
Supporting information for:

A Swarm Intelligence Platform for Multiblock

Polymer Inverse Formulation Design

Sean P. Paradiso,† Kris T. Delaney,‡ and Glenn H. Fredrickson∗,†,¶,‡

†Department of Chemical Engineering, University of California, Santa Barbara, CA 93016,

United States

‡Materials Research Laboratory, University of California, Santa Barbara, CA 93016,

United States

¶Materials Department, University of California, Santa Barbara, CA 93016, United States

E-mail: ghf@mrl.ucsb.edu

Phone: (805) 893-8308

Surjectivity of SCFT Relaxations

One of the key challenges in inverse design is engineering a robust solution to the forward

problem. In the polymer field theory community, it is well known that a high density

of low energy metastable states often accompany the lowest free energy solution in bulk

calculations of complex polymer blends. In the main text, we argue that while this feature

renders inverse design of bulk morphologies untenable at the present time, lateral confinement

within thin films imposes sufficiently strong surface fields to reduce the density of states

and produce reliable predictions using standard relaxation algorithms. Here, we provide

additional evidence in support of this claim.
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Well-Defined Inverse In Confined Melts

In Figure S1 we summarize results from a blend of two asymmetric diblock polymers relaxed

from 150 random initial conditions either under confinement (top, with strong red block

attractiveness on the template walls) or under periodic boundary conditions (bottom). We

bin the results by free energy, where care was taken to ensure that each histogram bin

indexes a single, unique solution to the SCFT equations. In the unconfined system, at least

8 meta stable states were identified (others were found, but their stability was questionable)

in significant numbers. In contrast, the confined system relaxed to the same state regardless

of the starting field configuration used.

Figure S1: Density of states estimates, binned by mean field free energy, for an A-b-B +
B-b-C diblock polymer blend under confinement (top) and periodic boundaries (bottom)
relaxed from random initial conditions. Each system contains a symmetric blend of diblock
polymers with φ̄AB = 0.5, fABA = 0.7, fBCB = 0.3, and χABN = χACN = χBCN = 17. The
confined system has equal side wall lengths of L = 14.5Rg with χwAN = −30 to simulate
attractive walls for the A (red) component. Note that two periods (four cells) of the periodic
image are shown in the unconfined system to emphasize the bulk morphology.
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Figure S2: Density of states estimate for the final PSO solution reported in the main
text. Each calculation was a blend of two A-b-B-b-C triblock polymers and B homopoly-
mer annealed under confinement. Parameters for each of the 100 random quenches were:
Lx = 11.9Rg, Ly = 12.5Rg, f t0 = {.08, .46, .46}, f t1 = {.36, .64, 0.0}, αt0 = 0.93, αt1 = 1.0,
αh = 0.95, φt0 = 0.31, φt1 = 0.49, φh = 0.20 where t0 and t1 index the triblock chains and h
indicates the homopolymer.

Ensuring Robust PSO Solutions

We stress, however, that the reduction in the density of solutions under confinement discussed

above is not a rigorous feature of the field theory, simply an empirical observation that

has held through our investigation. As formulations become more complex, the density of

defective states may increase, leading to the possibility of fragile solutions identified by the

PSO method. Of course, this issue may be avoided by engineering the fitness metric to bias

the algorithm towards more robust solutions. For instance, replacing the current forward

problem definition (run an SCFT relaxation from a random seed and compute its pattern

error) with a number of parallel SCFT relaxations from different random seeds and reporting

the average pattern error. An example from the main text is illustrated in Figure S2 where

the final best solution identified by PSO was subsequently relaxed from 100 different random

initial conditions, and the results of the calculation binned by free energy. While the desired

state is both well populated in the histogram and features the lowest free energy, it is still a
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fragile solution, evidenced by the relative likelihood of relaxing the desired solution from a

random seed.

SCFT method

The intensive SCFT Hamiltonian of a weakly compressible melt with Flory-Huggins inter-

actions between each pair of monomer species is
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where β = 1/kBT , C = ρ0R
3
g/N , N is a reference chain length, αK = NK/N is the relative

length of chains of type K, Rg =
√
N/6b is the radius of gyration for an ideal continu-

ous Gaussian chain, r′ = r/Rg, χjk are the Flory-Huggins interaction parameters, ζN is a

harmonic compressibility penalty, and Ṽ = V/R3
g is the normalized cell volume. All concen-

tration fields are normalized so that φj(r
′) = ρj(r

′)/ρ0 is the local volume (blend) fraction

of monomers of type j and φK = nKNαK/(V ρ0) is the spatially-averaged volume fraction

of chains of type K. The fields Wj(r
′) are self-consistently determined auxiliary potentials

introduced to decouple the multibody interactions in the original particle-based model, and

QK

[
WK(r′)

]
is the partition function of a chain of type K. Note that all simulations are per-

formed in two dimensions in laterally confined cells, modelled using the masking methodS1,S2

that incorporates a fixed concentration of wall particles φw(r′) into the interaction and com-

pressibility terms of equation (1). The pseudo-spectral methods we employ in solving the
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SCFT equations are well established and we direct the interested reader to the existing

literatureS3–S5 for details.

Error metric definition

In order to perform global optimization, we require a scalar function of the equilibrium state

that measures some distance between predicted and target morphology. Here, we define a

metric based on a simple bitmask comparison. As an input to the optimization algorithm,

nspecies binary matrices are provided, corresponding to the desired spatial distribution of the

nspecies distinct monomer types in the system. The pattern error Ω is determined according

to:

Ω =
∑
r

nspecies∑
i=1

|ρ∗i (r)− ρ̂i(r; x)|2 , (2)

where i indexes monomer types, ρ∗i (r) is the thresholded target monomer distribution, and

ρ̂i(r; x) is the (thresholded) monomer distribution predicted by SCFT under the conditions

described by the design vector x, defined below.

Composition Constraints

In order for the SCFT model to be fully specified, we must supply state parameters x, in-

cluding the interaction matrix elements χij, the block fractions and architecture of all chains

in the system, along with the overall blend composition. The requirements on valid chain

specifications (namely the species block fractions fi > 0 ∀i and
∑

i fi = 1.0) render the

raw block fractions impractical variables for unconstrained optimization, so a transforma-

tion is applied here. For linear block polymers with nblocks blocks, we may simply define

βKi∈{1,...nblocks−1} = fKi /f
K
i+1 where fKi is the fractional length of the ith block of chain K.

One may then optimize over the logarithm of these fractional lengths γKi = log(βKi ), so that

the chain architecture transitions smoothly between a homopolymer and all possible multi-

block polymers, preserving a pre-determined maximum number of blocks, nblocks, and order

S5



of block identities, across the range γ ∈ (−∞,∞). The same approach is also used for the

blend composition by defining βφ̄K = φK/φK+1 (the method for inverting this relationship is

provided below). With these transformations in place, a candidate blend formulation may

be characterized by the numerical vector x = {χijN . . . , αK . . . , βKi . . . , β
φ̄
K , · · · , Lx, Ly}. We

note that the compressibility parameter ζN is not included in this parameter set, as it is

a numerical parameter to ensure near incompressibility of the copolymer melt and is held

fixed at ζN = 1000 for all calculations reported here.

Computing Chain Compositions from β Parameters

Computing the associated block fractions fi from a vector of β values can be achieved by

solving the linear system:
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The same transformation is applied to the overall blend composition, the distribution of

which is subject to identical constraints as the block fractions and leads to the same linear

system.

Specific Constraints Used in Example Calculations

Heterogeneous mixed spot and line pattern — Limiting ranges were imposed on

the search space corresponding to diblock fraction fA ∈ [0.1, 0.5], blend composition φAB ∈

[0.7, 1.0], template size L ∈ [10, 20], and chain lengths α ∈ [0.5, 2.0]. The confining well used

in each SCFT simulation was constrained to be square for simplicity, with Lx = Ly = L,

and with walls that are selective to the matrix component (B), χwBN = −30.
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Embedded squares — In order to accelerate the search, reasonable constraints were

applied to the template size and relative chain length parameters so that Lx ∈ [11, 14], Ly ∈

[12, 16], αt0, αt1 ∈ [0.9, 1.3], and αBh ∈ [0.5, 2.0]. Importantly, the parameters associated

with the triblock architectures (βt00,1, β
t1
0,1) were practically unconstrained, with γ ∈ [−4, 4].
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