# Supporting Information for <br> Mechanism-based Design and Optimization of a Catalytic Electrophilic Cyclopropanation without Diazomethane 

Augustin A. S. Tchawou W., Mihai Raducan, and Peter Chen*<br>Laboratorium für Organische Chemie, Eidgenössische Technische Hochschule (ETH) Zürich, CH-8o93 Zürich, Switzerland


#### Abstract

Iodomethylboron compounds, either the trifluoroborate or a boronic ester, cyclopropanate electron-rich olefins and unprotected allylic alcohols with Pd catalysts according to a novel, designed catalytic cycle. Proposed intermediates in a "diverted Heck" mechanism are observed by means of spectroscopic studies, and by isolation and X-ray crystallographic characterization, which together with reaction kinetics, point to a separation of rate-determining and product-determining steps, and a mechanism-based optimization of the yield, selectivity, and scope of the catalytic electrophilic cyclopropanation. The reaction with crystalline, air-stable, non-hygroscopic and non-toxic reagents provides an alternative to Simmons-Smith-type reactions, as well as cyclopropanation procedures that require the use of diazomethane.


Correspondence to: peter.chen@org.chem.ethz.ch

## Table of Contents

I. General procedures SI-2
II. Synthetic and experimental procedures SI-4
III. Cyclopropanation experiments SI-11
A. Screenings and cyclopropanation of various olefins SI-11

A-1. Ethylene Glycol (EG) as co-solvent SI-11
A-2. Various diols \& triol as co-solvents SI-13
A-3. Additional cyclopropanation reactions of cyclooctene SI-13
A-4. Cyclopropanation reaction of other olefins SI-14
A-5. Identification of the diastereomer formed in the case of $\alpha$-pinene SI-31
B. Kinetics Studies SI-35

B-1. Influence of $\mathrm{ICH}_{2} \mathrm{BF}_{3} \mathrm{~K} \quad$ SI-35
B-2. Influence of the olefin COE SI-36
B-3. Influence of catalyst loading SI-37
B-4. Influence of the co-solvent concentration SI-38
B-5. Influence of the phosphine ligand SI-40
C. Spectroscopic Studies SI-41

C-1. NMR monitoring methylenation reaction of COE SI-41
C-2. Oxidative addition of $\mathrm{ICH}_{2} \mathrm{Bpin}$ in THF SI-42
C-3. Oxidative addition of $\mathrm{ICH}_{2} \mathrm{Bpin}$ in the presence of NBE in THF SI-45
C-4. Oxidative addition of $\mathrm{ICH}_{2} \mathrm{BF}_{3} \mathrm{~K}$ in DMF SI-47
D. Control experiments SI-52

D-1. Cyclopropanation of cyclooctene SI-52
D-2. In the absence of olefin SI-55
D-3. Cyclooctene added 16 h later to the reaction mixture $\mathrm{SI}-58$
D-4. $\mathrm{ICH}_{2} \mathrm{BF}_{3} \mathrm{~K}$ added 16 h later to the reaction mixture SI-59
D-5. Cyclopropanation of COE in deuterated methanol SI-59
IV. References SI-60
V. NMR spectra and calibration curves SI-61

## I-GENERAL REMARKS

Unless otherwise stated, all reactions were carried out under an Argon or $\mathrm{N}_{2}$ atmosphere using standard Schlenk or glovebox techniques with anhydrous solvents. Solvents and reagents were acquired from Aldrich, Fluka, Acros Organics, ABCR Chemicals and TCI. Deuterated solvents were obtained from Amar Chemicals. Extra molecular sieves were added to the purchased solvents and the solvents stored in the glovebox. $\mathrm{N}, \mathrm{N}$-dimethylformamide ( $>=99.5 \%$, over molecular sieves [ $\left.\mathrm{H}_{2} \mathrm{O}<=0.005 \%\right]$ ), $\mathrm{N}, \mathrm{N}$-dimethylacetamide ( $>=99.5 \%$, over molecular sieves $\left[\mathrm{H}_{2} \mathrm{O}<=0.01 \%\right]$ ) and 1,2dimethoxyethane (DME, $>=99.5 \%$, over molecular sieves [ $\mathrm{H}_{2} \mathrm{O}<=0.005 \%$ ]) were acquired from Sigma-Aldrich and stored in the glovebox before use. THF was freshly distilled from Na over benzophenone before use, or was alternatively stored after distillation in the glovebox before use. Methanol ( $>=99.5 \%$, over molecular sieves $\left[\mathrm{H}_{2} \mathrm{O}\right.$ $<=0.01 \%]$ ), ethylene glycol anhydrous (98.5\%) and glycerol anhydrous puriss. (99.5\%) were acquired from Sigma-Aldrich ( $>=99.5 \%$, over molecular sieves $\left[\mathrm{H}_{2} \mathrm{O}<=0.01 \%\right]$ ) or Acros Organics ( $99.8 \%$, extra dry over molecular sieves). The internal standard undecane ( $>=99.8 \%$ ), cyclooctene ( $\mathbf{1 a},>=99.5 \%$ ), n-hexanal ( $97 \%$ ), anhydrous pinacol, cyclododecene ( $\mathbf{k}, \quad>=96.0 \%$ GC), cyclododecanone ( $>99 \%$ ) (+/-)-cis-bicyclo[3.2.0]hept-2-en-6-one ( $\mathbf{1 m},>=98.0 \%$ GC) and 1 -octene ( $\mathbf{1 0},>=97 \%$ ) were acquired from Fluka. $\mathrm{ICH}_{2} \mathrm{BF}_{3} \mathrm{~K}(>98.0 \%)$ was acquired from TCI and further purified by washing several times with $\mathrm{Et}_{2} \mathrm{O}$ and drying under high vacuum, then stored in the glovebox. $\mathrm{BrCH}_{2} \mathrm{BF}_{3} \mathrm{~K}(>98.0 \%)$ was acquired from TCI and used without further purification after storage in the glovebox. 2-(Iodomethyl)-4,4,5,5-tetramethyl-1,3,2dioxaborolane [iodomethylboronic acid, pinacol ester] (98\%) was acquired from Combi-Blocks Inc. and used without further purification after storage in the freezer. $\mathrm{K}_{2} \mathrm{CO}_{3}$ ( $99.99 \%$ trace metal basis) was acquired from Sigma-Aldrich and used without further purification. 1-Methyl-1-cyclopentene ( $\mathbf{1 b},>98.0 \%$ ), cis-5-decene ( $\mathbf{1 t},>98.0 \%$ GC), 1,4 -epoxy-1,4-dihydronaphthalene ( $\mathbf{1 n},>98.0 \% \mathrm{GC}$ ), $\beta$-caryophyllene ( $\mathbf{1} \mathbf{j},>90.0 \%$ GC) and 2 -nonene ( $\mathbf{3 0 b},>94.0 \%$ GC) were acquired from TCI. $\alpha$-Pinene (1e, $98 \%$ ), (-)myrtenol ( $\mathbf{1 d}, 95 \%$ ), camphene (11, 95\%), 1-nonene ( $\mathbf{1 p}, 96 \%$ ), 2-methyl-1-nonene ( $3 \mathbf{p}$, $97 \%$ ) and trans-5-decene ( $\mathbf{1 s},>=99 \%$ ) were purchased from Sigma-Aldrich and used without further purification. 1,2-Propanediol (>=99.5\%), cis-1,2-cyclohexanediol (99\%) and 1,3-propanediol (98\%) were purchased from Sigma Aldrich and used as received. 2,3 Butanediol (>=99.0\%), trans-1,2-cyclohexanediol (98\%), 2,4-pentanediol (99\%) were purchased from Fluka and used as received. Cis-2-Hexen-1-ol (ii, 95\%) and 2,3-dibromo-1-propene ( $85 \%$ ) were acquired from ABCR chemicals and used without further purification. Cycloheptene (1c, 90\%) and trans-2-hexen-1-ol ( $\mathbf{1 h}, 96 \%$ ) were purchased from Acros Organics and used without further purification. Cyclohexene ( $\mathbf{1 d}, \geq 99 \%$ ) was purchased from Sigma-Aldrich, distilled from Na and stored in the glove box. n -BuLi ( 1.6 M in hexanes), pentylmagnesium chloride ( 2.0 M in THF), (trimethylsilyl)methyllithium (1.0 M in pentane) and TMEDA ( $>=99.5 \%$ ) were acquired from Sigma-Aldrich and used without purification. 1-Bromomethyl cyclopropane ( $95 \%$ ) was acquired from Maybridge and used without purification. 2-Methyl-2-pentenal (97\%) and bromo-2-methylpropene ( $97 \%$ ) were acquired from Sigma-Aldrich and used as received. $\mathrm{NaBH}_{4}$ was acquired from Merck Millipore and
used without purification tolylphosphino)benzyl]dipalladium(II) (Cat2, 98\%) was acquired from ABCR chemicals and stored in the glovebox before use. Tri(o-tolyl)phosphine (L1, 97\%), dichlorobis(tri-o-tolylphosphine)palladium(II) (Catı, 97\%), tBuXPhos Pd G3 (97\%), bis(dibenzylideneacetone)palladium (o), dichloro(1,5-cyclooctadiene)palladium(II) ([COD] $\mathrm{PdCl}_{2}$, 99\%), and [1,1'-bis(di-tertbutylphosphino)ferrocene]dichloropalladium(II) (Cat4, 98\%) were acquired from Sigma-Aldrich and used as such. $\mathrm{Pd}\left(\mathrm{tBu}_{3} \mathrm{P}\right)_{2}($ Cat3, $98 \%)$ was acquired from Acros Organics and used without purification. Bicyclo[6.1.0]nonane (2a), bicyclo[4.1.0]heptane (or norcarane, 2d) and n-hexylcyclopropane (20) were prepared according to a reported procedure. ${ }^{1}$ Methylenecyclooctane (3a) was prepared according to a reported procedure. ${ }^{2}$ The obtained data are consistent with those reported in the reference. 2,7,7-Trimethyltricyclo[4.1.1.0 ${ }^{2,4}$ ]octane(2e) was prepared following a reported procedure. ${ }^{3}$ 2-Methylenehexan-1-ol (3h) was prepared from n-hexanal following a procedure in reference (3), and the obtained data matched those reported in that reference. 2-Methylpent-2-en-1-ol (1g) was prepared from 2-methyl-2-pentenal according to the procedure reported in reference (5). Physical and spectroscopic data are consistent with those reported in that reference. 1,2-Bis(di-otolylphosphino)ethane (L2) was prepared as described earlier. ${ }^{6}$ 1,1'-Bis(di-otolylphosphino)ferrocene ( 5 ) was prepared by a procedure analogous to the one used for the synthesis of 1,2 -bis(di-o-tolylphosphino)ethane. $\left(\mathrm{PR}_{3}\right)_{2} \mathrm{PdCl}_{2}$ complexes were prepared following a procedure reported earlier. ${ }^{7}$ NMR data were recorded at 300, 400 or 600 MHz (Bruker AV300, AV400, AV6oo spectrometers) with $\mathrm{CDCl}_{3}, \mathrm{CD}_{3} \mathrm{OD}$, THF$d_{8}$ or DMF- $d_{7}$ as solvents. Chemical shifts ( $\delta$ ) are reported in ppm with the residual solvent signal as internal standard (chloroform at 7.26 ppm and 77.00 ppm for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectroscopy, respectively; methanol at 3.31 ppm and 49.00 ppm for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectroscopy, respectively; tetrahydrofuran at 3.58 and 67.57 for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectroscopy, respectively; dimethylformamide at 2.75, 2.92, 8.03 ppm for ${ }^{1} \mathrm{H}$ spectroscopy). ${ }^{13} \mathrm{C}$-NMR spectra were recorded with complete ${ }^{1} \mathrm{H}$-decoupling. Service measurements were performed by the NMR service team of the Laboratorium für Organische Chemie, ETH Zürich by Mr. Rainer Frankenstein, Mr. René Arnold and Mr. Stephan Burkhardt under supervision of Dr. Marc-Oliver Ebert. X-ray structural analysis was performed by the X-ray crystallography group of the Laboratorium für Organische Chemie, ETH-Zürich. High resolution mass spectra were recorded from the mass spectrometry service of the ETH Zürich Laboratorium für Organische Chemie with a Micromass (Waters) AutoSpec Ultima (EI) or a Bruker solariX (MALDI-FTICR). GC-FID analysis was performed on a Finnigan Focus GC with a Zebron ZB-5MS, 30 mxo .25 mm column or a Restek Rtx-Wax, $30 \mathrm{mxo}$.25 mm column using a flame ionization detector. Qualitative gas phase studies were performed on a Thermo Finnigan TSQ Quantum ESI-MS/MS instrument. Charged species were generated by electrospray ionization (ESI) from diluted $\left(\sim 10^{-5} \mathrm{~mol} / \mathrm{l}\right)$ solutions freshly prepared in the glovebox, taken into a Hamilton gas-tight syringe and used immediately. All samples were electrosprayed with a flow rate of $5 \mathrm{ml} / \mathrm{min}$.

## II- SYNTHETIC AND EXPERIMENTAL PROCEDURES

## Bicyclo[6.1.o]nonane (2a)

The title compound was prepared according to the following representative procedure for the scale-up of the methylenation reaction of olefins to mmol (gram) amounts:

Representative procedure for the scale-up of the methylenation reaction of olefins to $\mathbf{m m o l}$ (gram) amounts. A 250 ml oven-dried round-bottom flask equipped with an oven-dried magnetic stir bar was charged in a $\mathrm{N}_{2}$-filled glovebox with powdered $\mathrm{K}_{2} \mathrm{CO}_{3}$ ( 4.04 g , 5.0 equiv.), anhydrous EG ( 5 ml ), and anhydrous DMA ( 20 $\mathrm{ml})$. The resulting mixture was stirred vigorously. [(o-tolyl) ${ }_{3} \mathrm{P}_{2} \mathrm{PdCl}_{2}$ ( $230 \mathrm{mg}, 5$ mol\%), (o-tolyl) ${ }_{3} \mathrm{P}$ ( $89 \mathrm{mg}, 5 \mathrm{~mol} \%$ ), $\mathrm{ICH}_{2} \mathrm{BF}_{3} \mathrm{~K}(2.18 \mathrm{~g}, 1.5$ equiv.), and the olefin ( 5.85 mmol ) were added to the mixture under stirring. 60 ml of DMA were used to rinse the vials utilized to weigh all the reagents and were subsequently added to the reaction mixture. The round bottom flask was then closed, removed from the glovebox, and stirred at $75{ }^{\circ} \mathrm{C}$ for the indicated time. At the end of the reaction, which was monitored by GC/MS, the flask was cooled to o ${ }^{\circ} \mathrm{C}$ and its contents were poured over Celite. The filter cake was washed with $\mathrm{Et}_{2} \mathrm{O}$ ( $3 \times 50 \mathrm{ml}$ ). The filtrate was transferred to a separatory funnel and $\mathrm{H}_{2} \mathrm{O}(200 \mathrm{ml})$ was added. The organic layer was separated and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$ ( $2 \times 100 \mathrm{ml}$ ). The fractions were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ or $\mathrm{MgSO}_{4}$, filtered, and the ether solution removed by a rotary evaporator. The resulting oil residue was purified by flash column chromatography over silica gel.
Flash chromatography using pentane as eluent and slow evaporation of the solvent yielded 654 mg (90\%) of a mixture of bicyclo[6.1.0]nonane (2a) and methylenecyclooctane ( $3 \mathbf{a}$ ) (50:1 ratio of products in favor of the cyclopropane) as a colorless oil. MS (EI): 124 (32, [M] ${ }^{+}$), 96 (94), 81 (77), 67 (100), 54 (73), 41 (27). HRMS (EI, ([M] $\left.]^{+}\right)$): m/z calcd for $\mathrm{C}_{9} \mathrm{H}_{16}$ 124.1247; Found 124.1247.

## 1-Methylbicyclo[3.1.o]hexane (2b)



The procedure is analogous to the one depicted in reference (8) for the cyclopropanation of cyclopentene. A mixture of 27.5 g ( $0.213 \mathrm{~mol}, 2.5 \mathrm{eq}$.) of $\mathrm{Zn} / \mathrm{Cu}$ couple and a crystal of iodine was stirred under 50 mL of dry ether under argon until the brown color disappeared. A mixture of 7 g ( 0.085 mol ) of 1-methylcyclopentene, and 17.2 ml ( $0.213 \mathrm{~mol}, 2.5 \mathrm{eq}$.) of methylene iodide was added in portion. The mixture was then refluxed for 15 h . The mixture was filtered through celite and poured into 40 mL of a cooled saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The organic layer was separated and washed with $3 \times 40 \mathrm{ml} \mathrm{NH} 44,3 \times 40 \mathrm{ml} \mathrm{NaHCO} 3$ and $1 \times 40 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}$. After drying over $\mathrm{MgSO}_{4}$,
the solvent was completely removed by distillation to yield $4.9 \mathrm{~g}(60 \%)$ of $1^{-}$ methylbicyclo[3.1.0] hexane. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 1.78$ - 1.59 (m, 3 H ), 1.59 - 1.45 $(\mathrm{m}, 2 \mathrm{H}), 1.25-1.07(\mathrm{~m}, 4 \mathrm{H}), 0.89\left(\mathrm{dt},{ }^{3} \mathrm{JH}_{\mathrm{H}}=8.0 \mathrm{~Hz}^{2}\right.$ and $\left.^{3} \mathrm{~J}_{\mathrm{HH}}=4.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 0.30\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{HH}}\right.$ $\left.=4.0 \mathrm{~Hz},{ }^{2} J_{\mathrm{HH}}=4.6 \mathrm{~Hz}, \mathrm{1H}\right)$, $0.16\left(\mathrm{dd},{ }^{3} J_{\mathrm{HH}}=8.0 \mathrm{~Hz}\right.$ and $\left.{ }^{2} \mathrm{~J}_{\mathrm{HH}}=4.6 \mathrm{~Hz}, 1 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR ( 101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 33.78,27.93,24.13,23.93,21.68,21.54,12.92 .{ }^{13} \mathrm{C}$ NMR values are in accordance with the literature data. ${ }^{9} \mathrm{MS}$ (EI): 96 (32, [M] ${ }^{+}$), 81 (100), 68 (30), 55 (28), 41 (8). HRMS (EI, $\left([M]^{+}\right)$): m/z calcd for $\mathrm{C}_{7} \mathrm{H}_{12} 96.0934$; Found 96.o931. HRMS (EI, ([M$\left.\left.\mathrm{CH}_{3}\right]^{+}\right)$): m/z calcd for $\mathrm{C}_{7} \mathrm{H}_{12}$ 81.0699; Found 81.0699.

## Bicyclo[5.1.o]octane (2c)

The title compound was prepared by a similar procedure used for the synthesis of $1^{-}$ methylbicyclo[3.1.0]hexane. $4.5 \mathrm{~g}(79 \%)$ of 2 c were obtained as a colourless oil. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ 2.22-2.05 (m, 2H), 1.89-1.77 (m, 1H), 1.76-1.64 (m, 2H), 1.42-1.28 (m, $2 \mathrm{H})$, $1.27-1.05(\mathrm{~m}, 1 \mathrm{H})$, $1.00-0.73(\mathrm{~m}, 4 \mathrm{H}), 0.68(\mathrm{~m}, 1 \mathrm{H})$, $0.07(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( 101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ 32.69, 31.07, 29.83, 16.43, 14.84. MS (EI): 110 (8, [M] ${ }^{+}$), 95 (14), 81(25), 67 (35), 54 (18), 41 (15). HRMS EI, ([M] $\left.{ }^{+}\right)$): $m / z$ calcd for $\mathrm{C}_{8} \mathrm{H}_{14}$ 110.1090; Found 110.1092.

## 2,7,7-Trimethyltricyclo[4.1.1.0 ${ }^{2,4}$ ]octane (2e)

The title compound was prepared in $70 \%$ as a colourless oil. ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 2.13-2.01(\mathrm{~m}, 2 \mathrm{H}), 1.89\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.3 \mathrm{~Hz}\right.$ and $\left.{ }^{3} \mathrm{~J}_{\mathrm{HH}}=5.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.76-1.61(\mathrm{~m}$, $2 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}), 1.12(\mathrm{~s}, 3 \mathrm{H}), 1.08(\mathrm{~s}, 3 \mathrm{H}), 0.98\left(\mathrm{~d},{ }^{2} \mathrm{JHH}_{\mathrm{HH}}=10.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 0.82-0.71(\mathrm{~m}$, 2 H ), o. 31 - o.20 (m, 1H). ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 45.38$, 41.50, 40.93, 27.34, 26.99, 26.89, 26.83, 25.42, 21.00, 20.26, 18.90, 15.87. MS (EI): 150 (3), 135 (32, $\left[\mathrm{M}-\mathrm{CH}_{3}\right]^{+}$), 109 (74), 94 (100), 82 (56), 69 (47), 55 (17), 41 (25). HRMS (EI, ([M-CH $\left.]^{+}\right)$): m/z calcd for $\mathrm{C}_{10} \mathrm{H}_{15}$ 135.1169; Found 135.1167.

## (7,7-Dimethyltricyclo[4.1.1.0 ${ }^{2,4}$ ]octan-2-yl)methanol (2f)

The title compound was prepared from a modified reported procedure. ${ }^{10}$




To a solution of (-)-myrtenol ( 2.5 g , 1.0 eq.) and diiodomethane (3.0 eq.) in dry toluene ( 20 ml ), was added drop wise a 1 M solution of diethyl zinc ( $49.25 \mathrm{ml}, 3.0$ eq.) at $-30^{\circ} \mathrm{C}$. Full conversion was observed within 2 h stirring at ambient temperature. The reaction was quenched at $\mathrm{o}^{\circ} \mathrm{C}$ by the addition of an aqueous HCl solution ( 1 M ) and extracted with diethyl ether. The combined organic phases were dried over $\mathrm{MgSO}_{4}$ and concentrated under reduced pressure. The resulting oil was purified using a quick filtration over silica gel by eluting with a pentane/ $\mathrm{Et}_{2} \mathrm{O}$ mixture ( $5 / 1$ ). Concentration of the eluent under reduced pressure resulted in the compound as an orange oil ( $\mathrm{R}_{\mathrm{f}}$ (pentane/ $\left.\mathrm{Et}_{2} \mathrm{O}(5 / 1)\right)=0.17,92 \%$ yield). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.89\left(\mathrm{dd},{ }^{2} \mathrm{~J}_{\mathrm{HH}}=\right.$ 11.0 Hz and $\left.{ }^{3} \mathrm{~J}_{\mathrm{HH}}=1.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.02\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{HH}}=11.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.23\left(\mathrm{dd},{ }^{3} J_{\mathrm{HH}}=6.4 \mathrm{~Hz}\right.$ and $\left.{ }^{3} \mathrm{~J}_{\mathrm{HH}}=5.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.15-2.07(\mathrm{~m}, \mathrm{lH}), 2.07-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.64(\mathrm{~m}, 2 \mathrm{H}), 1.36\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=\right.$ $5.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.27(\mathrm{~s}, 3 \mathrm{H}), 0.98(\mathrm{~s}, 3 \mathrm{H}), 0.95\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{HH}}=10.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 0.93-0.83(\mathrm{~m}, 2 \mathrm{H})$, $0.45(\mathrm{~m}, \mathrm{1H}) .{ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ 70.16, 41.49, 40.90, 40.67, 27.77, 26.91, 26.64,
26.38, 20.82, 15.89, 13.36. MS (EI): 166(1, [M] ${ }^{+}$), 148(12), 135 (27), 123 (17), 110 (76), 93 (43), 82 (100), 67 (71), 55 (31), 41 (44). HRMS (EI, ([M] $\left.]^{+}\right)$): $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}$ 166.1353; Found 166.1358. HRMS (EI, ([M-CH3O] $\left.{ }^{+}\right)$): m/z calcd for $\mathrm{C}_{10} \mathrm{H}_{15}$ 135.1169; Found 135.1169.

The title compound was isolated in $86 \%$ following the representative procedure for the scale-up of the methylenation reaction of olefins to mmol (gram) amounts. Spectroscopic data (NMR and MS) are the same as the one reported for $\mathbf{2 f}$ prepared above. HRMS (EI, ([M] ${ }^{+}$)): m/z calcd for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}$, 166.1353; Found $166.1353 . \sim 5.4 \%$ of the corresponding aldehyde ( $\mathbf{3} \mathbf{f}$ ) was isolated alongside the cyclopropane. ${ }^{13} \mathrm{C}$ NMR ( 101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 202.72,40.85,40.54,38.49,37.34,26.51,26.17,25.66,20.84,20.34,17.23$.

## (2-Ethyl-1-methylcyclopropyl)methanol (2g)

The title compound was prepared analogously to a reported procedure ${ }^{11}$ using ${ }^{2-}$ methylpent-2-en-1-ol as substrate. 2.1 g ( $31 \%$ ) of a colourless oil were obtained, $\mathrm{R}_{\mathrm{f}}$ $($ Hexane $/ \operatorname{AcOEt}(10 / 1))=0.25 .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.36-3.27(\mathrm{~m}, 2 \mathrm{H}), 1.43$ $1.37(\mathrm{~m}, 1 \mathrm{H}), 1.33\left(\mathrm{p},{ }^{3} J_{\mathrm{HH}}=7.3 \mathrm{~Hz}, 2 \mathrm{H}\right), 1.13(\mathrm{~s}, 3 \mathrm{H}), 0.96\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.3 \mathrm{~Hz}, 3 \mathrm{H}\right), 0.57(\mathrm{dtd}$, ${ }^{3} J_{\mathrm{HH}}=8.8 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=6.9 \mathrm{~Hz}$ and $\left.{ }^{3} J_{\mathrm{HH}}=5.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 0.50\left(\mathrm{dd},{ }^{3} J_{\mathrm{HH}}=8.8 \mathrm{~Hz}\right.$ and ${ }^{2} J_{\mathrm{HH}}=4.2$ $\mathrm{Hz}, 1 \mathrm{H}$ ), -0.02--0.06 (m, 1 H ). ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 72.64,23.77,22.33,22.31$, 16.53, 15.11, 14.41. HRMS (EI, ( $\left.\left[M-\mathrm{C}_{2} \mathrm{H}_{5}\right]^{+}\right)$): m/z calcd for $\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{O} 85.0648$; Found 85.0650. HRMS (EI, $\left(\left[\mathrm{M}-\mathrm{CH}_{3} \mathrm{O}\right]^{+}\right)$): m/z calcd for $\mathrm{C}_{6} \mathrm{H}_{11} 83.0856$; Found 83.0857.

## Trans-2-propylcyclopropylmethanol (2h)

The title compound was prepared analogously to a reported procedure ${ }^{11}$ using (E)-hex-2-en-1-ol as substrate. Colourless oil, 20\%, $\mathrm{R}_{\mathrm{f}}($ Hexane/AcOEt $(4 / 1))=0.22$. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 3.50-3.22(\mathrm{~m}, 2 \mathrm{H}), 1.57(\mathrm{~s}, 1 \mathrm{H}), 1.44-1.32(\mathrm{~m}, 2 \mathrm{H}), 1.26-1.16(\mathrm{~m}$, $2 \mathrm{H})$, $0.90\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.3 \mathrm{~Hz}, 3 \mathrm{H}\right)$, $0.86-0.76(\mathrm{~m}, 1 \mathrm{H}), 0.63-0.53(\mathrm{~m}, 1 \mathrm{H}), 0.35\left(\mathrm{dt},{ }^{2} J_{\mathrm{HH}}=\right.$ 8.5 Hz and $\left.{ }^{3} J_{\mathrm{HH}}=4.7 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $0.29\left(\mathrm{dt},{ }^{2} J_{\mathrm{HH}}=8.5 \mathrm{~Hz}\right.$ and $\left.{ }^{3} \mathrm{~J}_{\mathrm{HH}}=4.7 \mathrm{~Hz}, 1 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 67.31,35.85,22.81,21.25,17.05,14.03,9.99 . \mathrm{MS}(\mathrm{EI}): 96\left(11,\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right]^{+}\right), 81$ (39), 73 (65), 67 (22), 55 (100), 41 (56), 29 (12). HRMS (EI, ([M-H2O] $\left.]^{+}\right)$): m/z calcd for $\mathrm{C}_{7} \mathrm{H}_{12} 96.0934$; Found 96.0931.

## Cis-2-propylcyclopropylmethanol (2i)

The title compound was prepared analogously to a reported procedure ${ }^{11}$ using (Z)-hex2 -en-1-ol as substrate. Colourless oil, $64 \%, \mathrm{R}_{\mathrm{f}}\left(\right.$ Hexane $/$ AcOEt (4/1)) $=0.3$. ${ }^{1} \mathrm{H}$ NMR ( 400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.67-3.52(\mathrm{~m}, 2 \mathrm{H}), 1.59-1.51(\mathrm{~m}, 1 \mathrm{H}), 1.49-1.33(\mathrm{~m}, 3 \mathrm{H}), 1.27-1.14(\mathrm{~m}$, $\left.{ }_{1} \mathrm{H}\right), 1.13-1.01(\mathrm{~m}, 1 \mathrm{H}), 0.97-0.79(\mathrm{~m}, 4 \mathrm{H}), 0.73-0.63(\mathrm{~m}, \mathrm{H}),-0.02-0.08(\mathrm{~m}, \mathrm{1H}) .{ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 62.98$, 30.66, 23.17, 17.90, 15.81, 13.94, 9.42. MS (EI): 96(10, [M$\left.\mathrm{H}_{2} \mathrm{O}\right]^{+}$), 81 (35), 73 (80), 67 (22), 55 (100), 41 (61), 29 (13). HRMS (EI, ([M- $\left.\left.\mathrm{H}_{2} \mathrm{O}\right]^{+}\right)$): m/z calcd for $\mathrm{C}_{7} \mathrm{H}_{12} 96.0934$; Found 96.0929.

## 4,12,12-Trimethyl-9-methylenetricyclo[8.2.0.0 ${ }^{4,6}$ ]dodecane (2j)

The title compound was prepared according to the representative procedure for the scale-up of the methylenation reaction of olefins to mmol (gram) amounts, and obtained as a colorless oil, $68 \%, \mathrm{R}_{\mathrm{f}}$ (Hexane) $=0.78$. Analytical data (NMR) are consistent with the ones described in the literature. ${ }^{12}$ MS (EI): 218 (6, [M] ${ }^{+}$), 203 (47, $\left[\mathrm{M}-\mathrm{CH}_{3}\right]^{+}$), 175 (55), 161 (44), 147 (44), 133 ( 60 ), 119 (34), 107 (85), 93 (100), 81 (58), 69 (90), 55 (27), 41 (18). HRMS (EI, ([M] $\left.]^{+}\right)$): m/z calcd for $\mathrm{C}_{16} \mathrm{H}_{26}$ 218.2029; Found 218.2026.

HRMS (EI, $\left(\left[\mathrm{M}-\mathrm{CH}_{3}\right]^{+}\right)$): m/z calcd for $\mathrm{C}_{15} \mathrm{H}_{23}$ 203.1795; Found 203.1799. Elemental analysis: Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{26}$ : C, 88.oo; H, 12.00. Found: C, 87.86.51; H, 12.25 .

## Bicyclo[10.1.0]tridecane (2k)

The title compound was prepared as a colorless oil, bp. $110{ }^{\circ} \mathrm{C} / 13 \mathrm{mbar}$ from cyclododecene ( $96 \%$ purity, contains some cyclododecane) by a similar procedure used for the synthesis of 1-methylbicyclo[3.1.0]hexane. Analytical data (NMR, MS) are consistent with the ones described in the literature. ${ }^{13}$

## Tricyclo[4.2.0.0 ${ }^{2,4}$ ]octan-7-one (2m)

The title compound was prepared from (+/-)-cis-Bicyclo[3.2.o]hept-2-en-6-one in $77 \%$ as a light orange oil. $\mathrm{R}_{\mathrm{f}}($ Hexane/EtOAc $(10 / \mathbf{1}))=0.33$ according to the representative procedure for the scale-up of the methylenation reaction of olefins to mmol (gram) amounts. Major isomer: ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 3.38-3.24(\mathrm{~m}, \mathrm{1H}), 3.16$ - 3.01 ( m , $1 \mathrm{H}), 2.89-2.77(\mathrm{~m}, 2 \mathrm{H}), 2.30-2.17(\mathrm{~m}, 1 \mathrm{H}), 1.93\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=13.7 \mathrm{~Hz}\right.$ and ${ }^{3} J_{\mathrm{HH}}=10.3 \mathrm{~Hz}$, $1 \mathrm{H}), 1.54-1.47(\mathrm{~m}, \mathrm{lH}), 1.47-1.41(\mathrm{~m}, \mathrm{1H}), 0.75-0.66(\mathrm{~m}, \mathrm{1H}),-0.07-0.13(\mathrm{~m}, \mathrm{1H}) .{ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 211.44,63.92$, 50.79, 34.72, 31.82, 25.42, 20.13, 13.16. Minor isomer: ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 215.25,67.89,48.50,31.84,30.24,25.22,23.40,8.79$. MS (EI): $122\left(2,[M]^{+}\right), 80(100), 68(10), 55(10)$. HRMS (EI, ([M] $\left.\left.{ }^{+}\right)\right)$: HRMS (EI, ([M] $\left.]^{+}\right)$): $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}$ 122.0727; Found 122.0730.

## Exo-Cyclopropanated Oxabenzonorbornadiene (2n)

The title compound was prepared according to the representative procedure for the scale-up of the methylenation reaction of olefins to mmol (gram) amounts. An additional washing of the organic layers with $10 \% \mathrm{NaOH}$ was included in the work-up. The product was obtained by column chromatography in $26 \%$ yield as a colorless oil. $\mathrm{R}_{\mathrm{f}}$ $($ Hexane/EtOAc $(20 / 1))=0.36$. Analytical data (NMR) are consistent with the ones described in the literature. ${ }^{14}$ MS (EI): 158 (31, $[\mathrm{M}]^{+}$), 129 (100), 115 (13). HRMS (EI, $\left.\left([M]^{+}\right)\right): \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{O}, 158.0727$; Found 158.0725. Elemental analysis: Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{O}: \mathrm{C}, 83.52 ; \mathrm{H}, 6.37$. Found: C, 83.51; H, 6.43.

## N-heptylcyclopropane (2p)

The title compound was prepared by a similar procedure used for the synthesis of 1 methylbicyclo[3.1.o]hexane in $78 \%$ as a colorless oil, bp. $57-59^{\circ} \mathrm{C} / 13 \mathrm{mbar} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.44-1.33(\mathrm{~m}, 2 \mathrm{H}), 1.33-1.22(\mathrm{~m}, 8 \mathrm{H}), 1.18\left(\mathrm{q},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.0 \mathrm{~Hz}, 2 \mathrm{H}\right)$, $0.93-0.85(\mathrm{~m}, 3 \mathrm{H}), 0.71-0.58(\mathrm{~m}, 1 \mathrm{H}), 0.42-0.35(\mathrm{~m}, 2 \mathrm{H})$, $0.02-0.04(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 34.97$, 32.10, 29.84, 29.70, 29.57, 22.87, 14.28, 11.08, 4.51. MS (EI): 140 (7), 112 (20), 97 (28), 83 (47), 70 (100), 56 (91), 43 (38).

## N-octylcyclopropane (2q)

The title compound was prepared by a similar procedure used for the synthesis of 1 methylbicyclo[3.1.o]hexane in $66 \%$ as a colorless oil, bp. $72-75^{\circ} \mathrm{C} / 13 \mathrm{mbar} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.42-1.34(\mathrm{~m}, 2 \mathrm{H}), 1.34-1.24(\mathrm{~m}, 10 \mathrm{H}), 1.18\left(\mathrm{q},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.0 \mathrm{~Hz}, 2 \mathrm{H}\right)$, $0.92-0.85(\mathrm{~m}, 3 \mathrm{H}), 0.71-0.59(\mathrm{~m}, 1 \mathrm{H}), 0.42-0.35(\mathrm{~m}, 2 \mathrm{H}), 0.02-0.04(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ 34.98, 32.12, 29.88, 29.85, 29.76, 29.70, 29.55, 22.88, 14.28,
11.09, 4.52. MS (EI): 154 (5, [M] ${ }^{+}$), 126 (14), 111 (14), 97 ( 51 ), 83 (70), 70 (93), 56 (100), 43 (68). HRMS (EI, ([M] $\left.{ }^{+}\right)$): $m / z$ calcd for $C_{11} \mathrm{H}_{22}$ 154.1716; Found 154.1716.

## Trans-1,2-dibutylcyclopropane (2s)

The title compound was prepared by a similar procedure used for the synthesis of 1 methylbicyclo[3.1.o]hexane in $72 \%$ as a colorless oil, bp. $63-64{ }^{\circ} \mathrm{C} / 17 \mathrm{mbar}$. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.41-1.08(\mathrm{~m}, 12 \mathrm{H})$, $0.89\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.2 \mathrm{~Hz}, 6 \mathrm{H}\right)$, $0.36\left(\mathrm{ddd},{ }^{3} J_{\mathrm{HH}}=7.2\right.$ $\left.\mathrm{Hz},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=5.8 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=4.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 0.18-0.08(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ 34.23, 32.09, 22.74, 18.92, 14.31, 14.27, 11.92. MS (EI): 154 (37, [M] ${ }^{+}$), 111 (8), 97 (16), 83 (32), 69 (93), 55 (100), 43 (33). HRMS (EI, ([M] $\left.]^{+}\right)$: m/z calcd for $C_{11} \mathrm{H}_{22}$ 154.1716; Found 154.1718.

## Cis-1,2-dibutylcyclopropane (2t)

The title compound was prepared by a similar procedure used for the synthesis of 1 methylbicyclo[3.1.o]hexane. 2s was prepared in $72 \%$ as a colorless oil, bp. $68{ }^{\circ} \mathrm{C} / 17$ mbar. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 1.45-1.27$ (m, 10H), 1.21 - $1.10(\mathrm{~m}, 2 \mathrm{H}), 0.96-0.85$ $(\mathrm{m}, 6 \mathrm{H}), 0.70-0.61(\mathrm{~m}, 2 \mathrm{H}), 0.60-0.52(\mathrm{~m}, 1 \mathrm{H}),-0.33\left(\mathrm{td},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=5.5 \mathrm{~Hz}\right.$ and ${ }^{2} J_{\mathrm{HH}}=4.0$ $\mathrm{Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ 32.63, 28.56, 22.86, 15.90, 14.33, 11.06. MS (EI): 154 (29, $[\mathrm{M}]^{+}$), 111 (11), 97 (28), 83 (27), 69 (81), 55 (100), 43 (34). HRMS (EI, ([M] $\left.{ }^{+}\right)$): m/z calcd for $\mathrm{C}_{11} \mathrm{H}_{22}$ 154.1716; Found 154.1716.

## Methylenecyclododecane (3k)

The title compound was prepared from cyclododecanone according to a modified procedure. ${ }^{15}$ At $-78{ }^{\circ} \mathrm{C}$ under argon, a solution of ((trimethylsilyl)methyl)lithium 1 M in pentane ( $18 \mathrm{ml}, 18 \mathrm{mmol}$ ) is added dropwise to a solution of cyclododecanone ( 3.28 g , 18 mmol ) in THF ( 25 ml ). The reaction mixture is stirred for 2 h at that temperature, after which time the reaction vessel was warmed to ambient temperature and stirred for another 15 min before the addition of $2 \%$ aqueous $\mathrm{HCl}(200 \mathrm{ml})$ solution and followed by extraction with $\mathrm{Et}_{2} \mathrm{O}(3 \times 100 \mathrm{ml})$. The organic layers are dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent evaporated to give a colorless oil that was stirred in a two-phase mixture composed of 60 mL of pentane and 60 mL of $50 \%$ aqueous acetic acid for ca. 18 h . The layers were separated and the organic phase was washed with water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated under reduced pressure. Short column chromatography of the residue with pentane yielded $1.07 \mathrm{~g}(33 \%)$ of $\mathbf{3} \mathbf{k}$ as a colorless oil, whose analytical data (NMR) are consistent with the ones described in the literature. ${ }^{16}$ MS (EI): 180 (57, $[M]^{+}$), 123 (17), 109 (40), 96 (100), 82 (98), 68 (62), 56 (80), 41 (18). HRMS (EI, ([M] $\left.{ }^{+}\right)$): $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{O}, 180.1873$; Found 180.1876 .

## 2-Methyloct-1-ene (30a)

The title compound was prepared according to the following procedure: a 2 M solution of n-pentyl MgCl in THF ( $11 \mathrm{ml}, 22 \mathrm{mmol}$ ) is added dropwise to a stirred solution of 3-bromo-2-methylprop-1-ene ( $2 \mathrm{ml}, 20 \mathrm{mmol}$ ) in THF ( 160 ml ) at $\mathrm{o}^{\circ} \mathrm{C}$ under argon atmosphere. The resulting mixture was allowed to warm to room temperature and was stirred overnight. The excess of Grignard reagent is quenched with diluted aqueous HCl . Following an extraction with pentane ( $3 \times 150 \mathrm{ml}$ ), washing the extract with $\mathrm{H}_{2} \mathrm{O}$
( $2 \times 200 \mathrm{ml}$ ), drying with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtration, evaporation of the solvent, and distillation yielded 1.95 g ( $77 \%$, traces of decane are present) of the title compound as a colorless oil. Analytical data (NMR) are consistent with the ones described in the literature. ${ }^{17} \mathrm{MS}$ (EI): 126 (23, [M] ${ }^{+}$), 98 (4), 69 (23), 56 (92), 43 (33), 18 (100). HRMS (EI, ([M] $\left.]^{+}\right)$): m/z calcd for $\mathrm{C}_{9} \mathrm{H}_{18}$ 126.1403; Found 126.1400.

## 5-Methylenedecane (3s)

The title compound was prepared analogously to a reported procedure. ${ }^{18}$ In brief, the preparation was carried out in a 250 ml flask previously dried and filled with Argon. A solution of $\mathrm{n}-\mathrm{BuMgCl}_{2} \mathrm{M}$ in $\mathrm{Et}_{2} \mathrm{O}(11 \mathrm{ml}, 22 \mathrm{mmol})$ is added at ambient temperature to a stirred solution of 2,3 -dibromopropene ( $4 \mathrm{~g}, 20 \mathrm{mmol}$ ) in THF ( 16 oml ). After 18 h , (dppp) $\mathrm{NiCl}_{2}$ ( $345 \mathrm{mg}, 0.64 \mathrm{mmol}$ ) is added to the mixture, then a solution of $\mathrm{n}-\mathrm{BuMgCl}$ 2 M in $\mathrm{Et}_{2} \mathrm{O}(11 \mathrm{ml}, 22 \mathrm{mmol})$ is slowly added dropwise, and stirring is continued for 4 h . Excess of Grignard reagent is quenched with diluted aqueous HCl . Extraction with $\mathrm{Et}_{2} \mathrm{O}$ ( $3 \times 150 \mathrm{ml}$ ), washing the extract with $\mathrm{H}_{2} \mathrm{O}\left(2 \times 200 \mathrm{ml}\right.$ ), drying with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtration, evaporation of the solvent and purification by vacuum distillation yielded $2.18 \mathrm{~g}(71 \%)$ as a colorless oil, bp. $65-68{ }^{\circ} \mathrm{C} / 17 \mathrm{mbar} .{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 4.71$ $4.68(\mathrm{~m}, 2 \mathrm{H}), 2.00\left(\mathrm{td},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.8 \mathrm{~Hz}\right.$ and $\left.{ }^{2} \mathrm{~J}_{\mathrm{HH}}=3.0 \mathrm{~Hz}, 4 \mathrm{H}\right), 1.50-1.20(\mathrm{~m}, 10 \mathrm{H})$, 0.90 $\left(t d,{ }^{3} J_{\mathrm{HH}}=7.2 \mathrm{~Hz}\right.$ and $\left.{ }^{2} \mathrm{~J}_{\mathrm{HH}}=5.4 \mathrm{~Hz}, 6 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 150.56$, 108.47, 36.22, 35.95, 31.85, 30.21, 27.68, 22.76, 22.71, 22.68, 14.22, 14.16. MS (EI): 154 (14, [M] ${ }^{+}$), 97 (13), 84 (12), 70 (37), 56 (100), 43 (15). HRMS (EI, ([M] $\left.]^{+}\right)$): m/z calcd for $\mathrm{C}_{11} \mathrm{H}_{22}$ 154.1716; Found 154.1721.

## Potassium bis(ethyleneglycolato)borate (4)

The title compound was prepared following procedure depicted in reference (19). A white poorly soluble solid, was formed. ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{DMF}-d_{7}$ ) $\delta 3.55(\mathrm{~s}, 2 \mathrm{H}), 3.13$ $(\mathrm{s}, 1 \mathrm{H}) .{ }^{11} \mathrm{~B}$ NMR ( $160 \mathrm{MHz}, \mathrm{DMF}-d_{7}$ ) $\delta 11.24$. ${ }^{11}$ B NMR ( 160 MHz, DMF- $d_{7}$ : EG- $\left.d_{6}(16: 1)\right) \delta$ 10.55, 7.00. Elemental analysis indicates that some $\mathrm{K}_{2} \mathrm{CO}_{3}$ precipitate with the product. Elemental analysis: Anal. Calcd for $\mathrm{C}_{4.93} \mathrm{H}_{8} \mathrm{BK}_{2.86} \mathrm{O}_{6.79}\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{4} \mathrm{BK}+0.93 \mathrm{~K}_{2} \mathrm{CO}_{3}\right)$ : $\mathrm{C}, 19.83$; H, 2.70. Found: C, 19.82; H, 2.70.

## 1,1'-Bis(di-o-tolylphosphino)ferrocene (5)

The title compound is obtained with a yield of $64 \%$ (white solid). ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.23-7.08(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.08(\mathrm{~m}, 2 \mathrm{H}), 6.99-6.93(\mathrm{~m}, 1 \mathrm{H}), 4.25\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=1.8\right.$ $\mathrm{Hz}, \mathrm{1H}), 4.07\left(\mathrm{q},{ }^{3} \mathrm{JH}_{\mathrm{H}}=1.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.47(\mathrm{~s}, 3 \mathrm{H}) .{ }^{31} \mathrm{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-37.32 .{ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 141.80$, 141.54, 137.60, 137.49, 133.32, 129.85, 129.80, 128.42, 125.54, 125.52, 76.62, 74.26, 74.11, 72.19, 72.18, 72.15, 72.14, 21.43, 21.21.

## 1,2-Bis(di-o-tolylphosphino)ethane (6)

The title compound is obtained in $76 \%$ as white crystals. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ $7.21\left(\mathrm{td},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.3 \mathrm{~Hz}\right.$ and $\left.{ }^{4} J_{\mathrm{HH}}=1.5 \mathrm{~Hz}, 4 \mathrm{H}\right), 7.18-7.12(\mathrm{~m}, 4 \mathrm{H}), 7.09\left(\mathrm{td},{ }^{3} J_{\mathrm{HH}}=7.3 \mathrm{~Hz}\right.$ and $\left.{ }^{4} J_{\mathrm{HH}}=1.5 \mathrm{~Hz}, 4 \mathrm{H}\right), 7.06-7.00(\mathrm{~m}, 4 \mathrm{H}), 2.40(\mathrm{~s}, 12 \mathrm{H}), 2.06\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=4.3 \mathrm{~Hz}, 4 \mathrm{H}\right) .{ }^{31} \mathrm{P}$ NMR ( $162 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-33.64 .{ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ 142.52, 142.40, 142.27, 136.43, 136.36, 136.29, 131.08, 130.09, 130.06, 130.04, 128.46, 126.03, 22.71, 22.68, 21.37, 21.27, 21.16.

## Tris(2-methyl-4-fluorophenyl)phosphine (7)

The title compound was prepared quantitatively according to a reported procedure, see reference (20). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.02-6.92(\mathrm{~m}, 3 \mathrm{H}), 6.8 \mathrm{o}\left(\mathrm{td},{ }^{3} J_{\mathrm{HH}}=8.5\right.$ Hz and $\left.\left.{ }^{4} \mathrm{~J}_{\mathrm{HH}}=2.7 \mathrm{~Hz}, 3 \mathrm{H}\right), 6.69-6.60(\mathrm{~m}, 3 \mathrm{H}), 2.37(\mathrm{~s}, 9 \mathrm{H}) .{ }^{31} \mathrm{P} \mathrm{NMR} \mathrm{(162} \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $-33.64\left(\mathrm{q},{ }^{5} \mathrm{~J}_{\mathrm{PF}}=3.0 \mathrm{~Hz}\right) .{ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-113.42\left(\mathrm{~d},{ }^{5} J_{\mathrm{FP}}=4.3 \mathrm{~Hz}\right) .{ }^{13} \mathrm{C}^{2}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 164.66,162.19,145.37,145.29,145.08$, 145.01, 134.71, 134.63, 129.57, 129.54, 129.47, 129.43, 117.42, 117.36, 117.21, 117.16, 113.40, 113.39, 113.20, 113.19, 21.26, 21.25, 21.05, 21.03.

## Preparation of the Pd complex 8

A 25 ml oven-dried round bottom flask was brought into a $\mathrm{N}_{2}$-filled glovebox and charged with $\mathrm{K}_{2} \mathrm{CO}_{3}$ ( 136 mg , 4.0 equiv.), $\mathrm{ICH}_{2} \mathrm{BF}_{3} \mathrm{~K}(183.4 \mathrm{mg}$, 3.0 equiv.), and DMF (1 ml ). The Buchwald palladium precatalyst tBuXPhos Pd G3 ( $196 \mathrm{mg}, 0.246 \mathrm{mmol}, 1.0$ equiv.) in DMF ( 1 ml ) was added into this mixture under stirring at ambient temperature and the vial containing the precatalyst was rinsed with another 1 ml DMF and transferred to the reaction mixture. Stirring was continued for 10 min before the removal of the solvent by rotary evaporation. A mixture of DCM/pentane ( $5 \mathrm{ml} / 10 \mathrm{ml}$ ) was added to the resulting residue and filtered over Celite. The Celite filter cake was washed with pentane ( 5 ml ). The solvents were slowly evaporated on a rotary evaporator under moderate vacuum (no water bath) until lots of clear green micro crystals appeared in the flask. Evaporation was stopped and the crystals were isolated by filtration, washed with a small volume of cold pentane, and dried under high vacuum. These crystals were suitable for X-ray analysis. 126 mg of product are obtained (NMR reveals the presence of $9 H$-carbazole). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CH}_{2} \mathrm{Cl}_{2}-d_{2}$ ) $\delta 7.99$ (tq, ${ }^{3} J_{\mathrm{HH}}=6.5 \mathrm{~Hz}$ and ${ }^{4}{ }_{\mathrm{HPP}}=2.2 \mathrm{~Hz}, 1 \mathrm{H}$, aryl CH), 7.57-7.51 (m, 2 H , aryl CH), $7.28-7.27(\mathrm{~m}$, 2 H , aryl CH), $7.19-7.11\left(\mathrm{~m}, 1 \mathrm{H}\right.$, aryl CH), 3.02 (hept, $\left.{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{iPr} \mathrm{CH}\right), 2.45$ (hept, $\left.{ }^{3} J_{\mathrm{HH}}=6.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{iPr} \mathrm{CH}\right), 1.56\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.8 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{iPr} \mathrm{CH}_{3}\right), 1.48\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HP}}=15.1\right.$ $\mathrm{Hz}, 18 \mathrm{H}, \mathrm{tBu}), 1.36\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.9 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{iPr} \mathrm{CH}_{3}\right), 1.19\left(\mathrm{qd},{ }^{3} J_{\mathrm{HF}}=8.0 \mathrm{~Hz}\right.$ and ${ }^{3} J_{\mathrm{HP}}=1.6$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{PdCH}_{2} \mathrm{BF}_{3}$ ), o.95 (d, ${ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.6 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{iPr} \mathrm{CH}_{3}$ ). ${ }^{31} \mathrm{P} \mathrm{NMR} \mathrm{( } 162 \mathrm{MHz}, \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{d}_{2}$ ) $\delta 75.42\left(\mathrm{q},{ }^{4} \mathrm{~J}\right.$ PF $\left.=32.6 \mathrm{~Hz}\right) .{ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CH}_{2} \mathrm{Cl}_{2}-d_{2}\right) \delta-140.53\left(\mathrm{~s}, \mathrm{PdCH}_{2} \mathrm{BF}_{3}\right) .{ }^{11} \mathrm{~B}$ NMR ( $16 \mathrm{omHz}, \mathrm{CH}_{2} \mathrm{Cl}_{2}-d_{2}$ ) $\delta 5.38$ (s, $\mathrm{PdCH}_{2} \mathrm{BF}_{3}$ ). HRMS (MALDI-FTICR/DCTB, ([M$\left.\left.\mathrm{BF}_{3}\right]^{+}\right)$): $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{30} \mathrm{H}_{47} \mathrm{PPd} 544.2456$; Found: 544.2456 .
[1,1'-Bis(di-o-tolylphosphino)ferrocene]dichloropalladium(II) (Cat5). ${ }^{31} \mathrm{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 40.34. Elemental analysis: Anal. Calcd for $\mathrm{C}_{83} \mathrm{H}_{80} \mathrm{P}_{4} \mathrm{Cl}_{4} \mathrm{Fe}_{2} \mathrm{Pd}_{2}$ $\left(\mathrm{C}_{38} \mathrm{H}_{36} \mathrm{P}_{2} \mathrm{Cl}_{2} \mathrm{FePd}+0.5\right.$ toluene $)$ : C, $59.77 ; \mathrm{H}, 4.83 ; \mathrm{P}, 7.43 ; \mathrm{Cl}, 8.50$. Found: C, $59.53 ; \mathrm{H}$, 4.78; P, 7.53; Cl, 8.53.
[1,2-Bis(di-o-tolylphosphino)ethane]dichloropalladium(II) (Cat6). Cat6 is poorly soluble in non-coordinating solvents. HRMS (MALDI-FTICR/DCTB, ([M-Cl] ${ }^{+}$)): m/z calcd for $\mathrm{C}_{30} \mathrm{H}_{32} \mathrm{P}_{2} \mathrm{ClPd} 595.0705$; Found: 595.0685.

Dichlorobis(2,4-dimethylphenyl)phosphine)palladium(II) (Cat7). ${ }^{31} \mathrm{P}$ NMR (162 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 20.42. Elemental analysis: Anal. Calcd for $\mathrm{C}_{48} \mathrm{H}_{54} \mathrm{P}_{2} \mathrm{Cl}_{2} \mathrm{Pd}: \mathrm{C}, 66.25$; H , 6.25 ; P, 7.12; Cl, 8.15. Found: C, 65.92; H, 6.26; P, 6.93; Cl, 8.29.

Dichlorobis((2-methyl-4-fluorophenyl)phosphine)palladium(II) (Cat9). ${ }^{31} \mathrm{P}$ NMR ( $122 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ 19.68. Elemental analysis: Anal. Calcd for $\mathrm{C}_{42} \mathrm{H}_{36} \mathrm{~F}_{6} \mathrm{P}_{2} \mathrm{Cl}_{2} \mathrm{Pd}$ : C, 56.43; H, 4.06; F, 12.75; P, 6.93; Cl, 7.93. Found: C, $56.52 ; \mathrm{H}, 3.94 ;$ F, 12.58; P, 6.72; Cl, 7.83 .

## III- CYCLOPROPANATION EXPERIMENTS

Representative methylenation procedure in DMA/EG or THF/EG. An oven-dried Schlenk ( 2.5 or 5 ml ) equipped with a Teflon Young valve and an oven-dried magnetic stir bar was charged in a $\mathrm{N}_{2}$-filled glovebox with powdered $\mathrm{K}_{2} \mathrm{CO}_{3}$ ( 80.9 mg , 5.0 equiv.) and anhydrous ethylene glycol (EG, 0.1 ml ). The mixture was vigorously stirred for 10 min before, and during, the addition of a solution of anhydrous dimethylacetamide (DMA, o. 6 ml ) containing Pd-catalyst $\left[(\mathrm{o}-\text { tolyl })_{3} \mathrm{P}_{2} \mathrm{PdCl}_{2}(4.6 \mathrm{mg}, 5 \mathrm{~mol} \%), \mathrm{ICH}_{2} \mathrm{BF}_{3} \mathrm{~K}\right.$ ( $34.8 \mathrm{mg}, 1.2$ equiv.) and cyclooctene (COE, $15.2 \mu \mathrm{l}$, o.117 mmol). The rest of the anhydrous DMA ( $2 \times 0.5 \mathrm{ml}$ ) was utilized to rinse the vial containing the previous solution and then added to the reaction mixture. The tube was sealed, removed from the glovebox, and heated to $75{ }^{\circ} \mathrm{C}$ for 22 h . The reaction mixture was then rapidly cooled to $o^{\circ} \mathrm{C}$ in an ice bath for 15 min and a work-up was conducted.

Representative methylenation procedure in DMA/MeOH. A 5 ml oven-dried Schlenk ( 2.5 or 5 ml ) equipped with a Teflon Young valve and an oven-dried magnetic stir bar was charged in a $\mathrm{N}_{2}$-filled glovebox with powdered $\mathrm{K}_{2} \mathrm{CO}_{3}$ ( 80.9 mg , 5.0 equiv.) and anhydrous MeOH ( 0.5 ml ). The mixture was vigorously stirred for 10 min before, and during, the addition of a solution of anhydrous DMA ( 0.6 ml ) containing Pdcatalyst $\left[(\mathrm{o}-\mathrm{tolyl})_{3} \mathrm{P}\right]_{2} \mathrm{PdCl}_{2}(4.6 \mathrm{mg}, 5 \mathrm{~mol} \%), \mathrm{ICH}_{2} \mathrm{BF}_{3} \mathrm{~K}(34.8 \mathrm{mg}, 1.2$ equiv.) and COE ( $15.2 \mu \mathrm{l}, 0.117 \mathrm{mmol}$ ). The rest of the anhydrous DMA ( $2 \times 0.5 \mathrm{ml}$ ) and anhydrous MeOH $(0.3 \mathrm{ml})$ was utilized to rinse the vial containing the previous solution and then added to the reaction mixture. The tube was sealed, removed from the glovebox and heated to $75{ }^{\circ} \mathrm{C}$ for 22 h . The reaction mixture was then rapidly cooled to $o^{\circ} \mathrm{C}$ in an ice bath for 15 min and a work-up was conducted.

Procedure for small-scale work-up. The internal standard, undecane ( $10 \mu \mathrm{l}$, around 0.40 equiv. for 0.117 mmol scale of olefin), was added to the tube with the reaction mixture, followed by $\mathrm{Et}_{2} \mathrm{O}(2 \times 35 \mathrm{ml} / \mathrm{mmol}$ substrate). The solution was transferred to a 15 ml glass vial. The Schlenk tube was rinsed with $\mathrm{H}_{2} \mathrm{O}(45 \mathrm{ml} / \mathrm{mmol}$ substrate) or saturated $\mathrm{NH}_{4} \mathrm{Cl}$ for the allylic alcohols. The aqueous layer was transferred to the 15 ml glass vial and the layers were separated. The organic phase was transferred to another 15 ml glass vial, washed with $\mathrm{H}_{2} \mathrm{O}(45 \mathrm{ml} / \mathrm{mmol}$ substrate) and brine ( $45 \mathrm{ml} / \mathrm{mmol}$ substrate), dried over $\mathrm{MgSO}_{4}$, and then filtered through celite. The resulting solution was analyzed by GC-FID.

## A. Screenings and cyclopropanation of various olefins

## A-1. Ethylene Glycol (EG) as co-solvent

Table SI-1. Optimization of DMA/Ethylene glycol ratio.


| no. | DMA:EG (ratio) | 2 a [\%] ${ }^{\text {a }}$ | 3a [\%] ${ }^{\text {a }}$ | Rem. 1 a [\%] ${ }^{\text {a }}$ | Total [\%] ${ }^{\text {a }}$ | Ratio 2a/3a |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 8:1 | 83.8 | 3.0 | 14.4 | 101.3 | 27.6 |
| 2 | 10:1 | 89.4 | 2.1 | 9.1 | 100.6 | 43.0 |
| 3 | 16:1 | 93.6 | 2.3 | 7.1 | 103.0 | 40.5 |
| 4 | 20:1 | 93.6 | 2.4 | $7 \cdot 5$ | 103.5 | 38.3 |
| 5 | 32:1 | 86.5 | 2.2 | 12.1 | 100.8 | 39.2 |



Figure SI-1. Representative GC chromatogram of the methylenation of cyclooctene. Retention times: toluene ( $\mathrm{tR}=3.94 \mathrm{~min}$ ), cyclooctene $(\mathrm{tR}=5.83 \mathrm{~min})$, methylenecyclooctane ( $\mathrm{tR}=6.99 \mathrm{~min}$ ), bicyclo[6.1.0]nonane ( $\mathrm{tR}=7.23 \mathrm{~min}$ ), undecane ( $\mathrm{tR}=8.36 \mathrm{~min}$; internal standard).

## A-2. Various diols \& triol as co-solvent

Table SI-2. Screening of some diols and triol.


| no. | Diols or Triol | 2a [\%] ${ }^{\text {a }}$ | 3a [\%] ${ }^{\text {a }}$ | Rem. $1 \mathbf{a}$ [\%] ${ }^{\text {a }}$ | Total [\%] ${ }^{\text {a }}$ | Ratio 2a/3a |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Ethylene glycol | 93.6 | 2.3 | 7.1 | 103.0 | 40.5 |
| 2 | 1,2-propanediol | 68.9 | 1.8 | 32.1 | 102.8 | 39.3 |
| 3 | Glycerol | 71.9 | 5.6 | 24.1 | 101.2 | 13.7 |
| 4 | 2,3 butanediol | 5.6 | 1.6 | 91.9 | 99.0 | 3.6 |
| 5 | cis-1,2-Cyclohexanediol | 54.4 | 3.9 | 39.1 | 97.5 | 13.8 |
| 6 | trans-1,2-Cyclohexanediol | 59.0 | 10.2 | 28.5 | 98.0 | 5.8 |
| 7 | Pinacol | 0.3 | 0.9 | 95.7 | 97.0 | 0.4 |
| 8 | Pinacol ${ }^{\text {b }}$ | 0.4 | 1.1 | 98.3 | 99.8 | 0.4 |
| 9 | Catechol | 0.3 | 2.0 | 92.3 | 94.6 | 0.2 |
| 10 | 1,3-propanediol | 4.2 | 0.5 | 96.7 | 101.4 | 8.8 |
| 11 | 2,4-pentanediol | 0.2 | 0.4 | 94.6 | 95.3 | 0.4 |

## A-3. Additions cyclopropanation reactions of cyclooctene

Table SI-3. Additional results of the cyclopropanation of cyclooctene.


| no. | Solvents (ratio) | 2a [\%] ${ }^{\text {a }}$ | 3a [\%] ${ }^{\text {a }}$ | Rem. $1 \mathbf{1 a}$ [\%] ${ }^{\text {a }}$ | Total [\%] ${ }^{\text {a }}$ | Ratio 2a/3a |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $1{ }^{\text {b }}$ | DMA/MeOH (2/1) | 76.0 | 1.0 | 26.7 | 103.7 | 73.0 |
| $2^{\text {b,c }}$ | DMA/MeOH (2/1) | 64.7 | 1.5 | 39.3 | 105.5 | 42.0 |
| 3 | DMA/MeOH (2/1) | 76.5 | 0.5 | 24.5 | 101.5 | 147.9 |
| 4 | $\mathrm{MeOH}(1.6 \mathrm{ml})$ | 25.4 | 0 | 75.5 | 100.9 | - |
| 5 | DMA ( 1.6 ml ) | o | o. 8 | 100.1 | 101.0 | o |
| 6 | DMA/EG (16/1) | 93.6 | 2.3 | 7.1 | 103.0 | 40.5 |
| $7^{\mathrm{d}}$ | DMA/EG (16/1) | 97.9 | 2.1 | o | 100.1 | 45.9 |
| 8 | DME/EG (16/1) | 25.7 | 1.2 | 75.6 | 102.5 | 21.1 |


| 9 | THF/EG (16/1) | 12.9 | 0.4 | 89.7 | 103.1 | 29.5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $10^{\text {e }}$ | DMA/EG (16/1) | 44.0 | 1.9 | 51.7 | 103.1 | 22.7 |

${ }^{\mathrm{a}}$ Yields were evaluated by GC-FID. ${ }^{\mathrm{b}} 3$ equiv. of base used. ${ }^{\mathrm{c}}$ reaction done at $85^{\circ} \mathrm{C}$. ${ }^{\mathrm{d}}$ In the presence of extra $\mathbf{L a}(5 \mathrm{~mol} \%), \mathrm{ICH}_{2} \mathrm{BF}_{3} \mathrm{~K}(1.5$ equiv.), 24 h. ${ }^{e} \mathrm{Cs}_{2} \mathrm{CO}_{3}$ used instead of $\mathrm{K}_{2} \mathrm{CO}_{3}$. 1a*: 0.117 mmol .

Table SI-4. Various catalysts tested in the cyclopropanation of cyclooctene in DMA:EG (16:1).


## A-4. Cyclopropanation reaction of other olefins

Table SI-5. Cyclopropanation reaction of other olefins.


| no. | Olefins | Cyclopropane [\%] ${ }^{\text {a }}$ | Rem. 1 [\%] ${ }^{\text {a }}$ | Total [\%] ${ }^{\text {a }}$ |
| :---: | :---: | :---: | :---: | :---: |
| $1{ }^{\text {b }}$ |  | 88.1 | 12.7 | 100.7 |
| 2 |  | 98.0 | o. 8 | 98.7 |
| 3 |  | $\begin{aligned} & 59.1^{\mathrm{c}} \\ & 74.2^{\mathrm{d}} \end{aligned}$ | $\begin{aligned} & 39.4^{\mathrm{c}} \\ & 27.6^{\mathrm{d}} \end{aligned}$ | $\begin{gathered} 98.3^{\mathrm{c}} \\ 101.8^{\mathrm{d}} \end{gathered}$ |
| $4^{\text {b }}$ |  | 38.5 | 53.5 | 92.0 |
| 5 |  | 74.8 | 17.5 | 92.3 |
| 6 |  | 35.3 | 42.0 | 77.2 |
| $7{ }^{\text {e }}$ |  | 72.1 | 14.4 | 86.5 |
| $8^{\mathrm{e}, \mathrm{f}}$ |  | 81.2 | o | 81.2 |
| $9^{\mathrm{e}, \mathrm{f}}$ |  | 28.5 | o | 28.5 |

${ }^{a}$ Yields were evaluated by GC-FID. ${ }^{b}$ Work up solutions maintained at $\mathrm{o}^{\circ} \mathrm{C}$. ${ }^{\mathrm{C}}$ After 48 h . ${ }^{\mathrm{d}} . \mathrm{o}$ equiv. of $\mathrm{ICH}_{2} \mathrm{BF}_{3} \mathrm{~K}$ added 18 h later and reaction stopped 24 h later. ${ }^{\mathrm{e}} .5$ equiv. of $\mathrm{ICH}_{2} \mathrm{BF}_{3} \mathrm{~K}$ used. ${ }^{\mathrm{f}}$ In the presence of $\mathbf{L I}(5 \mathrm{~mol} \%)$.


Figure SI-2. Representative GC chromatogram of the methylenation of $\mathbf{1 -}^{-}$ methylcyclopentene. Retention times: 1-methylcyclopentene ( $\mathrm{tR}=3.53 \mathrm{~min}$ ), 1methylbicyclo[3.1.0]hexane ( $\mathrm{tR}=4.15 \mathrm{~min}$ ), undecane ( $\mathrm{tR}=9.4 \mathrm{~min}$; internal standard).


Figure SI-3. Representative GC chromatogram of the methylenation of cycloheptene. Retention times cycloheptene ( $\mathrm{tR}=4.10 \mathrm{~min}$ ), bicyclo[5.1.0]octane ( $\mathrm{tR}=5.58 \mathrm{~min}$ ), undecane ( $\mathrm{tR}=8.20 \mathrm{~min}$; internal standard).


Figure SI-4. Representative GC chromatogram of the methylenation of cyclohexene. Retention times cyclohexene ( $\mathrm{t} R=2.90 \mathrm{~min}$ ), norcarane ( $\mathrm{t} R=4.39 \mathrm{~min}$ ), undecane ( $\mathrm{tR}=$ 8.34 min ; internal standard).


Figure SI-5. Representative GC chromatogram of the methylenation of $\alpha$-pinene. Retention times $\alpha$-pinene ( $\mathrm{tR}=6.24 \mathrm{~min}$ ), 2,7,7-trimethyltricyclo[4.1.1. $\mathrm{o}^{2,4}$ ] octane ( $\mathrm{tR}=$ 7.97 min ), undecane ( $\mathrm{t} R=8.33 \mathrm{~min}$; internal standard).


Figure SI-6. Representative GC chromatogram of the methylenation of (-)-myrtenol. Retention times undecane ( $\mathrm{tR}=3.61 \mathrm{~min}$; internal standard), ( - )-myrtenol ( $\mathrm{tR}=8.93$ min ), (7,7-dimethyltricyclo[4.1.1. $\mathrm{o}^{2,4}$ ]octan-2-yl)methanol ( $\mathrm{tR}=10.60 \mathrm{~min}$ ).


Figure SI-7. Representative GC chromatogram of the methylenation of 2-methylpent-2-en-1-ol. Retention times undecane ( $\mathrm{tR}=4.66 \mathrm{~min}$; internal standard), (2-ethyl-1methylcyclopropyl)methanol ( $\mathrm{tR}=8.27 \mathrm{~min}$ ), 2-methylpent-2-en-1-ol ( $\mathrm{tR}=8.55 \mathrm{~min}$ ).


Figure SI-8. Representative GC chromatogram of the methylenation of $\beta$ caryophyllene in DMA/EG (16/1). Retention times undecane ( $\mathrm{tR}=5.82 \mathrm{~min}$, internal standard) $\quad \beta$-caryophyllene $\quad(\mathrm{tR}=\quad 8.73 \mathrm{~min}), \quad$ 4,12,12-trimethyl-9methylenetricyclo[8.2.0.0 ${ }^{4,6}$ ]dodecane ( $\mathrm{tR}=9.20 \mathrm{~min}$ ).


Figure SI-9. Representative GC chromatogram of the methylenation of bicyclo[3.2.0]hept-2-en-6-one in DMA/EG (16/1). Retention times undecane ( $\mathrm{tR}=6.11$ min , internal standard), tricyclo[4.2.0.02,4]octan-7-one (anti) (tR= 6.22 min ), tricyclo[4.2.0.02,4] octan-7-one (syn) (tR=6.52 min).


Figure SI-10. Representative GC chromatogram of the methylenation of oxabenzonorbornadiene in DMA/EG (16/1). Retention times undecane ( $\mathrm{tR}=5.83 \mathrm{~min}$, internal standard), oxabenzonorbornadiene ( $\mathrm{tR}=7.31 \mathrm{~min}$ ), cyclopropanated oxabenzonorbornadiene ( $\mathrm{t} R=8.12 \mathrm{~min}$ ).

Table SI-6. Cyclopropanation reaction of (E)-hex-2-en-1-ol.


| 2h $[\%]^{\text {a }}$ | $\mathbf{2 i}[\%]^{\text {a }}$ | 3h [\%] ${ }^{\text {a }}$ | Rem. 1 h [\%] ${ }^{\text {a }}$ | Total [\%] ${ }^{\text {a }}$ | Ratio 2/3h |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 65.7 | 0.9 | 10.1 | 15.1 | 91.7 | 6.6 |
| ${ }^{\text {a }}$ Yields were evaluated by GC-FID. $\mathbf{1 h}^{*}$ : 0.117 mmol . |  |  |  |  |  |



| Peak | Number \# | Area \% | Ret.Time | Area | BC |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 44.8949 | 4.64 | 4363658 | RS |
|  | 2 | 1.2812 | 7.91 | 124531 | RS |
|  | 3 | 8.0247 | 8.66 | 779977 | RS |
|  | 4 | 37.9911 | 9.11 | 3692625 | RS |
|  | 5 | 4.7968 | 9.85 | 466232 | FU |
|  | 6 | 3.0114 | 10.29 | 292702 | RS |
| Totals |  | 100.0000 |  | 9719724 |  |

Figure SI-11. Representative GC chromatogram of the methylenation of trans-hexen-1ol. Retention times undecane ( $\mathrm{tR}=4.64 \mathrm{~min}$; internal standard), trans-hexen-1-ol ( $\mathrm{tR}=$ $8.66 \mathrm{~min})$, trans-2-propylcyclopropylmethanol ( $\mathrm{tR}=9.11 \mathrm{~min}$ ), cis-2propylcyclopropylmethanol ( $\mathrm{tR}=9.65 \mathrm{~min}$ ), 2-methylenehexan-1-ol ( $\mathrm{tR}=9.85 \mathrm{~min}$ ).

Table SI-7. Cyclopropanation reaction of (Z)-hex-2-en-1-ol.


| 2 i [\%] ${ }^{\text {a }}$ | $\mathbf{2 h}[\%]^{\text {a }}$ | $3 \mathrm{~h}[\%]^{\text {a }}$ | Rem. $\mathbf{i i}[\%]^{\text {a }}$ | 1h [\%] ${ }^{\text {a }}$ | Total [\%] ${ }^{\text {a }}$ | Ratio 2/3h |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 61.8 | 2.8 | 6.8 | 14.8 | 8.4 | 94.6 | 9.6 |



Figure SI-12. Representative GC chromatogram of the methylenation of cis-hexen-1-ol. Retention times undecane ( $\mathrm{tR}=4.64 \mathrm{~min}$; internal standard), trans-hexen-1-ol ( $\mathrm{tR}=$ $8.66 \mathrm{~min})$, cis-hexen-1-ol ( $\mathrm{tR}=8.79 \mathrm{~min}$ ), trans-2-propylcyclopropylmethanol ( $\mathrm{tR}=9.10$ min ), cis-2-propylcyclopropylmethanol ( $\mathrm{tR}=9.65 \mathrm{~min}$ ), 2-methylenehexan-1-ol ( $\mathrm{tR}=$ 9.85 min ).

Table SI-8. Cyclopropanation reaction of cyclododecene (cis + trans).



Figure SI-13. Representative GC chromatogram of the methylenation of cyclododecene (cis + trans) in DMA/EG ( $16 / 1$ ). Retention times undecane ( $\mathrm{tR}=5.52 \mathrm{~min}$, internal standard), cyclododecene ( $\mathrm{tR}=7.78 \mathrm{~min}$ (trans) \& 7.95 (cis)), methylenecyclododecane $(\mathrm{tR}=8.85 \mathrm{~min})$, bicyclo[10.1.0]tridecane ( $\mathrm{tR}=8.91 \mathrm{~min}($ trans $) \& 9.28 \mathrm{~min}(c i s))$.

Table SI-9. Cyclopropanation reaction of 1-octene.




| $20^{\text {a }}$ | $2 p^{\text {a }}$ | $29^{\text {a }}$ | $10^{\text {a }}$ | $30 a^{\text {a }}$ | $30{ }^{\text {a }}$ | $1 p^{\text {a }}$ | $3 p^{\text {a }}$ | $19^{\text {a }}$ | $1 \mathrm{r}^{\text {a }}$ | Total ${ }^{\text {a }}$ | $\begin{aligned} & \text { Ratio[2/(30a+3ob+3p+1 } \\ & \mathbf{p + 1 q + 1 r ) ]} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 29 | 9 | 2 | 12 | 7 | 2 | 10 | 2 | 5 | 2 | 80 | 1.4 |



Figure SI-14. Representative GC chromatogram of the methylenation of 1-octene in DMA/EG (16/1). Retention times 1 -octene ( $\mathrm{tR}=5.14 \mathrm{~min}$, internal standard), 2-methylnon-1-ene ( $\mathrm{tR}=6.48 \mathrm{~min}$ ), 1 -nonene ( $\mathrm{tR}=6.57 \mathrm{~min}$ ), 2-nonene $(\mathrm{tR}=6.76 \& 6.88$ min ), n-hexylcyclopropane ( $\mathrm{tR}=7.03 \mathrm{~min}$ ), 2-methylnon-1-ene ( $\mathrm{tR}=7.83 \mathrm{~min}$ ), 1-decene $(\mathrm{tR}=7.92 \mathrm{~min}), \quad \mathrm{n}$-heptylcyclopropane $(\mathrm{tR}=8.37 \mathrm{~min})$, 1 -undecene $(\mathrm{tR}=9.18 \mathrm{~min})$, undecane ( $\mathrm{tR}=9.27 \mathrm{~min}$, internal standard), n -octylcyclopropane $(\mathrm{tR}=9.61 \mathrm{~min})$.

Table SI-10. Cyclopropanation reaction of (E)-dec-5-ene.


| 2s $[\%]^{\mathrm{a}}$ | $3 \mathrm{~s}[\%]^{\mathrm{a}}$ | Rem. 1s [\%] $]^{\mathrm{a}}$ | ${\text { Total }[\%]^{\mathrm{a}}}$ | Ratio 2s/3s |
| :---: | :---: | :---: | :---: | :---: |
| 55.9 | 10.2 | 31.1 | 97.2 | 5.5 |
| $61.5^{\mathrm{b}}$ | $11.2^{\mathrm{b}}$ | $25.4^{\mathrm{b}}$ | $98.1^{\mathrm{b}}$ | $5.5^{\mathrm{b}}$ |
| $56.5^{\mathrm{c}}$ | $10.7^{\mathrm{c}}$ | $30.8^{\mathrm{c}}$ | $98.0^{\mathrm{c}}$ | $5.3^{\mathrm{c}}$ |

${ }^{a}$ Yields were evaluated by GC-FID. ${ }^{b}$ In the presence of $\mathbf{L 1}$ ( $5 \mathrm{~mol} \%$ ). ${ }^{\mathrm{c}} 48 \mathrm{~h}$ in the presence of $\mathbf{L 1}$ ( $10 \mathrm{~mol} \%$ ). $\mathbf{1 s *}$ : 0.117 mmol .


Figure SI-15. Representative GC chromatogram of the methylenation of trans-5decene in DMA/EG (16/1). Retention times trans- 5 -decene ( $\mathrm{tR}=8.04 \mathrm{~min}$ ), trans-1,2dibutylcyclopropane ( $\mathrm{tR}=8.88 \mathrm{~min}$ ), 5-methylenedecane ( $\mathrm{tR}=8.97 \mathrm{~min}$ ), undecane ( $\mathrm{tR}=9.35 \mathrm{~min}$; internal standard).

Table SI-11. Cyclopropanation reaction of (Z)-dec-5-ene.



Figure SI-16. Representative GC chromatogram of the methylenation of cis-5-decene in DMA/EG (16/1). Retention times cis-5-decene ( $\mathrm{tR}=8.05 \mathrm{~min}$ ), trans-1,2dibutylcyclopropane ( $\mathrm{tR}=8.86 \mathrm{~min}$ ), cis-1,2-dibutylcyclopropane ( $\mathrm{tR}=9.23 \mathrm{~min}$ ), $5^{-}$ methylenedecane ( $\mathrm{tR}=8.96 \mathrm{~min}$ ), undecane ( $\mathrm{tR}=9.35 \mathrm{~min}$; internal standard).

## A-5. Identification of the diastereomer formed in the case of $\alpha$-pinene

## Comparison with the authentic synthesized sample



The methylenation procedure was followed using 0.117 mmol of $\alpha$-pinene (1d). At the end of the reaction, the work up procedure described earlier was followed excepting the addition of the internal standard undecane. The organic phase was dried over $\mathrm{MgSO}_{4}$ after extraction and solvent removed on rotatory evaporator. ${ }^{1} \mathrm{H}$ NMR spectrum was taken and compared with the authentic prepared sample $\mathbf{2 d}$.


Figure SI-17. ${ }^{1} \mathrm{H}$-NMR spectra of the authentic cyclopropane of $\alpha$-pinene (2d) and the one prepared using the iodomethyltrifluoroborate as methylenating reagent also containing the remaining starting material and free phosphine.


Figure SI-18. ${ }^{1} \mathrm{H}^{-1} \mathrm{H}$ COSY of the authentic cyclopropane of $\alpha$-pinene (2d).


Figure SI-19. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC of the authentic cyclopropane of $\alpha$-pinene (2d).

NOESY Experiment: Complete ${ }^{1} \mathrm{H}$ NMR assignments of $\alpha$-pinene can be found in reference (21).


Figure SI-20. NOESY of the authentic cyclopropane of $\alpha$-pinene (2d).

## B. Kinetics Studies



Each time point in a kinetic run was acquired with the following procedure. An ovendried Schlenk ( 2.5 or 5 ml ) equipped with a Teflon Young valve and an oven-dried magnetic stir bar was charged in a $\mathrm{N}_{2}$-filled glovebox with powdered $\mathrm{K}_{2} \mathrm{CO}_{3}(80.9 \mathrm{mg}$, 5.0 equiv.) and anhydrous EG ( 0.1 ml ). The mixture was vigorously stirred for 10 min before, and during, the addition of a solution of anhydrous DMA ( o .6 ml ) containing either the Pd -catalyst $\left[(\text { o-tolyl })_{3} \mathrm{P}\right]_{2} \mathrm{PdCl}_{2}(4.6 \mathrm{mg}, 5 \mathrm{~mol} \%)$ or the mixture of (o-tolyl $)_{3} \mathrm{P}$ $(1.78 \mathrm{mg}, 5 \mathrm{~mol} \%)$ and the Pd -catalyst [COD] $\mathrm{PdCl}_{2}$ ( $1.67 \mathrm{mg}, 5 \mathrm{~mol} \%$ ), $\mathrm{ICH}_{2} \mathrm{BF}_{3} \mathrm{~K}$ ( 34.8 mg , 1.2 equiv.) and $\operatorname{COE}(15.2 \mu \mathrm{~L}$, 0.117 mmol ). The rest of the anhydrous DMA ( $2 \times 0.5$ ml ) was utilized to rinse the vial containing the previous solution and then added to the reaction mixture. The tube was sealed, removed from the glovebox and heated to $75^{\circ} \mathrm{C}$ for the indicated reaction time. Then the reaction mixture was rapidly cooled to $0^{\circ} \mathrm{C}$ in an ice bath for 15 min and a work-up was conducted. The resulting solution was analyzed by GC-FID.

## B-1. Influence of $\mathrm{ICH}_{2} \mathrm{BF}_{3} \mathrm{~K}$

Table SI-12. Initial concentrations of $\mathrm{ICH}_{2} \mathrm{BF}_{3} \mathrm{~K}$ and excess to determine its influence on the reaction rate.

| Run | $\mathrm{ICH}_{2} \mathrm{BF}_{3} \mathrm{~K}[\mathrm{mM}]$ | $\mathrm{ICH}_{2} \mathrm{BF}_{3} \mathrm{~K}[\mathrm{mM}]$ | Excess [mM] |
| :---: | :---: | :---: | :---: |
| 1 (black) | 0.117 | 0.069 | 0 |
| 2 (blue) | 0.140 | 0.082 | 0.013 |

Table SI-13. Results from the kinetic runs based on Table SI-12.

|  | Run 1 |  | Run 2 |  |
| :---: | :---: | :---: | :---: | :---: |
| Time $[\mathrm{min}]$ | COE rem. $[\mathrm{mg}]$ | COE conc. $\left[10^{-2} \mathrm{mM}\right]$ | COE rem. $[\mathrm{mg}]$ | COE conc. $\left[10^{-2} \mathrm{mM}\right]$ |
| 0 | 12.89 | 6.88 | 12.89 | 6.88 |
| 30 | 11.80 | 6.30 | 12.20 | 6.51 |
| 60 | 10.09 | 5.39 | 10.33 | 5.51 |
| 90 | 8.52 | 4.55 | 8.69 | 4.64 |
| 120 | 7.65 | 4.09 | 7.38 | 3.94 |
| 150 | 6.03 | 3.22 | 6.01 | 3.21 |
| 180 | 5.34 | 2.85 | 4.84 | 2.58 |
| 210 | 4.11 | 2.19 | 4.03 | 2.15 |
| 240 | 3.47 | 1.85 | 3.21 | 1.72 |
| 270 | 3.11 | 1.66 | 2.22 | 1.18 |
| 300 | 3.03 | 1.62 | 1.88 | 1.00 |
| 360 | 2.93 | 1.56 | 1.44 | 0.77 |



Figure SI-21. Influence of the methylenating agent on the rate of the reaction. The kinetic profiles overlay until the deactivation of the catalyst starts.

## B-2. Influence of the olefin COE

Table SI-14. Initial concentrations of COE and excess to determine its influence on the reaction rate.

| Run | COE $[\mathrm{mM}]$ | COE $[\mathrm{mM}]$ | Excess $[\mathrm{mM}]$ |
| :---: | :---: | :---: | :---: |
| 1 (black) | 0.117 | 0.069 | 0 |
| 2 (red) | 0.140 | 0.082 | 0.013 |

Table SI-15. Results from the kinetic runs based on Table SI-14.

|  | Run 1 |  | Run 2 |  |
| :---: | :---: | :---: | :---: | :---: |
| Time $[\mathrm{min}]$ | COE rem. $[\mathrm{mg}]$ | COE conc. $\left[10^{-2} \mathrm{mM}\right]$ | COE rem. $[\mathrm{mg}]$ | COE conc. $\left[10^{-2} \mathrm{mM}\right]$ |
| o | 12.89 | 6.88 | 15.52 | 6.90 |
| 30 | 11.80 | 6.30 | 13.91 | 6.19 |
| 60 | 10.09 | 5.39 | 11.96 | 5.32 |
| 90 | 8.52 | 4.55 | 10.13 | 4.51 |
| 120 | 7.65 | 4.09 | 8.42 | 3.75 |
| 150 | 6.03 | 3.22 | 6.93 | 3.08 |
| 180 | 5.34 | 2.85 | 6.29 | 2.80 |
| 210 | 4.11 | 2.19 | 5.79 | 2.58 |
| 240 | 3.47 | 1.85 | 5.48 | 2.44 |
| 270 | 3.11 | 1.66 | 5.12 | 2.28 |
| 300 | 3.03 | 1.62 | 4.91 | 2.18 |
| 360 | 2.93 | 1.56 | 4.81 | 2.14 |



Figure SI-22. Influence of the olefin on the rate of the reaction. The kinetic profiles overlay until the deactivation of the catalyst starts.

## B-3. Influence of catalyst loading

Table SI-16. Initial catalyst loadings to determine its influence on the reaction rate.

| Run | Catalyst loading [mol\%] |
| :---: | :---: |
| 1 (black) | 5 |
| 2 (red) | 10 |

Table SI-17. Results from the kinetic runs based on Table SI-16.

|  | Run 1 |  | Run 2 |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Time $[\mathrm{min}]$ | COE rem. $[\mathrm{mg}]$ | COE conc. $\left[10^{-2} \mathrm{mM}\right]$ | COE rem. $[\mathrm{mg}]$ | COE conc. $\left[10^{-2} \mathrm{mM}\right]$ |
| 0 | 12.89 | 6.88 | 12.89 | 6.88 |
| 30 | 11.80 | 6.30 | 11.59 | 6.18 |
| 60 | 10.09 | 5.39 | 9.24 | 4.93 |
| 90 | 8.52 | 4.55 | 7.18 | 3.84 |
| 120 | 7.65 | 4.09 | 5.35 | 2.86 |
| 150 | 6.03 | 3.21 | 4.64 | 2.47 |
| 180 | 5.34 | 2.85 | 4.12 | 2.20 |
| 210 | 4.11 | 2.19 | 3.61 | 1.93 |
| 240 | 3.47 | 1.85 | 3.10 | 1.65 |
| 270 | 3.11 | 1.66 | 2.80 | 1.50 |
| 300 | 3.03 | 1.62 | 2.52 | 1.35 |
| 360 | 2.93 | 1.56 | 2.34 | 1.25 |



Figure SI-23. Influence of the catalyst loading on the rate of the reaction. Doubling the catalyst loading increases the initial rate of the reaction by 1.416 corresponding to a reaction order of $\mathbf{0 . 5 0}$ with respect to the Pd catalyst.

## B-4. Influence of the co-solvent concentration

Table SI-18. Initial solvents ratios (and volumes) to determine the influence EG on the reaction rate.

| Run | DMA:EG ratio (volumes [ml]) |
| :---: | :---: |
| 1 (black) | $16: 1(1.6: 0.1)$ |
| 2 (red) | $32: 1(1.6: 0.05)$ |

Table SI-19. Results from the kinetic runs based on Table SI-18.

|  | Run 1 |  | Run 2 |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Time $[\mathrm{min}]$ | COE rem. $[\mathrm{mg}]$ | COE conc. $\left[10^{-2} \mathrm{mM}\right]$ | COE rem. $[\mathrm{mg}]$ | COE conc. $\left[10^{-2} \mathrm{mM}\right]$ |
| 0 | 12.89 | 6.88 | 15.52 | 7.09 |
| 30 | 11.80 | 6.30 | 11.42 | 6.28 |
| 60 | 10.09 | 5.39 | 9.11 | 5.01 |
| 90 | 8.52 | 4.55 | 7.21 | 3.96 |
| 120 | 7.65 | 4.09 | 6.21 | 3.42 |
| 150 | 6.03 | 3.21 | 4.93 | 2.71 |
| 180 | 5.34 | 2.85 | 4.05 | 2.22 |
| 210 | 4.11 | 2.19 | 10.03 | 2.01 |
| 240 | 3.47 | 1.85 | 10.75 | 1.92 |
| 270 | 3.11 | 1.66 | 11.02 | 1.82 |
| 300 | 3.03 | 1.62 | 11.30 | 1.56 |
| 360 | 2.93 | 1.56 | 11.08 | 1.47 |



Figure SI-24. Influence of the co-solvent on the rate of the reaction. Two-fold reduction in the volume of the EG increases the initial rate of the reaction by 1.44 corresponding to a reaction order of $\mathbf{- 0 . 5 3}$ with respect to the EG.


Figure SI-25. Influence of the olefin concentration on the initial reaction rate: Negligible difference.

## B-5. Influence of the phosphine ligand

Table SI-20. Initial equivalences of phosphine ligand to determine its influence on the initial reaction rate.

| Run | (o-tolyl $)_{3} \mathrm{P}$ [equiv.] | $[\mathrm{COD}] \mathrm{PdCl}_{2}[\mathrm{~mol} \%]$ |
| :---: | :---: | :---: |
| 1(black) | 1 | 5 |
| 2(red) | 2 | 5 |

Table SI-21. Results from the kinetic runs based on Table SI-2o.

|  | Run 1 |  | Run 2 |  |
| :---: | :---: | :---: | :---: | :---: |
| Time $[\mathrm{min}]$ | COE rem. $[\mathrm{mg}]$ | COE conc. $\left[10^{-2} \mathrm{mM}\right]$ | COE rem. $[\mathrm{mg}]$ | COE conc. $\left[10^{-2} \mathrm{mM}\right]$ |
| o | 12.89 | 6.88 | 12.89 | 6.88 |
| 60 | 9.56 | 5.10 | 8.97 | 4.79 |
| 90 | 7.87 | 4.20 | 7.92 | 4.23 |
| 120 | 6.71 | 3.58 | 6.24 | 3.33 |



Figure SI-26. Influence of the phosphine concentration on the initial reaction rate: Negligible difference.

## C. Spectroscopic Studies

## C-1. NMR monitoring methylenation reaction of COE



An oven-dried NMR tube equipped with a Teflon screw cap was transferred into a $\mathrm{N}_{2}-$ filled glovebox and charged with powdered $\mathrm{K}_{2} \mathrm{CO}_{3}$ ( 0.195 mmol , 5.0 equiv.). A 1.5 ml oven-dried vial was charged with $\left[(0-t o l y l)_{3} \mathrm{P}_{2} \mathrm{PdCl}_{2}(1.53 \mathrm{mg}, 5 \mathrm{~mol} \%), \mathrm{ICH}_{2} \mathrm{BF}_{3} \mathrm{~K}(9.67\right.$ $\mathrm{mg}, 1.2$ equiv.) and $\operatorname{COE}\left(5.1 \mu \mathrm{~L}\right.$, o.039 mmol), anhydrous $\mathrm{EG}-d_{6}(0.33 \mathrm{ml})$ and anhydrous DMA- $d_{9}(2.33 \mathrm{ml})$. The solution was then transferred to the NMR tube and the vial rinsed with anhydrous DMA- $d_{9}(2 \times 1.5 \mathrm{ml})$. The rinse solution was added to the NMR tube. The NMR tube was sealed, shaken, and maintained at $75^{\circ} \mathrm{C}$ for $16 \mathrm{~h} .60 .3 \%$, GC yield, cyclopropane formed.


Figure SI-27. Methylenation reaction of COE monitored by ${ }^{11} \mathrm{~B}$ NMR recorded at $75{ }^{\circ} \mathrm{C}$.


Figure SI-28. Methylenation reaction of COE monitored by ${ }^{1} \mathrm{H}$ NMR recorded at $75{ }^{\circ} \mathrm{C}$.

## C-2. Oxidative addition of $\mathrm{ICH}_{2} \mathrm{Bpin}$ in THF



An oven-dried NMR tube was brought into a $\mathrm{N}_{2}$-filled glovebox and charged with $\mathrm{Pd}(\mathrm{dba})_{2}$ ( $30 \mathrm{mg}, 0.052 \mathrm{mmol}, 1.05$ equiv.), (o-tolyl) ${ }_{3} \mathrm{P}(15 \mathrm{mg}, 0.049 \mathrm{mmol}, 1.0$ equiv.), and anhydrous THF- $d_{8}(0.4 \mathrm{ml})$. The tube was then closed and agitated for $\sim 5 \mathrm{~min}$. A 1.5 ml oven-dried vial was charged with $\mathrm{ICH}_{2} \mathrm{Bpin}(33 \mathrm{mg}, 0.123 \mathrm{mmol}, 2.5$ equiv.) and anhydrous THF- $d_{8}(0.2 \mathrm{ml})$. The solution was then transferred to the NMR tube. The tube was closed with a cap and agitated for 15 min , and NMR was taken at room temperature. The dark red solution turned yellow with deposit of a greenish solid. ${ }^{31} \mathrm{P}$ NMR ( 202 MHz, THF- $d_{8}$ ) $\delta 32.25,31.25,27.13,22.69,-30.39 .{ }^{11} B$ NMR ( 160 MHz, THF- $d_{8}$ ) $\delta$ 31.71, 22.46.

Gas phase studies. In the glovebox, 0.1 ml of the reaction mixture was diluted to $\sim 10^{-5}$ M in dry MeCN or dry THF and use immediately for gas phase studies. Conditions: spray voltage: 5 kV , collision offset: 35 V , tube lens offset: 100 V and capillary temperature: $50{ }^{\circ} \mathrm{C}$ or $170{ }^{\circ} \mathrm{C}$. Collision-induced dissociation (CID) experiments were done with an argon pressure of 0.5 mTorr in the collision cell.


Figure SI-29. ${ }^{31} \mathrm{P}$ NMR spectrum showing the products of the oxidative addition of $\mathrm{ICH}_{2} \mathrm{Bp}$ pin to a $\mathrm{Pd}(\mathrm{o})$ complex.


Figure SI-30. A) Full scan in the positive mode showing products of oxidative addition and substitution by MeCN. B) CID on cation $m / z 633$. Collision gas pressure: 0.5 mTorr, Collision Energy: 10 V (center-of-mass reference frame).

## C-3. Oxidative addition of $\mathrm{ICH}_{2} \mathrm{Bpin}$ in the presence of NBE in THF



An oven dried NMR tube was transferred into a $\mathrm{N}_{2}$-filled glovebox and charged with $\mathrm{Pd}(\mathrm{dba})_{2}$ ( $30 \mathrm{mg}, 0.052 \mathrm{mmol}, 1.05$ equiv.), (o-tolyl) ${ }_{3} \mathrm{P}$ ( $15 \mathrm{mg}, 0.049 \mathrm{mmol}, 1.0$ equiv.) and anhydrous THF- $d_{8}(0.4 \mathrm{ml})$. The tube was closed and agitated for $\sim 5 \mathrm{~min}$. NBE $(23.07 \mathrm{mg}, 0.245 \mathrm{mmol}, 5$ equiv.) in anhydrous THF ( 0.2 ml ) was added and an NMR of the resulting orange solution was taken 30 mis later. The tube was then transferred back to the glovebox and charged with $\mathrm{ICH}_{2} \mathrm{Bpin}$ ( 33 mg , $0.123 \mathrm{mmol}, 2.5$ equiv.). Another NMR was taken and the mixture was heated to $60^{\circ} \mathrm{C}$ for 10 min and cooled to room temperature, diluted and use immediately for gas phase studies.


Figure SI-31. ${ }^{31} \mathrm{P}$ NMR spectrum showing in B) the products of the complexation of NBE on a Pd metal, and in A) products of oxidative addition of $\mathrm{ICH}_{2} \mathrm{Bpin}$ on the resulting $\mathrm{Pd}(\mathrm{o})$ complex in THF- $d_{8}$.



Figure SI-32. A) Full scan in the positive mode showing products of oxidative addition
 cation $m / z 645$. For both, Collision gas pressure: 0.5 mTorr , Collision Energy: 25 V (center-of-mass reference frame).

## C-4. Oxidative addition of $\mathrm{ICH}_{2} \mathrm{BF}_{3} \mathrm{~K}$ in DMF



An oven-dried NMR tube was brought into a $\mathrm{N}_{2}$-filled glovebox and charged with the Pd complex t-BuXPhos $\mathrm{Pd} \mathrm{G}_{3}\left(4.8 \mathrm{mg}, 6.0 \mu \mathrm{~mol}\right.$, 1.0 equiv.), $\mathrm{ICH}_{2} \mathrm{BF}_{3} \mathrm{~K}(3.0 \mathrm{mg}, 1.2$ $\mu \mathrm{mol}$, 2.0 equiv.) and powdered $\mathrm{K}_{2} \mathrm{CO}_{3}(1.7 \mathrm{mg}, 1.2 \mu \mathrm{~mol}, 2.0$ equiv.), successively dissolved in anhydrous DMF- $d_{7}(0.6 \mathrm{ml})$. The tube was then closed and agitated for $\sim 5$ min and NMR was taken at room temperature. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{DMF}-d_{7}$ ) $\delta 11.26$ (s, 1 H , carbazole NH ), $8.22-8.18(\mathrm{~m}, 1 \mathrm{H}$, Pd complex aryl CH$), 8.17\left(\mathrm{~d}, 3^{3} \mathrm{HH}=7.8 \mathrm{~Hz}, 2 \mathrm{H}\right.$, carbazole CH ), $7.71-7.63(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Pd}$ complex aryl CH$), 7.55\left(\mathrm{~d},{ }^{3}{ }^{3} \mathrm{HH}=8.2 \mathrm{~Hz}, 2 \mathrm{H}\right.$, carbazole CH ), $7.44-7.37(\mathrm{~m}, 2 \mathrm{H}$, carbazole CH ), 7.36 (s, 2 H , Pd complex aryl CH ), $7.28-7.23(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Pd}$ complex aryl CH), $7.21-7.15(\mathrm{~m}, 2 \mathrm{H}$, carbazole CH), 3.48 (s, $H_{2} \mathrm{O}$ ), 2.98 (hept, ${ }^{3} J_{\mathrm{HH}}=6.9 \mathrm{~Hz}, 1 \mathrm{H}$, Pd complex iPr CH), 2.46 (hept, ${ }^{3} J_{\mathrm{HH}}=6.7 \mathrm{~Hz}, 2 \mathrm{H}$, Pd complex iPr CH ), $2.42\left(\mathrm{~s}, \mathrm{CH}_{3} \mathrm{SO}_{3}^{-}\right), 1.83\left(\mathrm{~s}, \mathrm{ICH}_{2} \mathrm{BF}_{3}^{-}\right), 1.55\left(\mathrm{~d},{ }^{3}{ }_{\mathrm{HH}}=6.7 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{Pd}\right.$ complex iPr $\mathrm{CH}_{3}$ ), $1.48\left(\mathrm{~d},{ }^{3} J_{\mathrm{HP}}=15.1 \mathrm{~Hz}, 18 \mathrm{H}, \mathrm{Pd}\right.$ complex tBu$), 1.32\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=6.9 \mathrm{~Hz}\right.$,

6H, Pd complex iPr CH3 $)$, 1.16 - $1.08\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{PdCH}_{2} \mathrm{BF}_{3}\right.$ ), o.95 (d, ${ }^{3}{ }^{\mathrm{HHH}}=6.5 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{Pd}$ complex iPr $\mathrm{CH}_{3}$ ). ${ }^{31} \mathrm{P}$ NMR ( $122 \mathrm{MHz}, \mathrm{DMF}-d_{7}$ ) $\delta 75.49$ (q, ${ }^{4} \mathrm{~J}_{\mathrm{PF}}=32.1 \mathrm{~Hz}$ ). ${ }^{19}$ F NMR ( 282 $\left.\mathrm{MHz}, \mathrm{DMF}-d_{7}\right) \delta-139.21\left(\mathrm{~s}, \mathrm{PdCH}_{2} \mathrm{~B} F_{3}\right),-143.55\left(\mathrm{~m},{ }^{2}{ }^{2} \mathrm{FB}=48.6 \mathrm{~Hz}, \mathrm{ICH}_{2} \mathrm{BF} F_{3}\right),-151.24$. The mixture was diluted in THF and immediately use for gas phase studies.


Figure SI-33. ${ }^{1} \mathrm{H}$ NMR spectra showing the products of the oxidative addition of $\mathrm{ICH}_{2} \mathrm{BF}_{3} \mathrm{~K}$ on an in situ generated $\mathrm{Pd}(\mathrm{o})$ in DMF- $d_{7}$.


Figure SI-34. ${ }^{31} \mathrm{P}$ NMR spectra showing the products of the oxidative addition of $\mathrm{ICH}_{2} \mathrm{BF}_{3} \mathrm{~K}$ on an in situ generated $\operatorname{Pd}(\mathrm{o})$ in DMF- $d_{7}$.


Figure SI-35. ${ }^{19} \mathrm{~F}$ NMR spectra showing the products of the oxidative addition of $\mathrm{ICH}_{2} \mathrm{BF}_{3} \mathrm{~K}$ on an in situ generated $\mathrm{Pd}(\mathrm{o})$ in DMF- $d_{7}$.


Figure SI-36. ${ }^{1} \mathrm{H}-{ }^{31} \mathrm{P}$ HMBC spectrum showing the couplings between the methylene protons and the phosphine through Pd.


Figure SI-37. A) Full scan in the positive mode showing products of oxidative addition of $\mathrm{ICH}_{2} \mathrm{BF}_{3} \mathrm{~K}$. Source CID of 50 V needed for cleaner spectrum. B) CID on the cation m/z 651. Source CID=o V, Collision gas pressure: 0.5 mTorr , Collision Energy: 40 V (center-of-mass reference frame).

## D. Control experiments

The methylenation procedures were followed and only the reagents needed for each experiment were charged in the oven-dried Schlenk tube. The tube was sealed, removed from the glovebox and heated to $75{ }^{\circ} \mathrm{C}$ for 16 h . At the end of the indicated time, the Schlenk tube was cooled to $0{ }^{\circ} \mathrm{C}$ for 15 min , dried and transferred to the glovebox. 0.6 ml of the solution were filtered and transferred into an oven-dried NMR tube placed in an external NMR tube containing the reference solvent DMF- $d_{7}$. The tubes were closed and NMR was taken at room temperature.

## D-1. Cyclopropanation of cyclooctene



Two reactions were performed separately. The work up procedure is done for one in order to get the GC yield and the other reaction is submitted spectroscopic observations. The reaction mixture was dark grey, due to the decomposition of the Pd catalyst. The cyclopropane was formed in $88 \%$. Only free ligand observed in the ${ }^{31} \mathrm{P}$ NMR spectrum. ${ }^{11} B$ NMR ( $160 \mathrm{MHz}, \mathrm{DMF}-d_{7}$ ) $\delta 10.55,7.03,2.46\left(\mathrm{q},{ }^{2} \mathrm{~J}_{\mathrm{BF}}=49.5 \mathrm{~Hz}\right),-0.96$. ${ }^{19}$ F NMR ( 470 MHz, DMF- $d_{7}$ ) $\delta-143.39\left(\mathrm{~m},{ }^{2} J_{F B}=48.3 \mathrm{~Hz}\right.$ ), $-150.76-151.54(\mathrm{~m}) .{ }^{31} \mathrm{P}$ NMR (202 MHz, DMF- $d_{7}$ ) $\delta$-30.40.


Figure SI-38. ${ }^{19}$ F NMR spectra showing the products of the Pd catalyzed methylenation of COE.


Figure SI-39. ${ }^{31}$ P NMR spectra showing the products of the Pd catalyzed methylenation of COE.


Figure SI-40. ${ }^{11}$ B NMR spectra showing the products of the Pd catalyzed methylenation of COE.


Figure SI-41. ESI-MS Scanning in the negative mode allows the detection of anions $m / z-131, m / z-255, m / z-269$.

## D-2. In the absence of olefin



The final mixture was orange at the end of the indicated time and no black precipitate was present. ${ }^{31} \mathrm{P}$ NMR ( $202 \mathrm{MHz}, \mathrm{DMF}-d_{7}$ ) $\delta 40.44,35.64,-30.40$. ${ }^{11} \mathrm{~B}$ NMR ( 160 MHz , DMF- $d_{7}$ ) $\delta 10.51,8.75,7.00,2.44\left(\mathrm{q},{ }^{2} \mathrm{~J}_{\mathrm{BF}}=48.9 \mathrm{~Hz}\right.$ ), $-0.97 .{ }^{19} \mathrm{~F}$ NMR ( 470 MHz, DMF- $d_{7}$ ) $\delta-132.45,-138.32,-140.40,-143.54\left(\mathrm{~m},{ }^{2} \mathrm{~J}_{\mathrm{FB}}=47.0 \mathrm{~Hz}\right),-151.25$.

The catalyst is still active in the absence of the olefin, but the amount of the methylene transfer agent is reduced.


Figure SI-42. ${ }^{31} \mathrm{P}$ NMR spectra showing the products of the control experiment in the absence of COE.


Figure SI-43. ${ }^{11}$ B NMR spectra showing the products of the control experiment in the absence of COE.


Figure SI-44. ${ }^{19} \mathrm{~F}$ NMR spectra showing the products of the control experiment in the absence of COE.



Figure SI-45. A) Full scan in the positive mode. B) CID on the cation $m / z 645$. Collision gas pressure: 0.5 mTorr, Collision Energy: 25 V (center-of-mass reference frame). C) Scanning in the negative mode allows the detection of the anion $m / z-131$.

D-3. Cyclooctene added 16 h later to the reaction mixture


## D-4. $\mathrm{ICH}_{2} \mathrm{BF}_{3} \mathrm{~K}$ added 16 h later to the reaction mixture



## D-5. Cyclopropanation of COE in deuterated methanol



Detection of traces of methylphosphonium cation, originating from the P-C reductive elimination from the metal center and hydrolysis by ESI/MS in the positive mode, allows to get an idea of the degree of C-H activation of the phosphine ligand.


Figure SI-46. Observed mass distribution of the different isotopologues of methylphosphonium cation formed present in traces at the end of the reaction in MeOH (black line) and $\mathrm{MeOH}-d_{4}$ (blue line).

## IV-REFERENCES

(1) Friedrich, E. C.; Domek, J. M.; Pong, R. Y. J. Org. Chem. 1985, 50, 4640-4642.
(2) Greenwald, R.; Chaykovsky, M.; Corey, E. J. J. Org. Chem. 1963, 28, 1128-1129.
(3) Maruoka, K.; Fukutani, Y.; Yamamoto, H. J. Org. Chem. 1985, 50, 4412-4414.
(4) Ragoussis, V.; Giannikopoulos, A.; Skoka, E.; Grivas, P. J. Agric. Food Chem. 2007, 55, 5050-5052.
(5) Kulshrestha, A.; Marzijarani, N. S.; Ashtekar, K. D.; Staples, R.; Borhan, B. Org. Lett. 2012, 14, 3592-3595.
(6) Chatt, J.; Hussain, W.; Leigh, G. J.; Ali, H. M.; Pickett, C. J.; Rankin, D. A. J. Chem. Soc., Dalton Trans. 1985, 1131-1136.
(7) Baber, R. A.; Orpen, A. G.; Pringle, P. G.; Wilkinson, M. J.; Wingad, R. L. Dalton Trans. 2005, 659-667.
(8) Jackson, J. E.; Misslitz, U.; Jones, M., Jr.; de Meijere, A. Tetrahedron 1987, 43, 653662.
(9) Brinker, U. H.; Lin, G.; Xu, L.; Smith, W. B.; Mieusset, J.-L. J. Org. Chem. 2007, 72, 8434-8451.
(10) Denutte, H.R.G.; Smets, J.; Pintens, A.; Van, A.K.; Vrielynck, F.A.C. (The Procter \& Gamble Company). Perfume Systems, WIPO Patent WO2012177357 A1, May 24, 2012.
(11) Charette, A. B.; Beauchemin, A. Org. React. 2001, 58, 1-415.
(12) Chicca, A.; Caprioglio, D.; Minassi, A.; Petrucci, V.; Appendino, G.; TaglialatelaScafati, O.; Gertsch, J. ACS Chem. Biol. 2014, 9, 1499-1507.
(13) O'Connor, E. J.; Brandt, S.; Helquist, P. J. Am. Chem. Soc. 1987, 109, 3739-3746.
(14) McKee, M.; Haner, J.; Carlson, E.; Tam, W. Synthesis 2014, 46, 1518-1524.
(15) Seitz, D. E.; Zapata, A. Tetrahedron Lett. 1980, 21, 3451-3454.
(16) Lebel, H.; Davi, M.; Díez-González, S.; Nolan, S. P. J. Org. Chem. 2007, 72, 144-149.
(17) Ohta, H.; Kobayashi, N.; Ozaki, K. J. Org. Chem. 1989, 54, 1802-1804.
(18) Fiandanese, V.; Marchese, G.; Naso, F.; Ronzini, L. Synthesis 1987, 11, 1034-1036.
(19) Cunningham P. H.; Warren, L. F. Jr.; Marcy, H. O.; Rosker, M. J. (Rockwell International Corporation). Semi-organic crystals for nonlinear devices. Eur. Pat. Appl. 0693704, 1996.
(20) Paul, F.; Patt, J.; Hartwig, J. F. Organometallics 1995, 14, 3030-3039.
(21) Lee S. G. Magn. Reson. Chem. 2002, 40, 311-312.

## V-NMR SPECTRA AND CALIBRATION CURVES



Figure SI-47. ${ }^{1} \mathrm{H}$ NMR spectra of bicyclo[6.1.o]nonane (2a) with traces of methylenecyclooctane (за).


Figure SI-48. ${ }^{13} \mathrm{C}$ NMR spectra of bicyclo[6.1.o]nonane (2a) with traces of methylenecyclooctane (3a).


Figure SI-49. ${ }^{1} \mathrm{H}$ NMR spectra of 1-methylbicyclo[3.1.o]hexane (2b).


Figure SI-50. ${ }^{13} \mathrm{C}$ NMR spectra of 1-methylbicyclo[3.1.o]hexane (2b)


Figure SI-51. ${ }^{1} \mathrm{H}$ NMR spectra of bicyclo[5.1.o]octane (2c).


Figure SI-52. ${ }^{13} \mathrm{C}$ NMR spectra of bicyclo[5.1.o]octane (2c).


Figure SI-53. ${ }^{1} \mathrm{H}$ NMR spectra of 2,7,7-trimethyltricyclo[4.1.1.0 ${ }^{2,4}$ ]octane (2e).


Figure SI-54. ${ }^{13} \mathrm{C}$ NMR spectra of 2,7,7-trimethyltricyclo[4.1.1.0 ${ }^{2,4}$ ]octane (2e).


Figure SI-55. ${ }^{1} \mathrm{H}$ NMR spectra of (7,7-dimethyltricyclo[4.1.1.0 ${ }^{2,4}$ ]octan-2-yl)methanol (2f).


Figure SI-56. ${ }^{13} \mathrm{C}$ NMR spectra of (7,7-dimethyltricyclo[4.1.1.0 ${ }^{2,4}$ ]octan-2-yl)methanol (2f).


Figure SI-57. ${ }^{1} \mathrm{H}$ NMR spectra of (2-ethyl-1-methylcyclopropyl)methanol (2g).



Figure SI-59. ${ }^{1} \mathrm{H}$ NMR spectra of trans-2-propylcyclopropylmethanol (2h).


Figure SI-6o. ${ }^{13} \mathrm{C}$ NMR spectra of trans-2-propylcyclopropylmethanol (2h).


Figure SI-61. ${ }^{1} \mathrm{H}$ NMR spectra of cis-2-propylcyclopropylmethanol (2i).


Figure SI-62. ${ }^{13} \mathrm{C}$ NMR spectra of cis-2-propylcyclopropylmethanol (2i).


Figure SI-63. ${ }^{1} \mathrm{H} \quad$ NMR spectra of 4,12,12-trimethyl-9methylenetricyclo[8.2.0.0 ${ }^{4,6}$ dodecane (2j).
13C NMR of 4, 12, 12-trimethyl-9-methylenetricyclo[8.2.0,69dodecane

Figure SI-64. ${ }^{13} \mathrm{C}$ NMR spectra of 4,12,12-trimethyl-9methylenetricyclo[8.2.0.0 ${ }^{4,6}$ ]dodecane (2j).


Figure SI-65. ${ }^{1} \mathrm{H}$ NMR spectra of tricyclo[4.2.0.0 ${ }^{2,4}$ ]octan-7-one (2m).



Figure SI-67. ${ }^{1} \mathrm{H}$ NMR spectra of exo-cyclopropanated oxabenzonorbornadiene (2n).


Figure SI-68. ${ }^{13} \mathrm{C}$ NMR spectra of exo-cyclopropanated oxabenzonorbornadiene (2n).


Figure SI-69. ${ }^{1} \mathrm{H}$ NMR spectra of n-heptylcyclopropane (2p).


Figure SI-70. ${ }^{13} \mathrm{C}$ NMR spectra of n-heptylcyclopropane (2p).


Figure SI-71. ${ }^{1} \mathrm{H}$ NMR spectra of n-octylcyclopropane (2q).


Figure SI-72. ${ }^{13} \mathrm{C}$ NMR spectra of n-octylcyclopropane (2q).


Figure SI-73. ${ }^{1} \mathrm{H}$ NMR spectra of trans-1,2-dibutylcyclopropane (2s).


Figure SI-74. ${ }^{13} \mathrm{C}$ NMR spectra of trans-1,2-dibutylcyclopropane (2s).


Figure SI-75. ${ }^{1} \mathrm{H}$ NMR spectra of cis-1,2-dibutylcyclopropane (2t).


Figure SI-76. ${ }^{13} \mathrm{C}$ NMR spectra of cis-1,2-dibutylcyclopropane (2t).


Figure SI-77. ${ }^{1} \mathrm{H}$ NMR spectra of methylenecyclododecane (3k).


Figure SI-78. ${ }^{13} \mathrm{C}$ NMR spectra of methylenecyclododecane


Figure SI-79. ${ }^{1} \mathrm{H}$ NMR spectra of 2-methyloct-1-ene (30a).


Figure SI-8o. ${ }^{13} \mathrm{C}$ NMR spectra of 2-methyloct-1-ene (30a).


Figure SI-81. ${ }^{1} \mathrm{H}$ NMR spectra of 5-methylenedecane (3s).


Figure SI-82. ${ }^{13} \mathrm{C}$ NMR spectra of 5-methylenedecane (3s).


Figure SI-83. ${ }^{13} \mathrm{C}$ NMR spectra of 7,7-dimethyltricyclo[4.1.1. $\mathrm{o}^{2,4}$ ]octane-2carbaldehyde (3f).


Figure SI-84. ${ }^{1} \mathrm{H}$ NMR spectra of potassium bis(ethyleneglycolato)borate (4).


Figure SI-85. ${ }^{\text {11 }}$ B NMR spectra of potassium bis(ethyleneglycolato)borate (4) at 75


Figure SI-86. ${ }^{11} \mathrm{~B}$ NMR spectra of potassium bis(ethyleneglycolato)borate (4) at $75{ }^{\circ} \mathrm{C}$ in the presence of EG- $d_{6}$; DMF- $d_{7}$ :EG- $d_{6}(16: 1)$.


Figure SI-87. ${ }^{1} \mathrm{H}$ NMR spectra of 1,1'-bis(di-o-tolylphosphino)ferrocene (5).


Figure SI-88. ${ }^{13} \mathrm{C}$ NMR spectra of 1,1 '-bis(di-o-tolylphosphino)ferrocene (5).


Figure SI-89. ${ }^{31} \mathrm{P}$ NMR spectra of 1,1'-bis(di-o-tolylphosphino)ferrocene (5).


Figure SI-90. ${ }^{1} \mathrm{H}$ NMR spectra of 1,2-bis(di-o-tolylphosphino)ethane (6).


Figure SI-91. ${ }^{13} \mathrm{C}$ NMR spectra of 1,2-bis(di-o-tolylphosphino)ethane (6).


Figure SI-92. ${ }^{31}$ P NMR spectra of 1,2-bis(di-o-tolylphosphino)ethane (6).


Figure SI-93. ${ }^{1} \mathrm{H}$ NMR spectra of tris(2-methyl-4-fluorophenyl)phosphine (7).


Figure SI-94. ${ }^{13} \mathrm{C}$ NMR spectra of tris(2-methyl-4-fluorophenyl)phosphine (7).


Figure SI-95. ${ }^{31} \mathrm{P}$ NMR spectra of tris(2-methyl-4-fluorophenyl)phosphine (7).


Figure SI-96. ${ }^{19}$ F NMR spectra of tris(2-methyl-4-fluorophenyl)phosphine (7).




Figure SI-99. ${ }^{31} \mathrm{P} \quad$ NMR spectra of $\quad$ Dichlorobis((2-methyl-4-


Figure SI-100. ${ }^{1} \mathrm{H}$ NMR spectra of Complex8.



Figure SI-102. ${ }^{19}$ F NMR spectra of Complex8.


Figure SI-103. ${ }^{11}$ B NMR spectra of Complex8.


Figure SI-104. GC-FID calibration for cyclooctene with undecane as internal


Figure SI-105. GC-FID calibration for bicyclo[6.1.0]nonane with undecane as internal standard.


Figure SI-106. GC-FID calibration for methylenecyclooctene with undecane as internal standard.


Figure SI-107. GC-FID calibration for 1-methylcyclopentene with undecane as


Figure SI-108. GC-FID calibration for 1-methylbicyclo[3.1.o]hexane with undecane


Figure SI-109. GC-FID calibration for cycloheptene with undecane as internal standard.


Figure SI-110. GC-FID calibration for bicyclo[5.1.o]octane with undecane as internal standard.


Figure SI-111. GC-FID calibration for cyclohexene with undecane as internal


Figure SI-112. GC-FID calibration for bicyclo[4.1.0]heptane with undecane as internal standard.


Figure SI-113. GC-FID calibration for $\alpha$-pinene with undecane as internal standard.


Figure SI-114. GC-FID calibration for 2,7,7-trimethyltricyclo[4.1.1.02,4]octane with undecane as internal standard.


Figure SI-115. GC-FID calibration for (-)-myrtenol with undecane as internal standard.


Figure SI-116. GC-FID calibration for (7,7-dimethyltricyclo[4.1.1.0 ${ }^{2,4}$ ]octan-2$\mathrm{vl})$ methanol with undecane as internal standard.


Figure SI-117. GC-FID calibration for 2-methylpent-2-en-1-ol with undecane as internal standard.


Figure SI-118. GC-FID calibration for (2-ethyl-2-methylcyclopropyl)methanol with undecane as internal standard.


Figure SI-119. GC-FID calibration for trans-hexen-1-ol with undecane as internal standard.


Figure SI-120. GC-FID calibration for(trans-2-propylcyclopropyl)methanol with undecane as internal standard.


Figure SI-121. GC-FID calibration for cis-hexen-1-ol with undecane as internal standard.


Figure SI-122. GC-FID calibration for 2-methylenehexan-1-ol with undecane as internal standard.


Figure SI-123. GC-FID calibration for (cis-2-propylcyclopropyl)methanol with undecane as internal standard.


Figure SI-124. GC-FID calibration for 4,12,12-trimethyl-9methylenetricyclo[8.2.0.0 ${ }^{4,6}$ ]dodecane with undecane as internal standard.


Figure SI-125. GC-FID calibration for $\beta$-caryophyllene with undecane as internal standard.


Figure SI-126. GC-FID calibration for cyclododecene with undecane as internal standard.


Figure SI-127. GC-FID calibration for bicyclo[10.1.0]tridecane with undecane as internal standard.


Figure SI-128. GC-FID calibration for methylenecyclododecane with undecane as internal standard.


Figure SI-129. GC-FID calibration for bicyclo[3.2.0]hept-2-en-6-one with undecane as internal standard.


Figure SI-130. GC-FID calibration for tricyclo[4.2.0.02,4]octan-7-one with undecane as internal standard.


Figure SI-131. GC-FID calibration for oxabenzonorbornadiene with undecane as internal standard.


Figure SI-132. GC-FID calibration for cyclopropanated oxabenzonorbornadiene with undecane as internal standard.


Figure SI-133. GC-FID calibration for 1-octene with undecane as internal standard.


Figure SI-134. GC-FID calibration for n-hexylcyclopropane with undecane as internal standard.


Figure SI-135. GC-FID calibration for 1-nonene with undecane as internal standard.


Figure SI-136. GC-FID calibration for n-heptylcyclopropane with undecane as internal standard.


Figure SI-137. GC-FID calibration for 2-methyloct-1-ene with undecane as internal standard.


Figure SI-138. GC-FID calibration for 2-nonene with undecane as internal standard.


Figure SI-139. GC-FID calibration for 1-decene with undecane as internal standard.


Figure SI-140. GC-FID calibration for n-octylcyclopropane with undecane as internal standard.


Figure SI-141. GC-FID calibration for 2-methylnon-1-ene with undecane as internal standard.


Figure SI-142. GC-FID calibration for 1-undecene with undecane as internal standard.


Figure SI-143. GC-FID calibration for trans-5-decene with undecane as internal


Figure SI-144. GC-FID calibration for trans-1,2-dibutylcyclopropane with undecane as internal standard.


Figure SI-145. GC-FID calibration for cis-5-decene with undecane as internal standard.


Figure SI-146. GC-FID calibration for cis-1,2-dibutylcyclopropane with undecane as internal standard.


Figure SI-147. GC-FID calibration for 5-methylenedecane with undecane as internal standard.

