Supporting Information

Effect-directed discovery of bioactive compounds followed by highly targeted characterization, isolation and identification, exemplarily shown for *Solidago virgaurea*

Ágnes M. Móricz^{1,2*}, Péter G. Ott¹, Tim T. Häbe², András Darcsi³, Andrea Böszörményi³, Ágnes Alberti³, Dániel Krüzselyi¹, Péter Csontos⁴, Szabolcs Béni³, Gertrud E. Morlock²

¹Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman O. Str. 15, 1022 Budapest, Hungary

²Interdisciplinary Research Center (IFZ) and Institute of Nutritional Science, Department of Food Sciences, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany

³Department of Pharmacognosy, Faculty of Pharmacy, Semmelweis University, Üllői Str. 26, 1085 Budapest, Hungary

⁴Institute for Soil Sciences and Agricultural Chemistry, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman O. Str. 15, 1022 Budapest, Hungary

*Corresponding author. Tel.: (0036) 14877515; Fax: (0036) 14877555; E-mail address: moricz.agnes@agrar.mta.hu (Á.M. Móricz)

Table of contents

No.	Legend	Page		
Table S-1	NMR spectral data and structure of Sv1 and Sv2	S-3		
Figure S-1	2D-HPTLC separation for compound assignment with <i>n</i> -hexane – isopropyl acetate – acetic acid (83:14:3, v/v) for the first dimension and with <i>n</i> -hexane – acetone (17:3, v/v) for the second dimension, documented at UV 254 nm.			
Figure S-2	Mass spectrum of the Sv4 zone in the negative ionization mode, showing the deprotonated molecule at m/z 279.	S-5		
Figure S-3	SPME-GC-EI-MS (a) TIC chromatogram of European golden rod root extract and (b) mass spectrum at 16.8 min that was identical to those at 16.7, 16.9 and 17.3 min.	S-6		
Figure S-4	2D-HPTLC separation for isomer proof (artefact) using n -hexane – acetone 17:3 (v/v) in both dimensions, documented at UV 254 nm.	S-7		
Figure S-5	HPTLC separation of the flash chromatography fractions detected at (a) UV 254 nm and (b) after the <i>B. subtilis</i> bioassay.	S-8		
Figure S-6	Luminometric detection $(n = 3)$ of the inhibiting activity of European golden rod root extract and its main bioactive component Sv1 against (a) luminescent <i>Pseudomonas syringae</i> pv. <i>maculicola</i> and (b) <i>Aliivibrio fischeri</i> ; their solvent ethanol was used as negative control.	S-9		
Figure S-7	(a) ¹ H NMR and (b) ¹³ C NMR spectra of Sv1 containing 23% Sv2.	S-10		
Figure S-8	Positive ion MS ² spectrum and proposed fragmentation pattern of matricaria ester.	S-11		

Table S-1. NMR spectral data and structure of Sv1 and Sv2

	Sv1		Sv2		
no.	¹ H (ppm)	¹³ C (ppm)	¹ H (ppm)	¹³ C (ppm)	
1	-	166.36	-	167.27	
2	6.29 (d, J = 11.7 Hz, 1H)	131.84	6.38 (d, J = 15.9 Hz, 1H)	133.40	
3	6.38 (dd, <i>J</i> = 11.7, 0.7 Hz, 1H)	123.17	6.86 (dd, <i>J</i> = 15.9, 0.7 Hz, 1H)	124.95	
4	-	78.87	-	78.98	
5	-	85.90	-	82.81	
6	-	78.50	-	78.00	
7	-	83.92	-	83.26	
8	5.66 (m, 1H)	109.66	5.64 (m, 1H)	109.42	
9	6.29 (m, 1H)	145.14	6.30 (m, 1H)	145.69	
10	1.93 (dd, $J = 6.9$, 1.7 Hz, 3H)	16.64	1.92 (dd, $J = 6.6, 1.7 \text{ Hz}, 3\text{H}$)	16.76	
11	3.762 (s, 3H)	52.10	3.758 (s, 3H)	52.50	
structure and name	Z 3 5 6 7 CH ₃ CH ₃ CH ₃		H ₃ C O		
2	2Z,8Z-matricaria ester		2E,8Z-matricaria ester		

Figure S-1. 2D-HPTLC separation for compound assignment with n-hexane – isopropyl acetate – acetic acid (83:14:3, v/v) for the first dimension and n-hexane – acetone (17:3, v/v) for the second dimension, documented at UV 254 nm.

Figure S-2. Mass spectrum of the Sv4 zone in the negative ionization mode, showing the deprotonated molecule at m/z 279.

Figure S-3. SPME-GC-EI-MS (a) TIC chromatogram of European golden rod root extract and (b) mass spectrum at 16.8 min that was identical to those at 16.7, 16.9 and 17.3 min.

Figure S-4. 2D-HPTLC separation for isomer proof (artefact) using n-hexane – acetone 17:3 (v/v) in both dimensions, documented at UV 254 nm.

Figure S-5. HPTLC separation of the flash chromatography fractions, detected at (a) UV 254 nm and (b) after the *B. subtilis* bioassay.

Figure S-6. Luminometric detection (n = 3) of the inhibiting activity of European golden rod root extract and its main bioactive component Sv1 against (a) luminescent *Pseudomonas syringae* pv. *maculicola* and (b) *Aliivibrio fischeri*; their solvent ethanol was used as negative control.

Figure S-7. (a) ¹H NMR and (b) ¹³C NMR spectra of Sv1 containing 23% Sv2.

Figure S-8. Positive ion MS² spectrum and proposed fragmentation pattern of matricaria ester.