Chelation-Assisted Rhodium-Catalyzed Direct Amidation with Amidobenziodoxolones: $\mathbf{C}\left(\mathbf{s p}^{2}\right)-\mathbf{H}, \mathbf{C}\left(\mathbf{s p}^{3}\right)-\mathbf{H}$ and Late-Stage Functionalizations

Xu-Hong Hu, Xiao-Fei Yang, and Teck-Peng Loh*
E-mail: teckpeng@ntu.edu.sg
Division of Chemistry and Biological Chemistry, Nanyang Technological University
Singapore

Table of Contents

1. General information S2
2. Experimental sections S2
2.1 Procedures for the synthesis of amidobenziodoxolones S2
2.2 General procedures for $\mathbf{C}-\mathbf{H}$ amidation S3
2.3 Mechanistic experiments S17
3. References S20
4. X-ray structures of compounds 8 and C3 S21
5. NMR spectra of amidobenziodoxolones and the amidation products S22

General Information

Experiments involving moisture and/or air sensitive components were performed in oven-dried glassware. Commercial solvents and reagents were used without further purification unless otherwise noted.

Analytical thin layer chromatography (TLC) was performed using Merck 60 F254 precoated silica gel plate (0.2 mm thickness). Subsequent to elution, plates were visualized using UV radiation (254 nm) on Spectroline Model ENF-24061/F 254 nm . Further visualization was possible by staining with basic solution of potassium permanganate or acidic solution of ceric molybdate, followed by heating on a hot plate. Flash chromatography was performed using Merck silica gel 60 with distilled solvents. Columns were typically packed as slurry and equilibrated with hexane prior to use.

Proton nuclear magnetic resonance (${ }^{1} \mathrm{H}$ NMR) and carbon nuclear magnetic resonance (${ }^{13} \mathrm{C}$ NMR) spectroscopy were performed on Bruker Advance 300,400 and 500 MHz spectrometers. Chemical shifts ${ }^{1} \mathrm{H}$ NMR spectra are reported as in units of parts per million (ppm) downfield from $\operatorname{SiMe}_{4}(\delta 0.0)$ and relative to the signal of chloroform- $d(J=7.264$, singlet). Multiplicities were given as: s (singlet); d (doublet); t (triplet); q (quartet); dd (doublet of doublets); ddd (doublet of doublets of doublets); dddd (doublet of doublets of doublets of doublets); dt (doublet of triplets); m (multiplets) and etc. The number of protons (n) for a given resonance is indicated by nH . Coupling constants are reported as a J value in Hz . Carbon nuclear magnetic resonance spectra (${ }^{13} \mathrm{C}$ NMR) are reported as d in units of parts per million (ppm) downfield from $\operatorname{SiMe}_{4}(\delta 0.0)$ and relative to the signal of chloroform- $d(J=77.03$, triplet).

High resolution mass spectral analysis (HRMS) was performed on Water Q-TOF Premier mass spectrometer (Thermo Electron Corporation).

2. Experimental sections

2.1 Procedures for the synthesis of amidobenziodoxolones

(Compounds 2a-e were prepared according to the reported literatures ${ }^{1 \text { ref. } 11 a}$)

$2 a$

2d

2b

2e

2c

1-(4-Methylphenylsulfonamido)-1,2-benziodoxol-3(1H)-one (2a) ${ }^{\mathbf{2}}$

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta 9.61(\mathrm{~s}, 1 \mathrm{H}), 8.06(\mathrm{dd}, J=7.5,1.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.95-7.86(\mathrm{~m}, 2 \mathrm{H}), 7.82-7.72(\mathrm{~m}, 3 \mathrm{H}), 7.42(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H})$, $2.41(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}): $\delta 167.84,143.47,139.73$, $135.43,132.11,131.65,131.47,130.18 \times 2,126.93,126.77 \times 2,120.57$, 21.46. HRMS (ESI): m/z calculated for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{INO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 417.9610$,
found: 417.9616 .

1-(4-Chlorophenylsulfonamido)-1,2-benziodoxol-3(1H)-one (2b)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, ~ D M S O-d_{6}$): $\delta 9.71(\mathrm{~s}, 1 \mathrm{H}), 8.05$ (dd, $J=7.5,1.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.97-7.86(\mathrm{~m}, 4 \mathrm{H}), 7.76(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.69-7.64(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}): $\delta 167.88,141.42,137.96,135.56,132.19$, 131.55, $129.88 \times 2,128.75 \times 2,126.92,120.55$. HRMS (ESI): m/z calculated for $\mathrm{C}_{13} \mathrm{H}_{10}{ }^{35} \mathrm{ClINO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 437.9064$, found: 437.9062 .

1-(4-Nitrophenylsulfonamido)-1,2-benziodoxol-3(1H)-one (2c)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta 9.92(\mathrm{~s}, 1 \mathrm{H}), 8.44(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H})$, 8.15 (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.07(\mathrm{dd}, J=7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{t}, J=7.7$ $\mathrm{Hz}, 1 \mathrm{H}), 7.90(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}): $\delta 167.92,150.09,147.91,135.73,132.27,131.60$, $131.40,128.43 \times 2,126.90,125.13 \times 2,120.54$. HRMS $(E S I): m / z$ calculated for $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{IN}_{2} \mathrm{O}_{6} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 448.9304$, found: 448.9301 .

1-Acetamido-1,2-benziodoxol-3(1H)-one (2d) ${ }^{2}$

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta 9.63(\mathrm{~s}, 1 \mathrm{H}), 8.07(\mathrm{dd}, J=7.5,1.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.91-7.83(\mathrm{~m}, 1 \mathrm{H}), 7.73(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}): δ 173.13, 167.72, 135.10, 132.66, 131.96, 131.15, 126.35, 118.76, 21.87. HRMS (ESI): m/z calculated for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{INO}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 305.9627$, found: 305.9628.

1-(4-Chlorobenzamido)-1,2-benziodoxol-3(1H)-one (2e) ${ }^{\mathbf{2}}$

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta 10.27(\mathrm{~s}, 1 \mathrm{H}), 8.10(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $8.05(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.87(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.67(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO- d_{6}): $\delta 168.65,167.90,137.82,135.45,132.39,132.12,131.30$, $130.87 \times 2,130.37,129.34 \times 2,126.41,118.89$. HRMS (ESI): m/z calculated for $\mathrm{C}_{14} \mathrm{H}_{10}{ }^{35} \mathrm{ClINO}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 401.9394$, found: 410.9389 .

2.2. General procedures for $\mathbf{C}-\mathbf{H}$ amidation

Table S1. Optimization studies for $\mathrm{C}-\mathrm{H}$ amidation of (hetero)arenes

Reaction conditions: $\mathbf{1 a}(31.0 \mathrm{mg}, 0.2 \mathrm{mmol}, 1.0$ equiv), $\mathbf{2 a}(100.1 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv), cat. ($0.005 \mathrm{mmol}, 2.5 \mathrm{~mol} \%$), $[\mathrm{Ag}]$ salt ($0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%$), KOAc ($2.0 \mathrm{mg}, 0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%$), and 1,2-dichloroethane $(1.0 \mathrm{~mL})$ at $\mathrm{T}^{\circ} \mathrm{C}$ for 15 h . Isolated yields. ${ }^{a}\left\{\mathrm{Co}^{\mathrm{III}}\right\}(5.0 \mathrm{~mol} \%)$ was employed. n.d. $=$ not determined.

Typical procedure \mathbf{A} for $\mathbf{C}-\mathbf{H}$ amidation of (hetero)arenes and alkenes

A 8 mL screw-cap vial was charged with substrate $\mathbf{1}$ (1.0 equiv, 0.2 mmol), amide 2 (1.2 equiv, $0.24 \mathrm{mmol}),\left[\left\{\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right\}_{2}\right](3.1 \mathrm{mg}, 0.005 \mathrm{mmol}, 2.5 \mathrm{~mol} \%), \mathrm{AgSbF}_{6}(6.9 \mathrm{mg}, 0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%)$, KOAc ($2.0 \mathrm{mg}, 0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%$), and 1,2-dichloroethane (1.0 mL). The vial was carefully blown with nitrogen for 30 seconds and placed into preheated oil bath at $80^{\circ} \mathrm{C}$ with stirring for 15 h . After cooling down, the mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and sequentially washed with sat. aq. $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$. The layer was separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL} \times$ 3). The combined organic layers were rinsed with sat. aq. $\mathrm{NaCl}(10 \mathrm{~mL})$, dried over MgSO_{4}, and concentrated under reduced pressure. The resultant residue was purified by flash chromatography (hexane/EtOAc) on silica gel to afford the amidation product $\mathbf{3}$ or $\mathbf{4}$.

Typical procedure \mathbf{B} for $\mathbf{C} \mathbf{- H}$ amidation of 8-methylquinolines

A 8 mL screw-cap vial was charged with 8 -methylquinoline 5 (1.0 equiv, 0.2 mmol), amide 2 (1.2 equiv, 0.24 mmol), $\left[\left\{\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right\}_{2}\right](3.1 \mathrm{mg}, 0.005 \mathrm{mmol}, 2.5 \mathrm{~mol} \%), \mathrm{AgSbF}_{6}(6.9 \mathrm{mg}, 0.02 \mathrm{mmol}, 10$ $\mathrm{mol} \%)$, KOAc ($2.0 \mathrm{mg}, 0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%$), and 1,2 -dichloroethane (1.0 mL). The vial was carefully blown with nitrogen for 30 seconds and placed into preheated oil bath at $80^{\circ} \mathrm{C}$ with stirring for 24 h . After cooling down, the mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and sequentially washed with sat. aq. $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$. The layer was separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL} \times 3)$. The combined organic layers were rinsed with sat. aq. $\mathrm{NaCl}(10 \mathrm{~mL})$, dried over MgSO_{4}, and concentrated under reduced pressure. The resultant residue was purified by flash chromatography (hexane/EtOAc) on silica gel to afford the amidation product 6 .

Table S2. Optimization studies for $\mathrm{C}-\mathrm{H}$ amidation of 2-alkylpyridines

Reaction conditions: $5 \mathbf{j}$ ($35.5 \mathrm{mg}, 0.2 \mathrm{mmol}, 1.0$ equiv), $\mathbf{2 a}$ ($100.1 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv), $\left[\left\{\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right\}_{2}\right](0.002 \mathrm{x} \mathrm{mmol}, \mathrm{x} \mathrm{mol} \%), \mathrm{AgSbF}_{6}(0.008 \mathrm{x} \mathrm{mmol}, 4 \mathrm{x} \mathrm{mol} \%)$, $\mathrm{KOAc}(0.008 \mathrm{x}$ mmol, $4 \times \mathrm{mol} \%$), and 1,2 -dichloroethane $(1.0 \mathrm{~mL})$ at $\mathrm{T}^{\circ} \mathrm{C}$. Isolated yields.

Typical procedure \mathbf{C} for $\mathbf{C}-\mathbf{H}$ amidation of 2-alkylpyridines

A 8 mL screw-cap vial was charged with 2-alkylpyridine 5 (1.0 equiv, 0.2 mmol), amide $\mathbf{2 a}$ (100.1 $\mathrm{mg}, 1.2$ equiv, 0.24 mmol), $\left[\left\{\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right\}_{2}\right](6.2 \mathrm{mg}, 0.01 \mathrm{mmol}, 5.0 \mathrm{~mol} \%), \mathrm{AgSbF}_{6}(13.7 \mathrm{mg}, 0.04$ mmol, $20 \mathrm{~mol} \%$), KOAc ($4.0 \mathrm{mg}, 0.04 \mathrm{mmol}, 20 \mathrm{~mol} \%$), and 1,2 -dichloroethane (1.0 mL). The vial was carefully blown with nitrogen for 30 seconds and stirred at room temperature for 72 h . Then the mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and sequentially washed with sat. aq. $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$. The layer was separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL} \times 3)$. The combined organic layers were rinsed with sat. aq. $\mathrm{NaCl}(10 \mathrm{~mL})$, dried over MgSO_{4}, and concentrated under
reduced pressure. The resultant residue was purified by flash chromatography (hexane/EtOAc) on silica gel to afford the amidation product 6 .

4-Methyl- N -(2-(pyridin-2-yl)phenyl)benzenesulfonamide (3aa)

Following typical procedure A, 3aa was obtained as a white solid ($60.8 \mathrm{mg}, 0.187$ mmol, 94%). mp: $88-90{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 12.15(\mathrm{~s}, 1 \mathrm{H}), 8.71-$ $8.52(\mathrm{~m}, 1 \mathrm{H}), 7.77-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.53(\mathrm{dd}, J=8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.36$ (ddd, $J=12.8$, $11.5,4.8 \mathrm{~Hz}, 4 \mathrm{H}$), 7.24 (ddd, $J=7.5,4.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.19-7.12(\mathrm{~m}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 157.09,147.36,142.95$, $137.46,136.83,136.42,130.13,129.13 \times 2,128.51,127.47,126.74 \times 2,124.68$, 123.41, 122.26, 122.08, 21.40. HRMS (ESI): m/z calculated for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 325.1011$, found: 325.1017 .

4-Chloro- N -(2-(pyridin-2-yl)phenyl)benzenesulfonamide (3ab)

Following typical procedure A, 3ab was obtained as a white solid (65.2 mg , $0.189 \mathrm{mmol}, 95 \%)$. mp: $141-143{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 12.12$ (s, 1H), $8.62-8.56(\mathrm{~m}, 1 \mathrm{H}), 7.72$ (ddd, $J=15.3,7.9,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.54$ (dd, $J=7.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.33(\mathrm{~m}, 4 \mathrm{H}), 7.28-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.20(\mathrm{td}, J=$ 7.7, $1.2 \mathrm{~Hz}, 1 \mathrm{H}$), $7.17-7.04(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $156.90,147.39,138.70,137.66,136.28,130.27,128.71 \times 2,128.57$, $128.10 \times 2,128.01,125.33,124.18,122.37,122.25$. HRMS (ESI): m/z calculated for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{ClN}_{2} \mathrm{O}_{2} \mathrm{~S}$ $[\mathrm{M}+\mathrm{H}]^{+}: 345.0465$, found: 345.0474 .

4-Nitro-N-(2-(pyridin-2-yl)phenyl)benzenesulfonamide (3ac)

Following a modified procedure A , as the reaction was performed at $100{ }^{\circ} \mathrm{C}$ for $24 \mathrm{~h}, 3 \mathrm{ac}$ was obtained as a yellow solid ($60.2 \mathrm{mg}, 0.169$ $\mathrm{mmol}, 85 \%$). mp: $132-133{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 12.46$ (s, $1 \mathrm{H}), 8.61$ (d, $J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.97$ (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}$), $7.79-7.67$ (m, $2 \mathrm{H}), 7.61$ (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.56$ (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.40$ (dd, $J=12.5$, $4.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{dd}, J=7.4,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 156.63,149.72,147.38,144.88,137.87,135.82,130.49,128.62,127.92 \times$ $2,127.65,125.73,124.11,123.64 \times 2,122.47,122.22$. HRMS (ESI): m/z calculated for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}$ $[\mathrm{M}+\mathrm{H}]^{+}: 356.0705$, found: 356.0706 .

N-(2-(Pyridin-2-yl)phenyl)acetamide (3ad)

Following a modified procedure A, as the reaction was performed at $100{ }^{\circ} \mathrm{C}$ for 24
 $\mathrm{h}, \mathbf{3 a d}$ was obtained as a yellow oil ($21.7 \mathrm{mg}, 0.102 \mathrm{mmol}, 51 \%$). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 12.09(\mathrm{~s}, 1 \mathrm{H}), 8.65(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.53(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.84(\mathrm{td}, J=7.9,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{dd}, J=7.9,1.3 \mathrm{~Hz}$, 1H), $7.46-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.31-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.16(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.18$ (s, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 168.58,158.38,147.44,137.74,137.56$, 130.04, 128.84, 125.61, 123.46, 123.14, 121.95, 121.89, 25.23. HRMS (ESI): m / z calculated for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 213.1028$, found: 213.1030.

4-Chloro- \boldsymbol{N}-(2-(pyridin-2-yl)phenyl)benzamide (3ae)

Following a modified procedure A, as the reaction was run for 24 h , 3ae was obtained as a white solid ($32.9 \mathrm{mg}, 0.107 \mathrm{mmol}, 53 \%$) mp : $159-160{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 13.39(\mathrm{~s}, 1 \mathrm{H}), 8.77(\mathrm{~d}, J=8.3$ $\mathrm{Hz}, 1 \mathrm{H}), 8.65(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.89-7.78(\mathrm{~m}$, $2 \mathrm{H}), 7.74(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 3 \mathrm{H}), 7.34-7.27(\mathrm{~m}, 1 \mathrm{H})$, $7.21(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 164.47,158.26$, $147.20,138.02,137.97,137.74,134.25,130.34,128.87 \times 2,128.80 \times 2,128.75,125.38,123.74$, 123.01, 122.08, 121.86. HRMS (ESI): m/z calculated for $\mathrm{C}_{18} \mathrm{H}_{14}{ }^{35} \mathrm{ClN}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 309.0795$, found: 309.0793.

N-(5-Methoxy-2-(pyridin-2-yl)phenyl)-4-methylbenzenesulfonamide (3ba)

Following typical procedure A, 3ba was obtained as a white solid ($65.4 \mathrm{mg}, 0.185$ mmol, 92%). mp: $125-126{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 12.76(\mathrm{~s}, 1 \mathrm{H}), 8.60-$ $8.52(\mathrm{~m}, 1 \mathrm{H}), 7.68(\mathrm{td}, J=7.9,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.44(\mathrm{~m}, 3 \mathrm{H}), 7.41(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.24(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{ddd}, J=7.4,5.0,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $2 \mathrm{H}), 6.65(\mathrm{dd}, J=8.8,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 160.87,157.06,147.03,143.08,138.77,137.42,136.59,129.44,129.21 \times$ $2,126.88 \times 2,121.29 \times 2,118.97,110.81,106.84,55.45,21.42 . H R M S(E S I): m / z$ calculated for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 355.1116$, found: 355.1115 .

Methyl 3-(4-methylphenylsulfonamido)-4-(pyridin-2-yl)benzoate (3ca)

Following typical procedure A, 3ca was obtained as a pale yellow solid (73.7 mg , $0.193 \mathrm{mmol}, 96 \%) . \mathrm{mp}: 163-164{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 12.15(\mathrm{~s}, 1 \mathrm{H})$, $8.68-8.62(\mathrm{~m}, 1 \mathrm{H}), 8.35(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{dd}, J=8.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{td}$, $J=7.9,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-7.27(\mathrm{~m}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 166.18,156.03,147.57,143.27,137.72,137.01$, $136.16,131.49,131.03,129.66,129.25,128.58,126.81,126.41,125.47,124.20$, 122.88, 122.76, 52.43, 21.41. HRMS (ESI): m/z calculated for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 383.1066$, found: 383.1070.

\boldsymbol{N}-(5-Cyano-2-(pyridin-2-yl)phenyl)-4-methylbenzenesulfonamide (3da)

Following a modified procedure A , as $\left[\left\{\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right\}_{2}\right]$ ($4.0 \mathrm{~mol} \%$), $\mathrm{AgSbF}_{6}(16 \mathrm{~mol} \%)$, and KOAc ($16 \mathrm{~mol} \%$) were employed, 3da was obtained as a yellow solid (55.8 mg , $0.160 \mathrm{mmol}, 80 \%$) $\mathrm{mp}: 204-205{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 12.47(\mathrm{~s}, 1 \mathrm{H})$, $8.69(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{~s}, 1 \mathrm{H}), 7.83(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.55(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{dd}, J=12.6,7.6 \mathrm{~Hz}$, $2 \mathrm{H}), 7.08(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 155.43$, $147.70,143.71,138.02,136.20,129.96,129.54 \times 2,129.14,127.24,126.83 \times 2$, $125.29,123.34,122.72,118.02,113.61,21.47$. HRMS (ESI): m / z calculated for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+$ $H]^{+}: 350.0963$, found: 350.0967 .

4-Methyl- N -(2-(pyrimidin-2-yl)phenyl)benzenesulfonamide (3ea)

Following a modified procedure A, as the reaction was performed at $100^{\circ} \mathrm{C}$, 3ea was obtained as a white solid ($30.2 \mathrm{mg}, 0.093 \mathrm{mmol}, 46 \%$). mp: $126-128{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 12.48(\mathrm{~s}, 1 \mathrm{H}), 8.81(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 2 \mathrm{H}), 8.47(\mathrm{dd}, J=8.0,1.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.44-7.34(\mathrm{~m}, 1 \mathrm{H}), 7.24$ $(\mathrm{t}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.17-7.12(\mathrm{~m}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta 164.36,156.41 \times 2,143.40,138.80,136.73,132.10$, $130.66,129.40 \times 2,127.05 \times 2,123.62,123.57,120.47,118.76,21.44$. HRMS (ESI): m/z calculated for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 326.0963$, found: 326.0967 .

\boldsymbol{N}-(2-(4,5-Dihydrooxazol-2-yl)phenyl)-4-methylbenzenesulfonamide (3fa)

Following typical procedure A, 3fa was obtained as a white solid ($46.2 \mathrm{mg}, 0.146$ mmol, 73%). mp: $200-201{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 12.34(\mathrm{~s}, 1 \mathrm{H}), 7.74(\mathrm{t}$, $J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 7.65(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $2 \mathrm{H}), 6.99(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{t}, J=9.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.13(\mathrm{t}, J=9.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.35$ $(\mathrm{s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta 164.51,143.53,139.13,136.97,132.37$, $129.51 \times 2,129.35,127.22 \times 2,122.29,117.82,113.55,66.45,54.48,21.50$. HRMS $(E S I): m / z$ calculated for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 317.0960$, found: 317.0958.

\mathbf{N}-(2-(1H-Pyrazol-1-yl)phenyl)-4-methylbenzenesulfonamide (3ga)

Following typical procedure A, 3ga was obtained as a white solid ($52.8 \mathrm{mg}, 0.168$ mmol, 84%). mp: $93-95{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 10.04(\mathrm{~s}, 1 \mathrm{H}), 7.75$ (dd, J $=9.8,4.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-7.24(\mathrm{~m}, 4 \mathrm{H}), 7.23-7.10(\mathrm{~m}, 2 \mathrm{H}), 7.01(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H})$, $6.36(\mathrm{t}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 143.23,141.13$, $136.07,131.26,130.18,129.31,129.29 \times 2,127.93,126.60 \times 2,125.85,125.44$, 121.83, 107.21, 21.44. HRMS (ESI): m/z calculated for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 314.0963$, found: 314.0967 .

\boldsymbol{N}-(Benzo[h]quinolin-10-yl)-4-methylbenzenesulfonamide (3ha)

Following typical procedure A, 3ha was obtained as a yellow solid ($65.4 \mathrm{mg}, 0.188$ mmol, 94%). mp: $168-170{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 15.28(\mathrm{~s}, 1 \mathrm{H}), 8.95$ (dd, $J=4.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.21(\mathrm{dd}, J=8.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{dd}, J=7.5,1.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.80(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.70(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.65-7.46(\mathrm{~m}, 4 \mathrm{H}), 7.08$ $(\mathrm{d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 147.39,145.80$, $143.17,138.60,137.34,136.73,135.17,129.40 \times 2,129.08,128.64,127.30$, $127.24 \times 2,125.40,122.80,121.20,117.36,116.15,21.39 . \operatorname{HRMS}(E S I): m / z$ calculated for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 349.1011$, found: 349.1009.

4-Methyl- \boldsymbol{N}-(2-(phenyldiazenyl)phenyl)benzenesulfonamide (3ia)

Following typical procedure A, 3ia was obtained as an orange solid ($36.5 \mathrm{mg}, 0.104$ mmol, 52%). mp: $107-109{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.75$ ($\mathrm{s}, 1 \mathrm{H}$), $7.85-$ $7.80(\mathrm{~m}, 2 \mathrm{H}), 7.74$ (ddd, $J=13.2,8.2,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.68(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.59-$ $7.48(\mathrm{~m}, 3 \mathrm{H}), 7.44-7.35(\mathrm{~m}, 1 \mathrm{H}), 7.21-7.09(\mathrm{~m}, 3 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 151.97,144.00,140.05,136.21,134.50,132.52,131.70,129.65 \times 2,129.30 \times 2$, $127.15 \times 2,124.28,122.80 \times 2,122.73,120.19,21.49 . H R M S(E S I): m / z$ calculated for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$
$[\mathrm{M}+\mathrm{H}]^{+}: 352.1120$, found: 352.1118 .

N, N^{\prime}-(2-(Phenyldiazenyl)-1,3-phenylene)bis(4-methylbenzenesulfonamide) (3ia')

Following typical procedure A, 3ia' was obtained as a yellow solid (19.9 mg , $0.038 \mathrm{mmol}, 19 \%) . \mathrm{mp}: 207-209{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 10.40(\mathrm{~s}$, $2 \mathrm{H}), 7.75(\mathrm{dd}, J=6.5,3.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.68(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.64-7.53(\mathrm{~m}$, 3H), $7.30-7.22(\mathrm{~m}, 3 \mathrm{H}), 7.18(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 4 \mathrm{H}), 2.35(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 151.02,144.32,136.15,135.32,134.33,132.28,129.78$ $\times 4,129.70 \times 2,127.18 \times 4,126.34,122.51 \times 2,113.12 \times 2,21.54 \times 2 . H R M S(E S I): m / z$ calculated for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 521.1317$, found: 521.1319.

\boldsymbol{N}-(2-Isobutyrylphenyl)-4-methylbenzenesulfonamide (3ja)

Following typical procedure A, 3ja was obtained as a white solid ($11.4 \mathrm{mg}, 0.036$ mmol, 18%). mp: $98-99{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 11.39(\mathrm{~s}, 1 \mathrm{H}), 7.85-$ $7.77(\mathrm{~m}, 1 \mathrm{H}), 7.71(\mathrm{t}, J=8.6 \mathrm{~Hz}, 3 \mathrm{H}), 7.51-7.41(\mathrm{~m}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.13-7.03(\mathrm{~m}, 1 \mathrm{H}), 3.51$ (hept, $J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.09(\mathrm{~d}, J=6.8$ $\mathrm{Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta 208.65,143.75,140.41,136.77,134.46,130.71,129.56 \times 2$, $127.25 \times 2,122.79,121.76,120.20,36.07,21.48,19.21 \times 2$. HRMS (ESI): m/z calculated for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 318.1164$, found: 318.1163.

N-Isopropyl-2-(4-methylphenylsulfonamido)benzamide (3la)

Following a modified procedure A, as the reaction was run for 24 h , 3la was obtained as a white solid ($46.8 \mathrm{mg}, 0.141 \mathrm{mmol}, 70 \%$). mp: $106-107{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 10.82(\mathrm{~s}, 1 \mathrm{H}), 7.67(\mathrm{dd}, J=8.1,3.9 \mathrm{~Hz}, 3 \mathrm{H}), 7.37$ (dd, $J=12.1,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H})$, 7.03 (t, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.90(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.27-4.01(\mathrm{~m}, 1 \mathrm{H}), 2.34(\mathrm{~s}$,
$3 \mathrm{H}), 1.19(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 167.55,143.46,138.82,136.76,132.39$, $129.51 \times 2,127.18 \times 2,126.58,123.47,121.92,121.51,42.06,22.52 \times 2,21.50$. HRMS $(E S I): m / z$ calculated for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 333.1273$, found: 333.1268.

\boldsymbol{N}-(tert-Butyl)-2-(4-methylphenylsulfonamido)benzamide (3ma)

Following a modified procedure A , as $\left[\left\{\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right\}_{2}\right]$ ($4.0 \mathrm{~mol} \%$), $\mathrm{AgSbF}_{6}(16$ $\mathrm{mol} \%$), and KOAc ($16 \mathrm{~mol} \%$) were employed and the reaction was performed at $100^{\circ} \mathrm{C}, 3 \mathrm{ma}$ was obtained as a white solid ($43.5 \mathrm{mg}, 0.126 \mathrm{mmol}, 63 \%$). mp : $141-143{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 10.78(\mathrm{~s}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $3 \mathrm{H}), 7.38-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.29(\mathrm{dd}, J=7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $2 \mathrm{H}), 7.06-6.97(\mathrm{~m}, 1 \mathrm{H}), 5.84(\mathrm{~s}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.39(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $168.04,143.40,138.69,136.88,132.16,129.54 \times 2,127.16 \times 2,126.64,123.40,122.92,121.52$, $52.16,28.66 \times 3,21.49$. HRMS (ESI): m/z calculated for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 347.1429$, found: 347.1437 .

(E)- N -(2-(1-(Methoxyimino)ethyl)phenyl)-4-methylbenzenesulfonamide (3na)

\quadOMe Me N	Following a modified procedure A, as $\left[\left\{\mathrm{Cp} * \mathrm{RhCl}_{2}\right\}_{2}\right](4.0 \mathrm{~mol} \%), \mathrm{AgSbF}_{6}(16$ mol\%) , and $\mathrm{KOAc}(16 \mathrm{~mol} \%)$ were employed, 3na was obtained as a white solid

($44.8 \mathrm{mg}, 0.141 \mathrm{mmol}, 70 \%$). mp: $134-135{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 10.75(\mathrm{~s}, 1 \mathrm{H}), 7.64(\mathrm{~d}$, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{ddd}, J=17.0,8.6,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.09(\mathrm{dd}, J=11.1,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , CDCl_{3}): $\delta 155.93,143.45,136.51,135.81,129.69,129.39 \times 2,128.44,127.16 \times 2,124.54,124.12$, 121.86, 62.58, 21.47, 13.13. HRMS (ESI): m/z calculated for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 319.1116$, found: 319.1118 .

8-(4-Methylphenylsulfonamido)quinoline 1-oxide (3oa)

Following typical procedure A, 3oa was obtained as a yellow solid ($51.1 \mathrm{mg}, 0.163$ $\mathrm{mmol}, 81 \%$). mp: $164-165{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 14.36(\mathrm{~s}, 1 \mathrm{H}), 8.33-$ $8.26(\mathrm{~m}, 1 \mathrm{H}), 7.85(\mathrm{dd}, J=12.6,4.8 \mathrm{~Hz}, 3 \mathrm{H}), 7.70(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{t}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.40(\mathrm{dd}, J=8.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{dd}, J=8.4,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 2 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): δ 143.66, 137.04, 136.70, 133.78, 132.40, 131.10, $129.59 \times 2,129.17,129.04,127.37 \times 2,122.30,120.94,117.89,21.48$. HRMS (ESI): m/z calculated for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 315.0803$, found: 315.0805 .

4-Methyl-N-(3-(pyridin-2-yl)thiophen-2-yl)benzenesulfonamide (3pa)

Following a modified procedure A , as $\mathrm{MgO}(9.7 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) was added, 3pa was obtained as a pale brown solid ($40.7 \mathrm{mg}, 0.123 \mathrm{mmol}, 62 \%$) mp : $106-107{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 13.16(\mathrm{~s}, 1 \mathrm{H}), 8.50(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.79-7.64(\mathrm{~m}, 3 \mathrm{H}), 7.44(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{t}, J=6.8 \mathrm{~Hz}, 4 \mathrm{H}), 6.77(\mathrm{~d}, J=5.8$ $\mathrm{Hz}, 1 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 153.85,146.82,143.53,142.84$, $137.59,136.53,129.39 \times 2,127.12 \times 2,123.03,120.77,120.61,120.23,116.59,21.47$. HRMS (ESI): m / z calculated for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 331.0575$, found: 331.0576.

4-Methyl- N -(1-(pyrimidin-2-yl)-1 H -indol-2-yl)benzenesulfonamide (3qa)

Following a modified procedure A , as $\mathrm{MgO}(9.7 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) was added, 3 qa was obtained as a white solid ($42.0 \mathrm{mg}, 0.115 \mathrm{mmol}, 58 \%$) mp : $140-142{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 11.05(\mathrm{~s}, 1 \mathrm{H}), 8.69(\mathrm{~d}, J=4.9 \mathrm{~Hz}$, $2 \mathrm{H}), 8.49(\mathrm{dd}, J=6.0,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{dd}, J=6.0$, $3.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.10(\mathrm{dd}, J=12.6,6.6 \mathrm{~Hz}, 3 \mathrm{H}), 6.64(\mathrm{~s}, 1 \mathrm{H})$, $2.29(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 158.05,157.65 \times 2,143.87,136.15$, $133.59,133.53,129.49 \times 2,128.60,127.08 \times 2,123.07,122.98,119.98,116.37,115.83,97.62,21.44$. HRMS (ESI): m/z calculated for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 365.1072$, found: 365.1074.

4-Methyl- \boldsymbol{N}-(1-(pyridin-2-yl)indolin-7-yl)benzenesulfonamide (3ra)

Following typical procedure A, 3ra was obtained as a white solid ($69.7 \mathrm{mg}, 0.191$ mmol, 95%). mp: $110-112{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.27$ (dd, $J=4.9,1.1$ $\mathrm{Hz}, 1 \mathrm{H}), 7.64-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.10-6.90(\mathrm{~m}, 6 \mathrm{H}), 6.80(\mathrm{dd}$, $J=6.9,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.32(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.00(\mathrm{t}, J=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 153.64,146.27,142.27$, $138.73,138.08,137.36,133.75,128.72 \times 2,127.48,126.67 \times 2,123.77,123.24$, $122.78,114.55,110.66,51.86,28.17,21.39$. HRMS (ESI): m/z calculated for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 366.1276, found: 366.1278.

4-Methyl- \boldsymbol{N}-(2-phenyl-1-(pyridin-2-yl)indolin-7-yl)benzenesulfonamide (3sa)

Following typical procedure A, 3sa was obtained as a pale orange solid (82.6 $\mathrm{mg}, 0.187 \mathrm{mmol}, 94 \%) . \mathrm{mp}: 201-202{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 11.57$ $(\mathrm{s}, 1 \mathrm{H}), 8.36(\mathrm{dd}, J=4.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.41(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.22(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.04(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H})$, $6.99(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{dd}, J=7.0,5.2 \mathrm{~Hz}, 1 \mathrm{H})$, $6.77(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.47(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.81$ $(\mathrm{dd}, J=15.8,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.81(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $154.84,146.21,142.57,142.53,139.04,138.61,137.08,131.83,129.38 \times 2,129.02 \times 2,127.43$, $126.79 \times 2,125.21,124.79 \times 2,124.14,123.94,122.26,115.32,110.94,67.42,39.02,21.59$. HRMS (ESI): m / z calculated for $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 442.1589$, found: 442.1588 .

4-Methyl- N-(4-methyl-1-(pyridin-2-yl)indolin-7-yl)benzenesulfonamide (3ta)

Following typical procedure A, 3ta was obtained as a white solid ($57.4 \mathrm{mg}, 0.151$ mmol, 76%). mp: $182-184{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 10.90(\mathrm{~s}, 1 \mathrm{H}), 8.25(\mathrm{~d}$, $J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.63-7.48(\mathrm{~m}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $2 \mathrm{H}), 6.94(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{dd}, J=6.7,5.5 \mathrm{~Hz}, 1 \mathrm{H})$, $6.28(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.89(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.32(\mathrm{~s}$, $3 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 153.76,146.31,142.11,138.55$, $137.80,137.47,132.19,132.01,128.65 \times 2,127.91,126.71 \times 2,124.55,121.31$, 114.43, 110.67, 51.75, 27.05, 21.38, 18.48. HRMS (ESI): m/z calculated for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 380.1433 , found: 380.1429 .

N-(5-Methoxy-2-methyl-1-(pyridin-2-yl)indolin-7-yl)-4-methylbenzenesulfonamide (3ua)

Following typical procedure A, 3ua was obtained as a white solid $(63.7 \mathrm{mg}$, $0.156 \mathrm{mmol}, 78 \%$). mp: $123-124{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 11.44$ (s, $1 \mathrm{H}), 8.24(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{dd}, J=11.4,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 2 \mathrm{H}), 6.97(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 6.82-6.68(\mathrm{~m}, 1 \mathrm{H}), 6.61(\mathrm{~s}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J$ $=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.35-3.93(\mathrm{~m}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.30(\mathrm{dd}, J=15.4,8.8 \mathrm{~Hz}$, $1 \mathrm{H}), 2.34(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 0.69(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta 156.50,153.79,146.48,142.50,138.84,137.85$, $134.22,130.09,129.06 \times 2,126.63 \times 2,125.30,113.83,110.49,108.89,59.17,55.80,36.64,21.34$, 19.39. HRMS (ESI): m/z calculated for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 410.1538$, found: 410.1533.
N-(5-Bromo-1-(pyridin-2-yl)indolin-7-yl)-4-methylbenzenesulfonamide (3va)

Following typical procedure A, 3va was obtained as a pale yellow solid (65.4 mg , $0.147 \mathrm{mmol}, 74 \%) . \mathrm{mp}: 171-172{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 11.46(\mathrm{~s}, 1 \mathrm{H})$, $8.25(\mathrm{dd}, J=5.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{ddd}, J=8.9,7.2,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=1.9$ $\mathrm{Hz}, 1 \mathrm{H}), 7.10(\mathrm{dd}, J=5.2,3.1 \mathrm{~Hz}, 3 \mathrm{H}), 6.98(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{dd}, J=7.2$, $5.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.35(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.99(\mathrm{t}, J=8.4 \mathrm{~Hz}$, 2H), $2.32(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta 153.36,146.17,142.58,139.01$, $137.30,137.17,135.66,129.32,128.87 \times 2,126.68 \times 2,125.54,124.87,114.96$, $114.90,110.75,51.92,27.94,21.42$. HRMS (ESI): m / z calculated for $\mathrm{C}_{20} \mathrm{H}_{19}{ }^{79} \mathrm{BrN}_{3} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 444.0381, found: 444.0378 .

\boldsymbol{N}-(5-Fluoro-1-(pyridin-2-yl)indolin-7-yl)-4-methylbenzenesulfonamide (3wa)

Following typical procedure A, 3wa was obtained as a yellow solid ($67.7 \mathrm{mg}, 0.177$ mmol, 88%). mp: $146-148{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 11.72(\mathrm{~s}, 1 \mathrm{H}), 8.24$ (dd, $J=5.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.65-7.55(\mathrm{~m}, 1 \mathrm{H}), 7.16$ (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.10 (dd, $J=$ $10.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.80(\mathrm{dd}, J=7.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.76-$ $6.69(\mathrm{~m}, 1 \mathrm{H}), 6.36(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.99(\mathrm{t}, J=8.4 \mathrm{~Hz}$, 2 H), $2.33(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 158.82(\mathrm{~d}, J=242.0 \mathrm{~Hz}), 153.56$, 146.06, 142.63, 139.01, 137.26, 135.35 (d, $J=9.5 \mathrm{~Hz}$), 133.96 (d, $J=2.6 \mathrm{~Hz}$), $128.91 \times 2,126.70 \times 2,124.79(\mathrm{~d}, J=11.1 \mathrm{~Hz}), 114.50,112.50(\mathrm{~d}, J=25.2 \mathrm{~Hz}), 110.45,109.86$ (d, J $=23.9 \mathrm{~Hz}$), $51.98,28.40$, 21.41. ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-120.05$. HRMS (ESI): m/z calculated for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{SF}[\mathrm{M}+\mathrm{H}]^{+}: 384.1182$, found: 384.1180.

4-Methyl-N-(2-(pyridin-2-yl)cyclohept-1-en-1-yl)benzenesulfonamide (4aa)

Following a modified procedure A , as the reaction was performed at room temperature, $4 \mathbf{a a}$ was obtained as a yellow solid ($42.4 \mathrm{mg}, 0.124 \mathrm{mmol}, 62 \%$). mp : $120-122^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 13.23(\mathrm{~s}, 1 \mathrm{H}), 8.47(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.60(\mathrm{td}, J=8.1,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.14-7.03(\mathrm{~m}, 4 \mathrm{H}), 2.78-$ 2.69 (m, 2H), $2.53-2.44(\mathrm{~m}, 2 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.71(\mathrm{dt}, J=11.9,6.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.53$ $-1.46(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 158.75,146.41,142.96,142.73$, $137.82,136.88,129.13 \times 2,126.82 \times 2,121.37,120.68,120.21,31.49,31.42,30.11,26.28,25.00$, 21.44. HRMS (ESI): m / z calculated for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 343.1480$, found: 343.1475 .

4-Methyl- N-(2-(pyridin-2-yl)cyclohex-1-en-1-yl)benzenesulfonamide (4ba)

Following a modified procedure A , as the reaction was performed at room temperature, $\mathbf{4} \mathbf{b a}$ was obtained as a yellow solid ($46.8 \mathrm{mg}, 0.142 \mathrm{mmol}, 71 \%$). mp : $121-123{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 14.54(\mathrm{~s}, 1 \mathrm{H}), 8.53(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.75-7.62(\mathrm{~m}, 3 \mathrm{H}), 7.23(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{dd}, J=$ $7.3,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{t}, J=5.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.36(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 5 \mathrm{H}), 1.83-1.41(\mathrm{~m}$, $4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 158.46,145.89,142.86,139.55,138.61,137.15$, $129.46 \times 2,126.88 \times 2,120.28,119.52,110.75,27.40,26.75,22.41,21.97,21.49$. HRMS (ESI): m / z calculated for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 329.1324$, found: 329.1330.

4-Methyl- \boldsymbol{N}-(2-(pyridin-2-yl)cyclopent-1-en-1-yl)benzenesulfonamide (4ca)

Following typical procedure A, 4ca was obtained as a yellow solid ($40.1 \mathrm{mg}, 0.128$ mmol, 64%). mp: $114-115^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 12.76(\mathrm{~s}, 1 \mathrm{H}), 8.57-$ $8.50(\mathrm{~m}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.65(\mathrm{td}, J=7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=8.3$ $\mathrm{Hz}, 2 \mathrm{H}$), 7.06 (dd, $J=7.0,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.99$ (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{t}, J=7.6 \mathrm{~Hz}$, 2 H), $2.67-2.55(\mathrm{~m}, 2 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 1.96-1.82(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 155.80,147.26,143.18,141.86,138.65,136.88,129.67 \times 2,126.91 \times 2,120.24,119.80$, 113.17, 32.88, 30.26, 21.52, 20.48. HRMS (ESI): m/z calculated for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 315.1167$, found: 315.1169.
(Z)-4-Methyl- N-(2-(pyridin-2-yl)prop-1-en-1-yl)benzenesulfonamide (4da)

Following typical procedure A , 4da was obtained as a yellow oil ($20.4 \mathrm{mg}, 0.071$ mmol, 35%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 12.94(\mathrm{~s}, 1 \mathrm{H}), 8.50(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H})$, 7.77 (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.69(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{~d}, J$ $=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.17-7.00(\mathrm{~m}, 1 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 1.98(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 157.89,146.81,143.18,138.53,137.02,129.70 \times 2,128.22,126.47 \times 2,120.49$, 120.31, 109.19, 21.50, 18.47. HRMS (ESI): m/z calculated for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 289.1011$, found: 289.1012 .

(Z)-4-Methyl- N-(2-phenyl-2-(pyridin-2-yl)vinyl)benzenesulfonamide (4ea)

Following typical procedure A, 4ea was obtained as a yellow solid (44.2 mg , $0.126 \mathrm{mmol}, 63 \%) . \mathrm{mp}: 151-152{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 13.16(\mathrm{~s}$, $1 \mathrm{H}), 8.53(\mathrm{dd}, J=5.0,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{td}, J=8.1$, $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{tdd}, J=6.7,4.4,2.4 \mathrm{~Hz}, 3 \mathrm{H}), 7.31-7.25(\mathrm{~m}, 4 \mathrm{H}), 7.09$ (ddd, $J=7.4,5.0,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~s}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): δ 157.61, 146.60, 143.39, 138.80, 138.41, 136.90, $131.28,130.10 \times 2,129.79 \times 2,128.61 \times 2,127.40,126.55 \times 2,122.68,120.46,117.46,21.54$. HRMS (ESI): m/z calculated for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 351.1167$, found: 351.1174.

4-Methyl- N-(quinolin-8-ylmethyl)benzenesulfonamide (6aa)

Following typical procedure B, 6aa was obtained as a white solid $(45.4 \mathrm{mg}, 0.145$ mmol, 73%). mp: $108-109{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.84-8.77(\mathrm{~m}, 1 \mathrm{H})$, $8.08(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{~d}$, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{dd}, J=8.3,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.66(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , CDCl_{3}): $\delta 149.43,146.41,142.62,137.36,136.53,133.87,129.43,129.00 \times 2,128.34,127.83$, $126.80 \times 2,126.17,121.26,46.32,21.34$. HRMS $(E S I): m / z$ calculated for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 313.1011, found: 313.1010 .

4-Nitro- N -(quinolin-8-ylmethyl)benzenesulfonamide (6ba)

NHNs Following typical procedure B, 6ba was obtained as a white solid ($53.5 \mathrm{mg}, 0.156$ mmol, 78%). mp: $154-155{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.87-8.78(\mathrm{~m}, 1 \mathrm{H})$, $8.04(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 3 \mathrm{H}), 7.47(\mathrm{~d}$, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{dd}, J=8.3,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.31(\mathrm{~m}, 1 \mathrm{H}), 6.93(\mathrm{~s}, 1 \mathrm{H})$, $4.77(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 149.59,149.22,146.29,146.04,136.72$, $132.95,129.76,128.36,127.65 \times 2,126.07,123.12 \times 2,121.55,46.73$. HRMS $(E S I): m / z$ calculated for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 344.0705$, found: 344.0708 .

\boldsymbol{N}-((5-Bromoquinolin-8-yl)methyl)-4-nitrobenzenesulfonamide (6ca)

$$
\begin{aligned}
& \text { Following typical procedure B, 6ca was obtained as a white solid }(71.2 \mathrm{mg}, 0.169 \\
& \mathrm{mmol}, 84 \%) . \mathrm{mp}: 175-176{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 8.89(\mathrm{~d}, J=2.8 \mathrm{~Hz}, \\
& 1 \mathrm{H}), 8.45(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.69(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), \\
& 7.64(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{dd}, J=8.6,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), \\
& 6.71(\mathrm{~s}, 1 \mathrm{H}), 4.76(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 150.38,
\end{aligned}
$$

$149.21,146.47,146.12,146.07,136.14,133.21,130.11,129.71,127.62 \times 2,123.22 \times 2,122.71$, 122.27, 46.14. HRMS (ESI): m / z calculated for $\mathrm{C}_{16} \mathrm{H}_{13}{ }^{79} \mathrm{BrN}_{3} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 421.9810, found: 421.9816.

4-Nitro- N -((5-nitroquinolin-8-yl)methyl)benzenesulfonamide (6da)

Following typical procedure B, 6da was obtained as a white solid ($46.4 \mathrm{mg}, 0.119$ $\mathrm{mmol}, 60 \%$). mp: $138-139{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 8.99(\mathrm{~d}, J=4.1 \mathrm{~Hz}$, $1 \mathrm{H}), 8.87(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.20(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H})$, 7.79 (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}$), 7.71 (dd, $J=8.7,4.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.61(\mathrm{~s}, 1 \mathrm{H}), 4.83(\mathrm{~d}, J=$ $5.3 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 150.84,149.65,146.03,145.66$, $145.62,140.74,132.76,127.96,127.85 \times 2,124.20,123.89,123.65 \times 2,121.02$, 45.88. HRMS (ESI): m/z calculated for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 389.0556$, found: 389.0557 .

\boldsymbol{N}-((5-Methoxyquinolin-8-yl)methyl)-4-nitrobenzenesulfonamide (6ea)

NHNs Following typical procedure B, 6ea was obtained as a white solid ($61.6 \mathrm{mg}, 0.165$ mmol, 82%). mp: $151-152{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 8.82(\mathrm{~d}, J=4.1 \mathrm{~Hz}$, $1 \mathrm{H}), 8.42(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H})$, $7.40(\mathrm{dd}, J=8.4,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~s}, 1 \mathrm{H}), 6.63(\mathrm{~d}, J=$ $7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 155.62,149.88,149.04,146.26,131.36,129.98,127.58 \times 2,124.68,122.91 \times 2,120.87,120.61 \times 2$, 103.13, 55.81, 46.43. HRMS (ESI): m/z calculated for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 374.0811$, found: 374.0816.
\boldsymbol{N}-(8-((4-Methylphenylsulfonamido)methyl)quinolin-5-yl)acetamide (6fa)

Following typical procedure B , $\mathbf{6 f a}$ was obtained as a white solid $(51.8 \mathrm{mg}, 0.140$ mmol, 70%). mp: $151-152{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.80(\mathrm{~s}, 1 \mathrm{H}), 8.15$ $(\mathrm{d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{t}, J=9.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.41(\mathrm{~s}, 2 \mathrm{H}), 7.11(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H})$, $6.46(\mathrm{~s}, 1 \mathrm{H}), 4.58(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}(101$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.71,149.25,146.24,143.18,136.92,132.72,131.69,131.15$, $129.39 \times 2,128.72,126.84 \times 2,123.12,121.59,120.87,45.68,23.88,21.41$. HRMS (ESI): m/z calculated for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 370.1225$, found: 370.1226 .

Ethyl 4-chloro-8-((4-methylphenylsulfonamido)methyl)quinoline-3-carboxylate (6ga)
 $(\mathrm{d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.52(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 1.48(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $(101$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 164.28,149.20,147.46,143.83,142.84,137.31,134.65,132.03,128.96 \times 2,127.94$, $126.65 \times 2,126.36,125.41,123.34,62.26,45.94,21.32,14.25$. HRMS (ESI): m/z calculated for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{ClN}_{2} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 419.0832$, found: 419.0829 .

4-Methyl- N-(2-methyl-2-(pyridin-2-yl)propyl)benzenesulfonamide (6ha)

Following typical procedure C , $\mathbf{6 h a}$ was obtained as a white solid ($39.4 \mathrm{mg}, 0.129$ mmol, 65%). mp: $75-76{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.44(\mathrm{~d}, J=4.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.73(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{td}, J=7.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $3 \mathrm{H}), 7.12(\mathrm{dd}, J=7.2,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.08(\mathrm{~s}, 1 \mathrm{H}), 3.15(\mathrm{~s}, 2 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{~s}$, $6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 166.40,148.22,142.93,137.37,136.96,129.58 \times 2,126.99 \times 2$, 121.47, 120.51, 53.04, 40.72, $26.80 \times 2,21.49$. HRMS (ESI): m/z calculated for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+$ $\mathrm{H}]^{+}: 305.1324$, found: 305.1318 .

4-Methyl- \boldsymbol{N}-(2-methyl-2-(pyridin-2-yl)butyl)benzenesulfonamide (6ia)

Following typical procedure C , $\mathbf{6 i a}$ was obtained as a white solid $(40.5 \mathrm{mg}, 0.127$ mmol, 64%). mp: $88-89{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.44$ (d, $J=4.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.72(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{td}, J=7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 7.22(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{dd}, J=7.4,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.08(\mathrm{t}, J=6.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.31(\mathrm{dd}, J=11.8,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{dd}, J=11.8,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 1.78-1.62(\mathrm{~m}, 2 \mathrm{H})$, $1.30(\mathrm{~s}, 3 \mathrm{H}), 0.71(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 165.58,148.33,142.93,137.26$, $136.77,129.58 \times 2,127.00 \times 2,121.42,121.24,51.23,43.89,32.49,22.75,21.49,8.34$. HRMS (ESI): m / z calculated for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 319.1480$, found: 319.1477.

4-Methyl-N-(2-methyl-2-(pyridin-2-yl)hexyl)benzenesulfonamide (6ja)

Following typical procedure C, $\mathbf{6 j a}$ was obtained as a colorless oil ($40.8 \mathrm{mg}, 0.118$ mmol, 59\%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.48-8.41(\mathrm{~m}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=8.3$ $\mathrm{Hz}, 2 \mathrm{H}), 7.62(\mathrm{td}, J=7.8,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 1 \mathrm{H}), 7.11$ (ddd, $J=7.5,4.9,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.09(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{dd}, J$ $=11.8,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{dd}, J=11.8,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 1.73-1.51(\mathrm{~m}, 2 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H})$, $1.23-1.13(\mathrm{~m}, 2 \mathrm{H}), 1.08(\mathrm{ddd}, J=11.7,10.0,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.03-0.91(\mathrm{~m}, 1 \mathrm{H}), 0.80(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 165.93,148.32,142.91,137.30,136.68,129.57 \times 2,127.01 \times 2$, $121.35,121.03,51.50,43.58,39.87,26.04,23.39,23.22,21.49,13.92$. HRMS (ESI): m/z calculated for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 347.1793$, found: 347.1796.

4-Methyl- N -(2-methyl-4-phenyl-2-(pyridin-2-yl)butyl)benzenesulfonamide (6ka)

Following typical procedure C, 6ka was obtained as a colorless oil $(30.9 \mathrm{mg}, 0.081$ mmol, 41\%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.52(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{td}, J=7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.18-7.09(\mathrm{~m}$, $4 \mathrm{H}), 6.99(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{dd}, J=6.8,2.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.29(\mathrm{~s}, 1 \mathrm{H}), 3.38(\mathrm{dd}$, $J=11.7,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.12-2.95(\mathrm{~m}, 2 \mathrm{H}), 2.89(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 164.77,148.33,143.00,137.15,137.11,136.57,130.42 \times 2,129.60 \times 2$, $127.76 \times 2,127.04 \times 2,126.32,121.76,121.69,51.91,45.77,44.55,22.59,21.50$. HRMS (ESI): m/z calculated for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 381.1637$, found: 381.1630.

N-(3-Ethoxy-2-methyl-2-(pyridin-2-yl)propyl)-4-methylbenzenesulfonamide (6la)

Following typical procedure C, 6la was obtained as a colorless oil ($41.5 \mathrm{mg}, 0.119$ mmol, 60%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.50-8.41(\mathrm{~m}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 2 \mathrm{H}), 7.62(\mathrm{td}, J=7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{dd}, J=12.4,8.2 \mathrm{~Hz}, 3 \mathrm{H}), 7.17-$ $7.08(\mathrm{~m}, 1 \mathrm{H}), 6.17(\mathrm{~s}, 1 \mathrm{H}), 3.66(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.43$
$-3.33(\mathrm{~m}, 3 \mathrm{H}), 3.28-3.12(\mathrm{~m}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H}), 1.10(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 163.69,148.37,142.90,137.29,136.66,129.56 \times 2,127.03 \times 2,121.72,121.50$, 76.47, 66.94, 49.91, 44.92, 21.90, 21.48, 14.95. HRMS (ESI): m/z calculated for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+$ $\mathrm{H}]^{+}: 349.1586$, found: 349.1587 .

N-(2,5-Dimethyl-2-(pyridin-2-yl)hex-4-en-1-yl)-4-methylbenzenesulfonamide (6ma)

Following typical procedure C , $\mathbf{6 m a}$ was obtained as a pale yellow oil (30.9 mg , $0.086 \mathrm{mmol}, 43 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.48-8.42(\mathrm{~m}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J$ $=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{td}, J=7.8,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{~d}, J=$ $8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{ddd}, J=7.5,4.9,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.15(\mathrm{t}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.95-$ $4.83(\mathrm{~m}, 1 \mathrm{H}), 3.32(\mathrm{dd}, J=11.8,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{dd}, J=11.8,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.32$ (ddd, $J=21.6,14.4,7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.61(\mathrm{~s}, 3 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta$ $165.61,148.28,142.90,137.32,136.59,134.73,129.56 \times 2,127.02 \times 2,121.40,121.20,119.00$, $51.49,44.37,38.18,25.93,23.06,21.48,17.86$. HRMS (ESI): m/z calculated for $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+$ $H]^{+}: 359.1793$, found: 359.1791 .

Abstract

4-Methyl- N-(2-propyl-2-(pyridin-2-yl)hexyl)benzenesulfonamide (6na)

Following typical procedure C , 6na was obtained as a white solid $(20.9 \mathrm{mg}$, $0.054 \mathrm{mmol}, 27 \%$). mp: $98-99{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.45$ (d, $J=$ $4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{td}, J=7.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J$ $=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{dd}, J=7.3,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.01(\mathrm{t}$, $J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 1.80-1.53(\mathrm{~m}, 4 \mathrm{H}), 1.37-1.11(\mathrm{~m}, 4 \mathrm{H}), 1.02$ $(\mathrm{dt}, J=14.0,7.8 \mathrm{~Hz}, 4 \mathrm{H}), 0.82(\mathrm{t}, J=7.3 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 165.44,148.41$, $142.91,137.20,136.39,129.57 \times 2,127.06 \times 2,121.31,121.25,48.56,46.38,36.52 \times 2,25.71 \times 2$, $23.35 \times 2,21.49,13.94 \times 2$. HRMS (ESI): m/z calculated for $\mathrm{C}_{22} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 389.2263$, found: 389.2261 .

4-Methyl- N -(2-methyl-2-(pyrimidin-2-yl)propyl)benzenesulfonamide (60a)

Following typical procedure C, $\mathbf{6 0 a}$ was obtained as a white solid $(38.0 \mathrm{mg}, 0.124$ mmol, 62%) . mp: $78-79{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.63$ (d, $J=4.9 \mathrm{~Hz}$, $2 \mathrm{H}), 7.76(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{t}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H})$, $6.01(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.19(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta 174.86,156.81 \times 2,143.02,137.44,129.62 \times 2,127.03 \times 2,118.75$, $52.16,43.02,26.08 \times 2,21.50$. HRMS (ESI): m/z calculated for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 306.1276$, found: 306.1280.
(2R,3R,4R,5R)-2-(Acetoxymethyl)-5-(2-amino-6-(2-(4-methylphenylsulfonamido)phenyl)-9H-pur in-9-yl)tetrahydrofuran-3,4-diyl diacetate (7aa)

Following a modified procedure $\mathrm{A}(0.1 \mathrm{mmol}$ scale $)$, as $\left[\left\{\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right\}_{2}\right]$ ($5.0 \mathrm{~mol} \%$), $\operatorname{AgSbF}_{6}(20 \mathrm{~mol} \%$), and $\mathrm{KOAc}(20 \mathrm{~mol} \%)$ were employed and the reaction was run for $48 \mathrm{~h}, 7 \mathbf{a a}$ was obtained as a white solid ($30.7 \mathrm{mg}, 0.048 \mathrm{mmol}, 48 \%$). mp: $87-89{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 11.96(\mathrm{~s}, 1 \mathrm{H}), 8.59(\mathrm{dd}, J=7.9,1.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.87(\mathrm{~s}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J$
$=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.30-7.24(\mathrm{~m}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.05(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.00(\mathrm{t}, J=5.0$ $\mathrm{Hz}, 1 \mathrm{H}), 5.80(\mathrm{t}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{~s}, 2 \mathrm{H}), 4.62-4.29(\mathrm{~m}, 3 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}), 2.13(\mathrm{~s}$, $3 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta 170.46,169.64,169.44,157.88,155.94,153.64$, $143.07,140.11,137.52,135.75,132.60,131.73,129.13 \times 2,126.73 \times 2,125.40,124.95,124.88$, $124.30,86.47,79.90,72.78,70.52,63.00,21.15,20.74,20.56,20.47$. HRMS (ESI): m/z calculated for $\mathrm{C}_{29} \mathrm{H}_{31} \mathrm{~N}_{6} \mathrm{O}_{9} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 639.1873$, found: 639.1866 .
(2R,3R,4R,5R)-2-(Acetoxymethyl)-5-(6-(2-(4-methylphenylsulfonamido)phenyl)-9H-purin-9-yl)te trahydrofuran-3,4-diyl diacetate (7ba)

Following a modified procedure $\mathrm{A}(0.1 \mathrm{mmol}$ scale $)$, as $\left[\left\{\mathrm{Cp} * \mathrm{RhCl}_{2}\right\}_{2}\right]$ ($5.0 \mathrm{~mol} \%$), AgSbF_{6} ($20 \mathrm{~mol} \%$), and KOAc ($20 \mathrm{~mol} \%$) were employed and the reaction was run for $24 \mathrm{~h}, 7 \mathbf{b a}$ was obtained as a white solid ($46.9 \mathrm{mg}, 0.075 \mathrm{mmol}, 75 \%$). mp: $96-98{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 12.00(\mathrm{~s}, 1 \mathrm{H}), 8.97(\mathrm{~s}, 1 \mathrm{H}), 8.73(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 8.27(\mathrm{~s}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.31(\mathrm{t}, J=8.1 \mathrm{~Hz}, 3 \mathrm{H}), 6.88(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.28(\mathrm{~d}, J=5.2 \mathrm{~Hz}$, $1 \mathrm{H}), 5.98(\mathrm{t}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.68(\mathrm{t}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.59-4.37(\mathrm{~m}$, 3H), 2.19 (s, 3H), $2.16(\mathrm{~s}, 6 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.25,169.60,169.41$, $155.28,151.71,150.95,143.03,142.61,137.87,135.93,132.90,132.16,131.14,129.11 \times 2,126.69 \times$ $2,124.90,124.44,124.09,86.60,80.49,73.12,70.57,62.99,21.13,20.79,20.54,20.41$. HRMS (ESI): m / z calculated for $\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{~N}_{5} \mathrm{O}_{9} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 624.1764, found: 624.1754.

4-Ethyl-4-hydroxy-7-(4-methylphenylsulfonamido)-3,14-dioxo-3,4,12,14-tetrahydro-1 H-pyrano[$\left.3^{\prime}, 4^{\prime}: 6,7\right]$ indolizino[1,2-b]quinoline 6-oxide (8)

Following typical procedure $\mathrm{A}(0.1 \mathrm{mmol}$ scale $), \mathbf{8}$ was obtained as a yellow solid ($37.2 \mathrm{mg}, 0.070 \mathrm{mmol}, 70 \%$). $\mathrm{mp}:>250{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta 14.27$ (s, 1H), 8.24 ($\mathrm{s}, 1 \mathrm{H}$), $8.04(\mathrm{~s}, 1 \mathrm{H}), 7.83$ $(\mathrm{d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.76(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.65(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.60(\mathrm{~s}, 1 \mathrm{H}), 5.43(\mathrm{~s}$, $2 \mathrm{H}), 5.24(\mathrm{~s}, 2 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 1.95-1.80(\mathrm{~m}, 2 \mathrm{H}), 0.89(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta 172.64,156.70,150.25,144.57,140.19,139.25,136.12$, $133.37,132.81,132.26,130.45 \times 2,130.38,130.28,127.58 \times 2,123.95,123.76,121.30,117.36$, $103.63,72.79,65.70,51.10,31.11,21.39,8.26$. HRMS (ESI): m / z calculated for $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{~S}[\mathrm{M}+$ $\mathrm{H}]^{+}: 534.1335$, found: 534.1333.

2.3 Mechanistic experiments

2.3.1 Cyclometalated rhodium intermediates ${ }^{3 \text {, ref. } 18 \mathrm{~d}}$

A 8 mL screw-cap vial was charged with 2-phenylpyridine $\mathbf{1 a}(31.0 \mathrm{mg}, 1.0$ equiv, 0.2 mmol), 2a ($100.1 \mathrm{mg}, 1.2$ equiv, 0.24 mmol), $\mathbf{C} 1(4.3 \mathrm{mg}, 0.01 \mathrm{mmol}, 5.0 \mathrm{~mol} \%), \mathrm{AgSbF}_{6}(6.9 \mathrm{mg}, 0.02 \mathrm{mmol}$, $10 \mathrm{~mol} \%)$, KOAc ($2.0 \mathrm{mg}, 0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%$), and 1,2 -dichloroethane (1.0 mL). The vial was carefully blown with nitrogen for 30 seconds and placed into preheated oil bath at $80^{\circ} \mathrm{C}$ with stirring for 15 h . After cooling down, the mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and sequentially washed with sat. aq. $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$. The layer was separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL} \times 3)$. The combined organic layers were rinsed with sat. aq. $\mathrm{NaCl}(10 \mathrm{~mL})$, dried over MgSO_{4}, and concentrated under reduced pressure. The resultant residue was purified by flash chromatography (hexane/EtOAc) on silica gel to afford product 3aa ($60.6 \mathrm{mg}, 0.186 \mathrm{mmol}, 93 \%$).

A 8 mL screw-cap vial was charged with 8 -methylquinoline $\mathbf{5 a}$ ($28.6 \mathrm{mg}, 1.0$ equiv, 0.2 mmol), amide $2 \mathrm{a}(100.1 \mathrm{mg}, 1.2$ equiv, 0.24 mmol$), \mathbf{C} 2(4.2 \mathrm{mg}, 0.01 \mathrm{mmol}, 5.0 \mathrm{~mol} \%), \mathrm{AgSbF}_{6}(6.9 \mathrm{mg}$, $0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%$), KOAc ($2.0 \mathrm{mg}, 0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%$), and 1,2-dichloroethane (1.0 mL). The vial was carefully blown with nitrogen for 30 seconds and placed into preheated oil bath at $80^{\circ} \mathrm{C}$ with stirring for 24 h . After cooling down, the mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and sequentially washed with sat. aq. $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$. The layer was separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL} \times 3)$. The combined organic layers were rinsed with sat. aq. $\mathrm{NaCl}(10 \mathrm{~mL})$, dried over MgSO_{4}, and concentrated under reduced pressure. The resultant residue was purified by flash chromatography (hexane/EtOAc) on silica gel to afford the amidation product $\mathbf{6 a a}(41.2 \mathrm{mg}, 0.132$ $\mathrm{mmol}, 66 \%)$.

2.3.2 Intermolecular KIE measurements

A 8 mL screw-cap vial was charged with $\mathbf{1 a}(15.5 \mathrm{mg}, 1.0$ equiv, 0.1 mmol$), \mathbf{1 a}-\boldsymbol{d}_{\mathbf{5}}(16.0 \mathrm{mg}, 1.0$ equiv, 0.1 mmol), 2a ($100.1 \mathrm{mg}, 1.2$ equiv, 0.24 mmol), $\left[\left\{\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right\}_{2}\right](3.1 \mathrm{mg}, 0.005 \mathrm{mmol}, 2.5$ $\mathrm{mol} \%$), $\mathrm{AgSbF}_{6}(6.9 \mathrm{mg}, 0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%$), KOAc ($2.0 \mathrm{mg}, 0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%$), and 1,2 -dichloroethane (1.0 mL). The vial was carefully blown with nitrogen for 30 seconds and placed into preheated oil bath at $50^{\circ} \mathrm{C}$ with stirring for 5 min . The reaction mixture was immediately diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and sequentially washed with sat. aq. $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$. The layer was separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL} \times 3)$. The combined organic layers were rinsed with sat. aq. $\mathrm{NaCl}(10 \mathrm{~mL})$, dried over MgSO_{4}, and concentrated under reduced pressure. The resultant residue was purified by flash chromatography (hexane/EtOAc) on silica gel to afford
amidation product $\mathbf{3 a a} / \mathbf{3 a a}-\boldsymbol{d}_{\mathbf{4}}(9.5 \mathrm{mg}, 0.029 \mathrm{mmol}, 15 \%)$. The ratio of $\mathbf{3 a a} / \mathbf{3 a a}-\boldsymbol{d}_{\mathbf{4}}$ was determined by ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) to be 1.6:1.

A 8 mL screw-cap vial was charged with $\mathbf{5 a}(14.3 \mathrm{mg}, 1.0$ equiv, 0.1 mmol$), \mathbf{5 a - d} \mathbf{~}(14.6 \mathrm{mg}, 1.0$ equiv, 0.1 mmol), $\mathbf{2 a}\left(100.1 \mathrm{mg}, 1.2\right.$ equiv, 0.24 mmol), $\left[\left\{\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right\}_{2}\right](3.1 \mathrm{mg}, 0.005 \mathrm{mmol}, 2.5$ $\mathrm{mol} \%), \mathrm{AgSbF}_{6}(6.9 \mathrm{mg}, 0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%), \mathrm{KOAc}(2.0 \mathrm{mg}, 0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%)$, and 1,2-dichloroethane (1.0 mL). The vial was carefully blown with nitrogen for 30 seconds and placed into preheated oil bath at $50{ }^{\circ} \mathrm{C}$ with stirring for 10 min . The reaction mixture was immediately diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and sequentially washed with sat. aq. $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$. The layer was separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL} \times 3)$. The combined organic layers were rinsed with sat. aq. $\mathrm{NaCl}(10 \mathrm{~mL})$, dried over MgSO_{4}, and concentrated under reduced pressure. The resultant residue was purified by flash chromatography (hexane/EtOAc) on silica gel to afford the amidation product $\mathbf{6 a a} / \mathbf{6 a a}-\boldsymbol{d}_{\mathbf{2}}(14.6 \mathrm{mg}, 0.047 \mathrm{mmol}, \mathbf{2 3} \%)$. The ratio of $\mathbf{6 a a} / \mathbf{6 a a}-\boldsymbol{d}_{\mathbf{2}}$ was determined by ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) to be 9.5:1.

2.3.3 Control experiments

2.3.4 Preparation of complex C3

A 8 mL screw-cap vial was charged with complex $\mathbf{C 1}(42.8 \mathrm{mg}, 1.0$ equiv, 0.1 mmol$), \mathbf{2 a}(41.7 \mathrm{mg}$, 1.0 equiv, 0.1 mmol), $\mathrm{AgSbF}_{6}(34.4 \mathrm{mg}, 1.0$ equiv, 0.1 mmol$)$ and $\mathrm{DCM}(2.0 \mathrm{~mL})$. The vial was sealed under N_{2} and stirred at room temperature for overnight. The mixture was filtered through a short pad of celite and concentrated under reduced pressure to afford the mixture of complex C3 and 2-iodobenzonic acid as an orange solid. The complex C3 can be recrystallized from chloroform and diethyl ether as a single crystal.

3. References

(1) Brand, J. P.; Chevalley, C.; Scopelliti, R.; Waser, J. Chem. - Eur. J. 2012, 18, 5655-5666.
(2) In the original paper, the NMR chemical shifts of amidobenziodoxolones were measured with CDCl_{3} and $\mathrm{CF}_{3} \mathrm{COOH}$ as solvent. Actually, these compounds are insoluble in pure CDCl_{3} while they displayed satisfactory solubility in dimethyl sulfoxide. It was presumed that the cyclic structures might be destroyed in the presence of trifluoroacetic acid. In addition, compound 2a in the solution of $\mathrm{CDCl}_{3} / \mathrm{CF}_{3} \mathrm{COOH}$ (20:1) was found to partially decompose within 24 h , as determined by ${ }^{1} \mathrm{H}$ NMR test. Whereas, compound 2a in the solid state showed reasonable stability even it was stored at room temperature for one month. For a related literature, see: Kitamura, T.; Nagata, K.; Taniguchi, H. Tetrahedron Lett. 1995, 36, 1081-1084.
(3) Li, L.; Brennessel, W. W.; Jones, W. D. J. Am. Chem. Soc. 2008, 130, 12414-12419.

4. X-ray structures of compounds 8 and C3

Crystal structure of 8. ORTEP drawing with 50% probability thermal ellipsoids. Cambridge Crystallographic Data Centre Deposition Number: 1471890.

Crystal structure of C3. ORTEP drawing with 50% probability thermal ellipsoids. Cambridge Crystallographic Data Centre Deposition Number: 1477689.
5. NMR spectra of amidobenziodoxolones and the amidation products

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for compound 2a (DMSO-d6)

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for compound 2b (DMSO- \boldsymbol{d}_{6})

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for compound 2c (DMSO- \boldsymbol{d}_{6})

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for compound 2d (DMSO- d_{6})

190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	ppm

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for compound 2e (DMSO- d_{6})

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for product $3 \mathrm{aa}\left(\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for product $3 \mathrm{ab}\left(\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for product $3 \mathrm{ac}\left(\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for product $3 \mathrm{ad}\left(\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for product $3 \mathrm{ae}\left(\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for product $3 \mathrm{ba}\left(\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for product $\mathbf{3 c a}\left(\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for product $3 \mathrm{da}\left(\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for product $3 \mathrm{ea}\left(\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for product $\mathbf{3 f a}\left(\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for product $3 \mathrm{ga}\left(\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for product $3 \mathrm{ha}\left(\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for product 3ia (CDCl_{3})

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for product $3 \mathrm{ia}^{\prime}\left(\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for product $\mathbf{3 j a}\left(\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for product 3la (CDCl_{3})

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{spectra} \mathrm{for} \mathrm{product} 3 \mathrm{ma}\left(\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for product $3 n a\left(\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for product $30 a\left(\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for product 3pa (CDCl_{3})

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for product $3 q \mathrm{qa}\left(\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for product $3 \mathrm{ra}\left(\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for product $3 \mathrm{sa}\left(\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for product 3 ta $\left(\mathbf{C D C l}_{3}\right)$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for product 3 ua (CDCl_{3})

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for product $3 \mathrm{va}\left(\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for product 3wa $\left(\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for product $4 \mathrm{aa}\left(\mathrm{CDCl}_{3}\right)$
$\stackrel{n}{n}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for product $\mathbf{4 b a}\left(\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for product $4 \mathrm{ca}\left(\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for product $4 \mathrm{da}\left(\mathrm{CDCl}_{3}\right)$

$$
\varepsilon s^{\circ} \tau z-
$$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for product $4 \mathrm{ea}\left(\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for product $\mathbf{6 a a}\left(\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for product $6 \mathrm{ba}\left(\mathrm{CDCl}_{3}\right)$

$801 \cdot b$
$294 \cdot b$

$$
-_{46.14}
$$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for product $6 \mathrm{ca}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$

$\left.\right|_{\substack{-1 \\ i n}} ^{\substack{\text { in } \\ i n}}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for product 6ea $\left(\mathbf{C D}_{2} \mathrm{Cl}_{2}\right)$

ஸै

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for product $6 \mathrm{fa}\left(\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for product $6 \mathrm{ga}\left(\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for product 6 ha $\left(\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for product 6ia (CDCl_{3})

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for product $\mathbf{6 j a}\left(\mathbf{C D C l}_{3}\right)$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for product $6 \mathrm{ka}\left(\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for product 6la (CDCl_{3})

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{spectra} \mathrm{for} \mathrm{product} \mathbf{6 m a}\left(\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for product 6 na (CDCl_{3})

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for product $60 \mathrm{a}\left(\mathrm{CDCl}_{3}\right)$

KIE experiment 1H NMR spectrum for product 3aa/3aa- $\boldsymbol{d}_{\mathbf{4}}\left(\mathrm{CDCl}_{3}\right)$

KIE experiment $\mathbf{1 H}$ NMR spectrum for product 6aa/6aa- $\boldsymbol{d}_{\mathbf{2}}\left(\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for product 7aa $\left(\mathrm{CDCl}_{3}\right)$

190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for product $7 \mathrm{ba}\left(\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for product 8 (DMSO- d_{6})

