Supporting Information

Water-Soluble Nonconjugated Polymer Nanoparticles
 with Strong Fluorescence Emission for Selective and
 Sensitive Detection of Nitro-Explosive Picric Acid in
 Aqueous Medium

6 Shi Gang Liu[†], Dan Luo[†], Na Li[†], Wei Zhang [‡], Jing Lei Lei[§], Nian Bing Li^{†*}, and

7 Hong Qun Luo^{+*}

1

8 [†] Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry

9 of Education), School of Chemistry and Chemical Engineering, Southwest
10 University, Chongqing 400715, P.R. China

- ¹¹ [‡] Chongqing Institute of Green and Intelligent Technology, Chinese Academy of
 ¹² Sciences, Chongqing 400714, P.R. China
- ¹³ School of Chemistry and Chemical Engineering, Chongqing University, Chongqing
- 14 400044, P.R. China
- 15 *Corresponding authors: Fax: (+86)23-6825-3237; Tel: (+86)23-6825-3237
- 16 E-mail addresses: linb@swu.edu.cn, luohq@swu.edu.cn
- 17

2	1. Figure S1S-3
3	2. Figure S2S-3
4	3. Figure S3
5	4. Figure S4S-4
6	5. Figure S5
7	6. Figure S6S-6
8	7. Figure S7S-6
9	8. Figure S8S-7
10	9. Figure S9S-8
11	10. Table S1S-9
12	11. Figure S10S-10
13	12. Table S2S-10
14	13. ReferencesS-11

2 Figure S1. ¹H NMR spectra of PEI-G PNPs (A) and PEI (B) (D_2O , 600 MHz). Inset of A is a

3 partial expansion of ¹H NMR spectrum of PEI-G PNPs.

4

7 Figure S2. Concentration-dependent fluorescence of PEI-G PNPs. Excitation: 345 nm.

2 Figure S3. 3D fluorescence spectra of PEI-G PNPs with the concentrations (v/v) of 2% (A), 5%

3 (B), and 10% (C), respectively; and photographs of PEI-G PNPs with the concentrations (v/v) of

4 2% (a), 5% (b), 10% (c) under visible light (D) and UV light of 365 nm (E), respectively.

5

1

6 Figure S4. Photographs (A) and fluorescence spectra (B) of PEI-G PNPs (2% v/v) dispersed in an

7 aqueous alcoholic solution with various ethanol contents.

Figure S5. Effects of preparation conditions including the concentration of _D-glucose (A), the
concentration of PEI (B), and reaction time (C) on the fluorescence intensity of PEI-G PNPs (1%
v/v). Conditions: (A) PEI (0.01 g mL⁻¹), 80 °C, 4 h; (B) _D-glucose (0.1 M), 80 °C, 4 h; (C)
D-glucose (0.1 M), PEI (0.01 g mL⁻¹), 80 °C.

Figure S6. Fluorescence emission spectra of PEI-G PNPs (1% v/v) prepared by using same
concentration of PEI with different molecular weights (*M*_w) with an excitation of 345 nm.

Figure S7. (A) UV-vis absorption spectra of PEI-formaldehyde polymer particles before (a) and
after (b) reduced by NaBH₄. (B) Fluorescence emission spectra of PEI-formaldehyde polymer
particles before (a) and after (b) reduced by NaBH₄.

1

Figure S8. Optimization of sensing conditions. (A) Fluorescence-quenched efficiency of PA (60
μM) to different probe concentrations. (B) Fluorescence response to time upon addition of PA (20
μM). (C) Fluorescence intensities of PEI-G PNPs in the absence and presence of PA (20 μM)
under different pH, respectively. (D) Fluorescence-quenched efficiency of PA (20 μM) at different
pH (BR buffers). (E) Fluorescence intensities in the absence and presence of PA (20 and 100 μM)
at different concentrations of NaCl. (F) Fluorescence-quenched efficiencies of PA (20 and 100 μM)

1

Figure S9. Fluorescence responses of PEG-G PNPs to metal ions in the absence and presence of EDTA (A) and anions (B), respectively. $\Delta F = F_0 - F$, where F_0 and F denote the fluorescence intensity of PEI-G PNPs before and after the addition of ions, respectively. The concentration of all the ions is 50 µM, and the concentration of PA is 100 µM. Conditions: the PEG-G PNPs, 1% (v/v); pH 7.0 (BR buffer).

	Detection of PA				
Material	Preparation	Linear range	Detection	Medium used	Ref.
		(µM)	limit (µM)		
MoS ₂ quantum dots	200 °C, in water	0.099 - 36.5	0.095	Water	S1
Cu nanoclusters	55 °C, in water	0.8 - 100	0.12	Water	S2
Carbon dots	180 °C, in water	Not given	0.01	Water	S 3
Carbon dots	Microwave, in water	Not given	1	Water	S4
Grapheme oxide (GO)	Strong acid	Not given	~ 0.55	Water	S5
MOFs	Multistep, in organic solvents	0-50	2.5	DMA	S6
Conjugated polymers	Multistep, in organic solvents	Not given	1	Water/THF (v/v = 9:1)	S7
Covalent-organic polymer	80 °C, in DMF	Not given	~ 4.37	Methanol	S 8
Small molecule	Multistep, in organic solvents	0-10	0.5	Ethanol	S 9
Small molecule	Multistep, in organic solvents	0 – 1	0.28	Water/THF (v/v = 7:3)	S10
Small molecule	110 °C, in toluene	Not given	~ 0.87	Water	S11
Small molecule	Multistep, in organic solvents	0.01 - 0.07	0.0135	Water	S12
Metal complex	Multistep, in organic solvents	Not given	Not given	Water/acetone $(v/v = 9:1)$	S13
PEG-G PNPs	80 °C, in water	0.05 - 70	0.026	Water	This work

Table S1. Comparison of fluorescent sensors for PA detection in preparation and analysis.

Figure S10. UV-vis absorption spectra of *o*-dihydroxybenzene (B), *m*-dinitrobenzene (C),
4-methylphenol (D), nitrobenzene (E), 2,4-dinitrotoluene (F), *p*-nitrotoluene (G), phenol (H),
2,4,6-trinitrotoluene (I), aniline (J), benzoic acid (K), *o*-nitrophenol (L), *p*-chlorophenol (M), and *p*-dihydroxybenzene (N), and fluorescence emission spectrum of PEI-G PNPs (1% v/v) (a).

Table S2. Detection of PA in environmental water samples using the developed sensor (n = 6).

Sample ^{<i>a</i>}	Concentration		Recovery (%)	RSD
	Added (µM)	Detected (µM)		(%)
tap water 1	0	ND^b	/	/
tap water 2	0.5	0.53	106.0	3.37
tap water 3	5	5.18	103.6	2.16
tap water 4	20	20.08	100.4	1.05
Jialing River water 1	0	ND	/	/
Jialing River water 2	0.5	0.56	112.0	4.52
Jialing River water 3	5	5.27	105.4	2.37
Jialing River water 4	20	20.17	100.9	1.13

8 ^{*a*} The tap water was collected from our lab.

 b ND, not detected.

1 References

2	(S1) Wang, Y.; Ni, Y. Molybdenum Disulfide Quantum Dots as a Photoluminescence Sensing
3	Platform for 2,4,6-Trinitrophenol Detection. Anal. Chem. 2014, 86, 7463-7470.
4	(S2) Deng, X.; Huang, X.; Wu, D. Förster Resonance-Energy-Transfer Detection of
5	2,4,6-Trinitrophenol Using Copper Nanoclusters. Anal. Bioanal. Chem. 2015, 407, 4607-4613.
6	(S3) Sadhanala, H. K.; Nanda, K. K. Boron and Nitrogen Co-doped Carbon Nanoparticles as
7	Photoluminescent Probes for Selective and Sensitive Detection of Picric Acid. J. Phys. Chem. C
8	2015 , <i>119</i> , 13138-13143.
9	(S4) Niu, Q.; Gao, K.; Lin, Z.; Wu, W. Amine-Capped Carbon Dots as a Nanosensor for
10	Sensitive and Selective Detection of Picric Acid in Aqueous Solution via Electrostatic Interaction.
11	Anal. Methods 2013, 5, 6228.
12	(S5) Dinda, D.; Gupta, A.; Shaw, B. K.; Sadhu, S.; Saha, S. K. Highly Selective Detection of
13	Trinitrophenol by Luminescent Functionalized Reduced Graphene Oxide through FRET
14	Mechanism. ACS Appl. Mater. Interfaces 2014, 6, 10722-10728.
15	(S6) Shi, Z. Q.; Guo, Z. J.; Zheng, H. G. Two Luminescent Zn(II) Metal-Organic Frameworks
16	for Exceptionally Selective Detection of Picric Acid Explosives. Chem. Commun. 2015, 51,
17	8300-8303.
18	(S7) Liu, Y.; Gao, M.; Lam, J. W. Y.; Hu, R.; Tang, B. Z. Copper-Catalyzed Polycoupling of
19	Diynes, Primary Amines, and Aldehydes: A New One-Pot Multicomponent Polymerization Tool to
20	Functional Polymers. Macromolecules 2014, 47, 4908-4919.
21	(S8) Sang, N.; Zhan, C.; Cao, D. Highly Sensitive and Selective Detection of
22	2,4,6-Trinitrophenol Using Covalent-Organic Polymer Luminescent Probes. J. Mater. Chem. A

S-11

2015, *3*, 92-96.

2	(S9) Venkatramaiah, N.; Kumar, S.; Patil, S. Fluoranthene Based Fluorescent Chemosensors for
3	Detection of Explosive Nitroaromatics. Chem. Commun. 2012, 48, 5007-5009.
4	(S10) Ding, A.; Yang, L.; Zhang, Y.; Zhang, G.; Kong, L.; Zhang, X.; Tian, Y.; Tao, X.; Yang, J.
5	Complex-Formation-Enhanced Fluorescence Quenching Effect for Efficient Detection of Picric
6	Acid. Chem. Eur. J. 2014, 20, 12215-12222.
7	(S11) Yadav, A.; Boomishankar, R. Concentration Dependent Ratiometric Turn-On Selective
8	Fluorescence Detection of Picric Acid in Aqueous and Non-Aqueous Media. RSC Adv. 2015, 5,
9	3903-3907.
10	(S12) Gogoi, B.; Sen Sarma, N. Curcumin-Cysteine and Curcumin-Tryptophan Conjugate as
11	Fluorescence Turn On Sensors for Picric Acid in Aqueous Media. ACS Appl. Mater. Interfaces
12	2015 , 7, 11195-11202.
13	(S13) Hou, X. G.; Wu, Y.; Cao, H. T.; Sun, H. Z.; Li, H. B.; Shan, G. G.; Su, Z. M. A Cationic
14	Iridium(III) Complex with Aggregation-Induced Emission (AIE) Properties for Highly Selective

15 Detection of Explosives. *Chem. Commun.* **2014**, *50*, 6031-6034.