Supplemental Information for:

Vapor-dissociation-solid Growth of 3D Graphite-like Capsules with Delicate Morphology and Atomic-level Thickness Control

Xian Jian^{a,b,ζ}, Guozhang Chen^{a,ζ}, Hongyang Liu^{c,ζ}, Nasir Mahmood^b, Shibu Zhu^d, Liangjun Yin^a, Hui Tang^a, Weiqiang Lv^a, Weidong He^{a,*}, Kelvin H.L. Zhang^e, Qun Zeng^{f,*}, Baihai Li^a, Xuesong Li^g, Wanli Zhang^{g,*} and Xiaolin Wang^{b,*}

^a Center of Micro-Nano Functional Materials and Devices, School of Energy Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731,

China

^b Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, North Wollongong, 2500, Australia

^c Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China

^d Xi'an Aerospace Composites Research Institute, Xi'an,710025, China

^e Department of Materials Science & Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, UK CB3 0FS, United Kingdom

^f Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, 621900,

China

^g State key Laboratory of Electronic Thin Films and Integrated Devices, Institute of Microelectronic & solid-state electronics, University of Electronic Science and Technology of China, Chengdu, 610054, China

⁵ Xian Jian, Guozhang Chen and Hongyang Liu contributed equally to this work.

^{*} Corresponding authors. Email addresses: weidong.he@uestc.edu.cn (W. He), zq84229@163.com (Q. Zeng), wlzhang@uestc.edu.cn (W. Zhang) and xiaolin@uow.edu.cn (X. Wang).

Experimental Details:

Graphite-like Capsules (GCs) over various materials are synthesized on metal oxides including TiO₂, ZnO, SnO₂ and BaFe₁₂O₉ through the CCVD method. The main synthetic process is depicted in the Experiment Section of the manuscript. The preparation of TiO₂@CC is carried out at 700 °C for 5 S (Figure 1a) and 30 min (Figure 1b) with an acetylene flow of 20 mL/min without nitrogen (the following case is similar). ZnO@GCs is synthesized at 400 -800 °C under 50 mL/min acetylene. For ZnO nanorod, the temperature is controlled at 400 °C for 1 min (Figure 1c). For T-ZnO, the reaction condition is 800 °C for 60 min (Figure 1d). The SnO₂@GCs is prepared at 500 °C for 10 min under 30 mL/min acetylene (Figure 1e). BaFe₁₂O₉@GCs is prepared from the decomposition of acetylene (40 mL/min) at 400 °C for 5 min (Figure 1f).

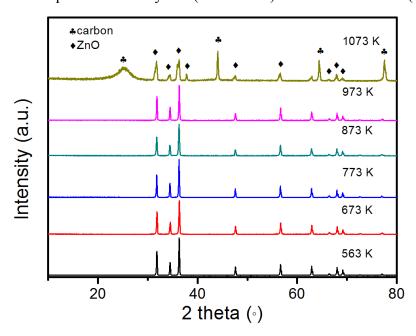


Figure S1. XRD data of carbon capsule hybridize T-ZnO at different reaction temperatures for 60 min under a 50 mL/min C_2H_2 flow.

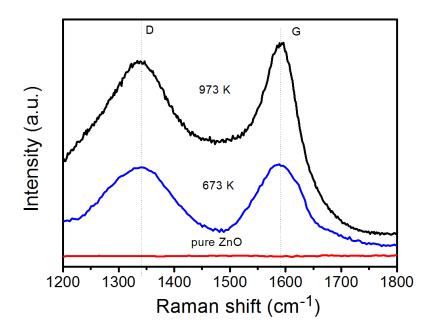


Figure S2. Raman spectra of pure T-ZnO and T-ZnO@GCs obtained at different reaction $temperatures \ for \ 60 \ min \ under \ a \ 50 \ mL/min \ C_2H_2 \ flow.$