed with proton and ³¹P-NMR spectra, and the results were summarized in Table S-1.

Figure S-1. ³¹P NMR spectroscopy of 3a and 3a'.

General procedure, for nBuLi in THF:

To the solution of **1** (0.053 g, 0.2 mmol) in THF (1 ml), the solution of *n*BuLi (2.2 M solution in hexane, 0,091 ml, 0.2 mmol) was added at -78°C. The resulting solution was stirred for 10 min at the same temperature, then **2a** (0.032 g, 0.22 mmol) was added in one portion. After the mixture was stirred for 3 h, the mixed solvent of acetic acid/THF (2:1, 0.2 ml) was added dropwise at the same temperature to stop the reaction. The mixture was added to saturated aqueous ammonium chloride, extracted with dichloromethane, washed with water and dried over anhydrous magnesium sulfate. After removing solvent, the residue was analyzed with proton and ³¹P-NMR spectra, and the results were summarized in Table S-1.

Figure S-2. Proton NMR spectroscopy of 3a and 3a'.

entry	solvent	Catalyst or additive (mol %)	temp. /time ^[a]	3a (45.07 ppm) % ^[a]	3a' (46.68 ppm) % ^[a]	Unconsumed 1 (33.26 ppm) % [a]
1	no	no	80 °C /22 h	88	12	
2	toluene	no	80 °C /17 h	91	9	
3	toluene	no	80 °C /24 h	89	11	
4	toluene	no	60 °C /24 h	74	9	17
5	DMSO	no	80 °C /46 h	92	8	
6	nC_8H_{18}	no	80 °C /46 h	59	7	^[b]
7	pyridine	no	80 °C /24 h	83	10	7
8	MeOH	no	60 °C /19 h	24	4	^[b]
9	toluene	AIBN (20)	60 °C /25 h	85	9	6
10	toluene	AIBN (20)	80 °C /52 h	92	8	
11	toluene	Ph3P (20)	Rt/40h	Nr		
12	toluene	Et3N (20)	Rt/40h	Nr		
13	toluene	TEMPO (20)	80 °C /24 h	76	1	2 ^[b]
14	toluene	TEMPO (20)	100°C/41 h	Complicated ^[c]		

Table S-2. Optimization of the thermal addition of 1 to 2a.

[a] The photocopy of NMR spectroscopy of 3a and 3a' were presented in Figure S-1 and S-2. [b] By-products other than 3a/3a' were detected. [c] The epimerization of 1 and formation of the stereomers other than 3a/3a' were detected.

Part 2. Investigation of the reaction under thermal condition

General procedure, neat condition:

The mixture of **1** (0.050 g, 0.189 mmol) and **2a** (0.033 g, 0.227 mmol) was heated at 80 $^{\circ}$ C with stirring. The oily substance (ca. 0.02 ml) was dissolved in *d*-chloroform, analyzed with proton and 31 P-NMR spectra, and the results were summarized in Table S-2.

General procedure, thermal addition in a solution:

The solution of **1** (0.050 g, 0.189 mmol), **2a** (0.033 g, 0.227 mmol) and additive (AIBN or TEMPO) in solvent (0.1 ml) was heated at 80 °C with stirring. The solution (ca. 0.020 ml) was dissolved in *d*-chloroform, analyzed with proton and ³¹P-NMR spectra, and the results were summarized in Table S-2.

Part 3. Crystallographic Information (*S*_P,*S*)-4-[(–)-Menthylphenylphosphoryl]-1-(*p*-methoxyphenyl)-4-phenylpropan-2-one, 3e

(-)Men ^{wy} Ph	P1 02
Empirical formula	C32 H39 O3 P
Crystal system	Orthorhombic
Space group	P212121
Formula weight	502.60
a, Å	5.9316(3)
b, Å	16.4646(10)
c, Å	29.5614(18)
α, deg	90
β, deg	90
γ, deg	90
V, Å3	2887.0(3)
Z	4
Т, К	293(2)
λ, Å	1.54184
ρ, g cm–3	1.156
Rint	0.0732
R1 [I N 2σ(I)]	0.0628
R1 (all data)	0.1244
wR2 [I N 2σ(I)]	0.1208
wR2 (all data)	0.1419
Flack	-0.01(3)
CCDC	1449993

Fig S-1. ORTEP drawing of **3e** with thermal ellipsoids at the 50% probability.

22 80 78 76 74 72 70 68 66 64 62 60 58 56 54 52 50 48 46 44 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 fl (ppm)

55 50 45 f1 (ppm) Ċ

¹H-NMR spectroscopy of isolated 3c

(*S*_P,*S*)-4-[(–)-Menthylphenylphosphoryl]-1-(*p*-bromophenyl)-4-phenylpropan-2-one, 3d ³¹P-NMR spectroscopy of crude 3d/3d'=89:11

³¹P-NMR spectroscopy of isolated 3d

-45.23

¹H-NMR spectroscopy of isolated 3d

³¹P-NMR spectroscopy of isolated 3e

-45,44

(*S*_P,*S*)-4-[(-)-Menthylphenylphosphoryl]-1-phenyl-4-(*o*-fluorophenyl)propan-2-one, 3f ³¹P-NMR spectroscopy of crude 3f/3f'=93:7

¹H-NMR spectroscopy of isolated 3f

³¹P-NMR spectroscopy of isolated 3g

-47.39

(*S*_P,*S*)-4-[(–)-Menthylphenylphosphoryl]-1-phenyl-4-(*o*-bromophenyl)propan-2-one, 3h ³¹P-NMR spectroscopy of crude 3h/3h'=94:6

³¹P-NMR spectroscopy of isolated 3h

-47.28

-49.31

¹H-NMR spectroscopy of isolated 3k

H-NMR spectroscopy of isolated 3l/3l'=98:2

110 100 f1 (ppm)

 $(S_{P},S)-4-[(-)-Menthylphenylphosphoryl]-1-(p-chlorophenyl)-4-(o-nitrophenyl)propan-2-one,$

48.4 48.3 48.2 48.1 48.0 47.9 47.8 47.7 47.6 47.5 47.4 47.3 47.2 47.1 47.0 46.9 46.8 46.7 46.6 46.5 46.4 46.3 fl (ppm)

¹H-NMR spectroscopy of isolated 3m

 $(S_{P},S)-4-[(-)-Menthylphenylphosphoryl]-1-(p-chlorophenyl)-4-(p-nitrophenyl)propan-2-one,$

55 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 fl (ppm)

¹H-NMR spectroscopy of isolated 3n

-77.01

 +134.43

 +132.73

 +131.27

 +131.27

 +131.27

 +131.27

 +131.27

 +130.02

 +130.23

 +129.08

 +129.08

 +129.08

 +129.08

 +129.08

 +129.08

 +129.08

 +129.08

 +129.08

 +129.08

 +129.08

 +129.08

 +129.08

 +129.18

<195.25 <195.13

 (S_{P}, R) -4-[(-)-Menthylphenylphosphoryl]-1-(p-bromophenyl)-4-(p-diphenylaminephenyl)prop

¹H-NMR spectroscopy of isolated 30/30'=4:96

(S_P)-4-[(-)-Menthylphenylphosphoryl]-1-phenyl-4-(2,6-dichlorophenyl)propan-2-one,

¹H-NMR spectroscopy of isolated 3p/3p'=60:40

¹³C-NMR spectroscopy of isolated 3p/3p'=60:40

183.53 183.53 183.53 183.53 183.54 183.54 183.54 183.55 18

(S_P)-4-[(-)-Menthylphenylphosphoryl]-1-phenyl-4-(2,4,6-trimethoxyphenyl)propan-2-one, 3q/3q'

H-NMR spectroscopy of isolated 3q/3q'=62:38

¹³C-NMR spectroscopy of isolated 3q/3q'=62:38

(1) 100.35
(2) 100.35
(2) 100.35
(3) 100.35
(4) 100.35
(4) 100.35
(4) 100.35
(4) 100.35
(4) 100.35
(4) 100.35
(4) 100.35
(4) 100.35
(4) 100.35
(5) 100.35
(5) 100.35
(5) 100.35
(5) 100.35
(5) 100.35
(5) 100.35
(5) 100.35
(5) 100.35
(5) 100.35
(5) 100.35
(5) 100.35
(5) 100.35
(5) 100.35
(5) 100.35
(5) 100.35
(5) 100.35
(5) 100.35
(5) 100.35
(5) 100.35
(5) 100.35
(5) 100.35
(5) 100.35
(5) 100.35
(5) 100.35
(5) 100.35
(5) 100.35
(5) 100.35
(5) 100.35
(5) 100.35
(5) 100.35
(5) 100.35
(5) 100.35
(5) 100.35
(5) 100.35
(5) 100.35
(5) 100.35
(5) 100.35
(5) 100.35
(5) 100.35
(5) 100.35
(5) 100.35
(5) 100.35
(5) 100.35
(5) 100.35
(5) 100.35
(5) 100.35
(5) 100.35
(5) 100.35
(5) 100.35
(5) 100.35
(5) 100.35
(5) 100.35
(5) 100.35
(5) 100.35
(5) 100.35
(5) 100.35
(5) 100.35
(5) 100.35
(5) 100.35
(5) 100.35
(5) 100.35
(5) 100.35
(5) 100.35
(5) 100.35
(5) 100.35
(5) 100.35
(5) 100.35
(5) 100.35
(5) 100.35
(5) 100.35
(5) 100.35
(5) 100.35
(5) 100.35
(5) 100.35
(5) 100.35
(5) 100.35
(5) 100.35
(5) 100.35
(5) 100.35
(5) 100.35
(5) 100.35
(5) 100.35
(5) 100.35
(5) 100.35
(5) 100.35
(5) 100.35
(5) 100.35
(5) 100.35
(5) 100.35
(5) 100.35
(5) 100.35
(5) 100.35
(5) 100.35
(5) 100.35
(5) 100.35
(5) 100.35
(5) 100.35
(5) 100.35
(5) 100.35
(5) 100.35
(5) 100.3

 $(S_{\rm P})\mbox{-}4\mbox{-}[(-)\mbox{-}Menthylphenylphosphoryl]\mbox{-}1\mbox{-}phenyl\mbox{-}4\mbox{-}(2,4,6\mbox{-}trimethylphenyl)\mbox{propan-}2\mbox{-}one,$

43

¹³C-NMR spectroscopy of isolated 3r/3r'=88:12

2 70 68 66 64 62 60 58 56 54 52 50 48 46 44 42 40 38 36 34 32 30 28 26 24 22 20 18 16 £1 (ppm)

¹H-NMR spectroscopy of isolated 3s

190 180 170 160 160 140 130 120 110 100 90 80 70 60 50 40 30 20 10 fl (ppm)

0.0 49.5 49.0 48.5 48.0 47.5 47.0 46.5 46.0 45.5 45.0 44.5 44.0 43.5 43.0 42.5 42.0 41.5 41.0 40.5 40.0 39.5 39.0 38.5 38.0 37.5 37.0 36.5 fl (ppm)

¹H-NMR spectroscopy of isolated 3u

¹³C-NMR spectroscopy of isolated 3u

77.37 77.06 76.74 48.28 48.28 48.23 48.23 55.24 55.28 55.29 55.28 55.29 55.20

-134.08 -133.21 -131.18 -131.16 -130.57 -130.49 -130.49 -128.54

209.86
 209.74

¹H-NMR spectroscopy of isolated 3v

¹³C-NMR spectroscopy of isolated 3v

77.38

47.24 48.77 48.74 48.74 48.74 48.74 48.74 48.74 49.08 49.08 21.88

¹H-NMR spectroscopy of isolated 3w

¹³C-NMR spectroscopy of isolated 3w

(S_P,R)-4-[(-)-Menthylphenylphosphoryl]-1-pyridyl-4- pyridylpropan-2-one, 3x' ³¹P-NMR spectroscopy of crude 3x/3x'=43:57

459 458 457 456 455 454 453 452 451 450 449 448 447 446 445 444 443 442 441 440 439 438 437 436 435 434 433 432 431 430 429 428 427 426

¹H-NMR spectroscopy of isolated 3x/3x'=3:97

¹H-NMR spectroscopy of isolated 5a

¹H-NMR spectroscopy of isolated 5b

¹H-NMR spectroscopy of isolated 5c'

¹H-NMR spectroscopy of isolated 5d

(*S*_P,*2R*,*3S*)-3-[(–)-Menthylphenylphosphoryl]-2-phenyl-3-(*p*-chlorophenyl)propanenitrile, 5e ³¹P-NMR spectroscopy of crude product, the ratio of four stereomers: 22:13:61:4

-43.01

¹H-NMR spectroscopy of isolated 5e

5.40 5.35 5.30 5.25 5.20 5.15 5.10 5.06 5.00 4.95 4.90 4.85 4.80 4.75 4.70 4.65 4.60 4.55 4.50 4.45 4.40 4.35 4.30 4.25 4.20 fl (ppm)

³¹P-NMR spectroscopy of isolated 5f

¹³C-NMR spectroscopy of isolated 5f

45 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 80 45 40 35 30 25 20 15 10 5 fl (ppm)

³¹P-NMR spectroscopy of isolated 5g

¹³C-NMR spectroscopy of isolated 5g

³¹P-NMR spectroscopy of isolated 5h

¹³C-NMR spectroscopy of isolated 5h

145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 f1 (ppm)