Supporting Information

Title: A green and facile synthesis of ordered mesoporous nano-silica using coal fly ash

Feng Yan, Jianguo Jiang, Sicong Tian, Zongwen Liu, Jeffrey Shi, Kaimin Li, Xuejing Chen and Yiwen Xu

1. Experimental: Characterization

2. Results:

Table S1. Chemical composition of the coal fly ash and the synthetic nano-silica.

Table S2. Calculation of the Gibbs free energy for Eq. S1-S5.

Table S3. Weight loss, hydroxyl content and hydroxyl density of the synthetic nano-silica.

Table S4. Cell parameters of the synthetic nano-silica.

Figure S1. (a) N₂ physisorption isotherms and (b) pore size distributions of "FA" and "FA-desilication".

Figure S2. SEM images of (a) "FA", and (b) "FA-desilication". Magnification factor: ×10 000 for (a-b) and ×50 000 for the Insertion of (a-b).

Figure S3. (a) TGA analysis and (b) FTIR spectra of "SiO₂-0.00", "SiO₂-0.04", "SiO₂-0.08", "SiO₂-0.16" and "SiO₂-0.32".

Figure S4. XRD patterns of "SiO₂-0.00", "SiO₂-0.04", "SiO₂-0.08", "SiO₂-0.16" and "SiO₂-0.32".

Figure S5. SEM images of (a) "SiO₂-0.00", (b) "SiO₂-0.08", (c) "SiO₂-0.16" and (d) "SiO₂-0.32". Magnification factor: $\times 10\ 000$ for (a-d) and $\times 50\ 000$ for the Insertion of (a-d).

Figure S6. Particle size number distribution of "SiO₂-0.00", "SiO₂-0.04", "SiO₂-0.08", "SiO₂-0.16" and "SiO₂-0.32" calculated by DLS method.

1. Experimental

Characterization

The mineral composition of the coal fly ash was recorded using X-ray diffraction (XRD, Rigaku D/max 2500 PC, Japan) with Cu-K α radiation ($\lambda = 1.5418$ Å), and diffraction data were recorded in the 2θ range of 10-80° with a scanning rate of 2° min⁻¹. The small-angle X-ray diffraction (SAXRD), in the 20 range of 0.6-5° (0.5° min⁻¹), was used to determine the structure of the synthetic nano-silica. Nitrogen adsorption-desorption isotherms of nanoparticles at 77 K were collected on a gas adsorption analyzer (Micrometrics Instrument, ASAP2020, America); all samples were degassed in a vacuum at 90°C for 1 h and at 350°C for 4 h before measurement. The specific surface area was calculated using the Brunauer-Emmett-Teller (BET) method over $P \cdot P_0^{-1} = 0.05 \cdot 0.25$, and the total pore volume was calculated from the adsorbed volume at $P \cdot P_0^{-1} = 0.99$. The average pore size and pore distributions were derived from the adsorption branch of the N2 isotherm using the Barrett-Joyner-Halenda (BJH) method. The size of silica agglomerates and particle size distribution was examined using a nanoparticle size analyzer (Beckman coulter DelsaNano C, America); 0.1 wt. % silica was dispersed in ethanol by ultrasonic waves for 10 min before the measurement. The surface morphology of the samples was observed using a scanning electron microscopy (SEM, Zeiss Merlin Compact, Germany) with a 5-kV electron beam. Transmission electron microscopy (TEM) experiments were conducted on a JEOL JEM-2010F microscope (Japan) operated at 200-kV. The hydroxyl content was calculated using a Thermogravimetric Analyzer (TGA, Mettler-Toledo, TGA/DSC 2, Switzerland) from 25°C to 1000°C with a heating rate of 10°C min⁻¹ under nitrogen gas. Fourier-transform infrared (FTIR) spectra were collected on a Fourier spectrometer (Nicolet NEXUS 870, America) using KBr pellets.

2. Results

Sample	SiO ₂	Al_2O_3	Fe ₂ O ₃	Na ₂ O	CaO	TiO ₂	MgO	K ₂ O	Residual
	(wt. %)	(wt. %)	(wt. %)	(wt. %)	(wt. %)	(wt. %)	(wt. %)	(wt. %)	(wt. %)
FA	52.00	36.51	5.03	0.14	2.61	1.80	0.33	0.77	0.81
FA-5%NaOH ^a	43.39	42.05	5.93	2.19	3.15	1.97	0.39	0.38	0.55
FA-15%NaOH ^a	38.86	44.39	6.50	3.41	3.51	2.10	0.43	0.20	0.60
FA-25%NaOH ^a	34.80	46.92	4.91	6.31	3.39	2.44	0.30	0.10	0.83
FA-35%NaOH ^a	39.35	38.40	6.63	9.50	3.07	1.84	0.37	0.24	0.60
FA-50°C ^b	47.24	39.78	5.38	0.69	2.99	2.14	0.29	0.82	0.67
FA-70°C ^b	43.61	42.87	5.62	0.92	3.03	2.32	0.27	0.67	0.69
FA-90°C ^b	39.37	43.69	5.94	3.29	3.59	2.57	0.37	0.33	0.85
FA-110°C ^b	34.80	46.92	4.91	6.31	3.39	2.44	0.30	0.10	0.83
FA-130°C ^b	35.22	45.46	5.04	7.22	3.44	2.38	0.32	0.12	0.80
SiO ₂ -once ^c	98.35	1.00	0.12	0.25	0.01	N.D. ^d	N.D.	0.16	0.11
SiO ₂ -0.00	99.29	0.18	0.05	0.28	0.06	N.D.	N.D.	0.10	0.04

Table S1. Chemical composition of the coal fly ash and the synthetic nano-silica

^a The coal fly ash after desilication, the reaction conditions were same with Figure 1b. ^b The coal fly ash after desilication, the reaction conditions were same with Figure 2b. ^c "SiO₂-once" was synthesized via once carbonation while the other conditions were same with "SiO₂-0.00". ^d N.D., not detected.

Equation	$\frac{\Delta H^{\Theta}}{(298.15 \text{ K})}$ (kJ mol ⁻¹)	$\frac{\Delta G^{\Theta}}{(298.15 \text{ K})}$ (kJ mol ⁻¹)	$\Delta G_{(323.15 \text{ K})}$ (kJ mol ⁻¹)	$\Delta G_{(343.15 \text{ K})}$ (kJ mol ⁻¹)	$\Delta G_{(363.15 \text{ K})}$ (kJ mol ⁻¹)	$\Delta G_{(383.15 \text{ K})}$ (kJ mol ⁻¹)	$\Delta G_{(403.15 \text{ K})}$ (kJ mol ⁻¹)
Eq. S1	37.54	-61.46	-70.14	-77.59	-85.48	-93.77	-102.45
Eq. S2	44.75	-55.79	-64.60	-72.15	-80.14	-88.54	-97.32
Eq. S3	-11.78	-2.32	-1.71	-1.47	-1.44	-1.60	-1.95
Eq. S4	24.86	322.93	346.63	363.80	379.50	393.80	406.76
Eq. S5	-324.48	-559.14	-577.41	-590.10	-601.19	-610.76	-618.90

Table S2. Calculation of the Gibbs free energy for Eq. S1-S5

$$\operatorname{SiO}_{2(\operatorname{Amorphous})} + 2\operatorname{OH}_{(\operatorname{aq})}^{-} \to \operatorname{SiO}_{3}^{2-} + \operatorname{H}_{2}\operatorname{O}_{(\operatorname{I})}$$
(Eq. S1)

$$\operatorname{SiO}_{2(\operatorname{Quartz})} + 2\operatorname{OH}_{(\operatorname{aq})}^{-} \to \operatorname{SiO}_{3}^{2^{-}}_{(\operatorname{aq})} + \operatorname{H}_{2}\operatorname{O}_{(\operatorname{I})}$$
(Eq. S2)

$$Al_{2}O_{3(Corundum)} + 2OH_{(aq)}^{-} + 3H_{2}O_{(l)} \rightarrow 2Al(OH)_{4(aq)}^{-}$$
(Eq. S3)

$$Al_{6}Si_{2}O_{13(Mulite)} + 10OH_{(aq)}^{-} + 7H_{2}O_{(l)} \rightarrow 6Al(OH)_{4(aq)}^{-} + 2SiO_{3}^{2-}(aq)$$
(Eq. S4)

$$6Al(OH)_{4}^{-}_{(aq)} + 6SiO_{3}^{2-}_{(aq)} + 8Na_{(aq)}^{+} \rightarrow Na_{8}Al_{6}Si_{6}O_{24}(OH)_{2}(H_{2}O)_{2(s)} + 4H_{2}O_{(l)} + 10OH_{(aq)}^{-}$$
(Eq. S5)

Sample -		Weight los	$N_{ m OH}$ ^a	$C_{ m OH}{}^{ m b}$		
	25-200°C	200-600°C	600-1000°C	Total	(mmol g^{-1})	$(OH nm^{-2})$
SiO ₂ -0.00	2.91	4.02	0.63	7.55	5.16	10.75
SiO ₂ -0.04	1.93	0.83	0.96	3.72	1.99	2.97
SiO ₂ -0.08	1.03	0.57	1.85	3.44	2.68	2.04
SiO ₂ -0.16	0.59	0.34	1.88	2.80	2.46	1.28
SiO ₂ -0.32	0.92	0.26	1.76	2.95	2.25	1.28

Table S3. Weight loss, hydroxyl content and hydroxyl density of the synthetic nano-silica

^a $N_{\rm OH}$, hydroxyl content; ^b $C_{\rm OH}$, hydroxyl density.

Table S4. Cell parameters of the synthetic nano-silica

Sample	2θ ₁₀₀ (°)	2θ ₁₁₀ (°)	2θ ₂₀₀ (°)	$d_{100}(\text{\AA})^{\text{a}}$	$d_{110}({\rm \AA})$	$d_{200}(\text{\AA})$	$a_0 (\mathrm{nm})^{\mathrm{b}}$
SiO ₂ -0.00	N.A. ^c	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
SiO ₂ -0.04	2.580	4.379	N.D.	34.21	20.16	N.D.	3.95
SiO ₂ -0.08	2.480	4.261	N.D.	35.59	20.72	N.D.	4.11
SiO ₂ -0.16	2.370	4.020	4.639	37.25	21.96	19.03	4.30
SiO ₂ -0.32	2.361	4.039	4.639	37.39	21.86	19.03	4.32

^a d_{100} , interplanar spacing of the (1 0 0) reflection, which was obtained from the diffraction peak (1 0 0) by the Bragg's Law, $2 \times d_{100} \times \sin \theta_{100} = \lambda$; ^b a_0 , hexagonal unit cell parameter, which is calculated by $a_0 = 2 \times d_{100} / \sqrt{3}$; ^c N.A., not available.

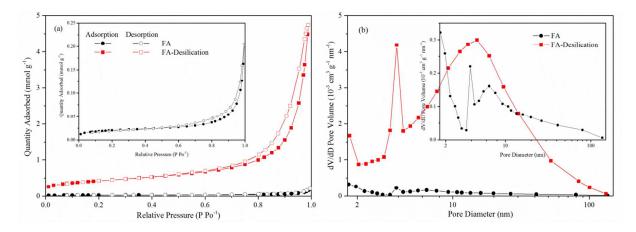
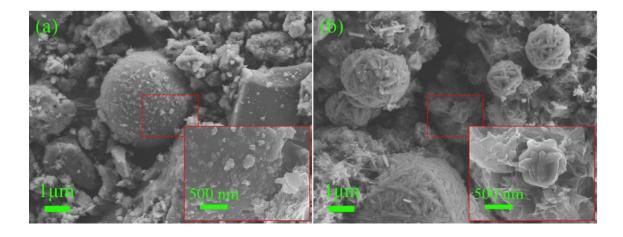
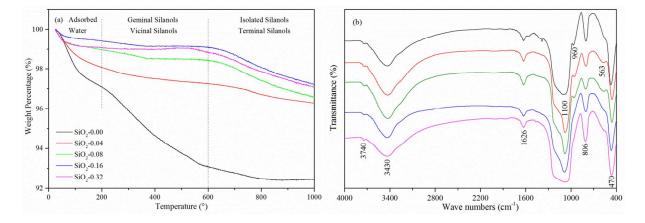




Figure S1. (a) N₂ physisorption isotherms and (b) pore size distributions of "FA" and "FA-desilication".

Figure S2. SEM images of (a) "FA", and (b) "FA-desilication". Magnification factor: $\times 10\ 000$ for (a-b) and $\times 50\ 000$ for the Insertion of (a-b).

Figure S3. (a) TGA analysis and (b) FTIR spectra of "SiO₂-0.00", "SiO₂-0.04", "SiO₂-0.08", "SiO₂-0.16" and "SiO₂-0.32".

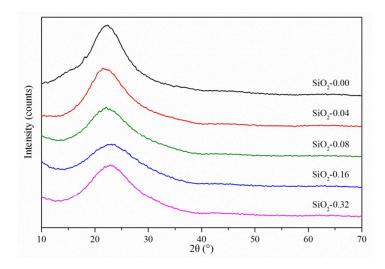


Figure S4. XRD patterns of "SiO₂-0.00", "SiO₂-0.04", "SiO₂-0.08", "SiO₂-0.16" and "SiO₂-0.32".

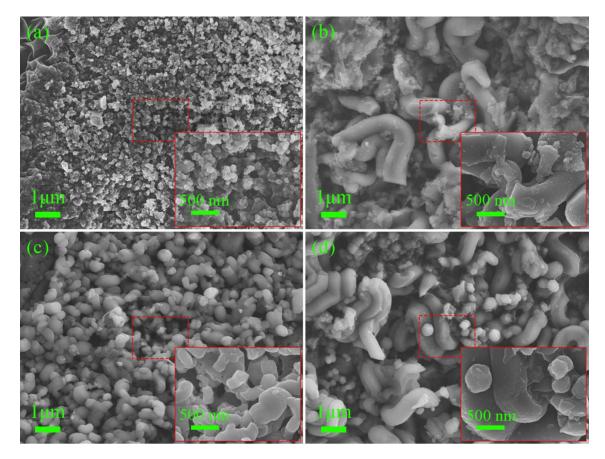
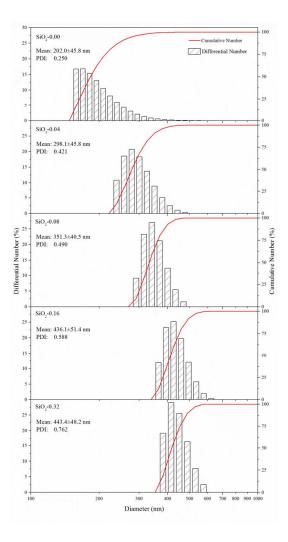



Figure S5. SEM images of (a) "SiO₂-0.00", (b) "SiO₂-0.08", (c) "SiO₂-0.16" and (d) "SiO₂-0.32". Magnification factor: $\times 10\ 000$ for (a-d) and $\times 50\ 000$ for the Insertion of (a-d).

Figure S6. Particle size number distribution of "SiO₂-0.00", "SiO₂-0.04", "SiO₂-0.08", "SiO₂-0.16", and "SiO₂-0.32" calculated by DLS method.