Structural Determinants of Improved Fluorescence in a Family of Bacteriophytochrome-based Infrared Fluorescent Proteins: Insights from Continuum Electrostatic Calculations and Molecular Dynamics Simulations.

Supplementary Information

Mikolaj Feliks, ${ }^{1,2,3}$ Céline Lafaye, ${ }^{1,2,3}$ Xiaokun Shu, ${ }^{4,5}$ Antoine Royant, ${ }^{1,2,3,6, \dagger}$ Martin Field ${ }^{1,2,3, \dagger}$

${ }^{1)}$ Université Grenoble Alpes, IBS, F-38044 Grenoble, France
${ }^{2)}$ CNRS, IBS, F-38044 Grenoble, France
${ }^{3)}$ CEA, IBS, F-38044 Grenoble, France
${ }^{4)}$ Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158, USA
${ }^{5)}$ Cardiovascular Research Institute, University of California, San Francisco, California 94158, USA
${ }^{6)}$ European Synchrotron Radiation Facility, 6 Rue Jules Horowitz, Grenoble, 38043, France
${ }^{\dagger}$) to whom correspondence should be addressed; e-mail: antoine.royant@ibs.fr, martin.field@ibs.fr

July 18, 2016

Contents

List of Figures 3
List of Tables 5S1 Statistical distribution of the important dihedral angles of the chro-mophore.20
S2 Calculations of different protonation forms of biliverdin in the gas phase. 25
S3 Derivation of parameters for the deprotonated chromophore. 28S4 Chromophore dynamics and migration of water molecules in the situa-tion at neutral pH and with the B -deprotonated chromophore.41
References 49

List of Figures

$$
\begin{aligned}
& \text { S1 Sequence alignment between the chromophore-binding domain of the bac- } \\
& \text { teriophytochrome from Deinococcus radiodurans } \operatorname{DrCBD} \text { and infrared flu- } \\
& \text { orescent proteins. } 6
\end{aligned}
$$

S2 Comparison between the chromophore environment in Dr CBD and IFP1.0. 7
S3 Experimental pH dependence of fluorescence for different IFPs. 8
S4 Labeling of the important atoms and dihedral angles of the chromophore. 9
S5 Time evolution of the root-mean-square deviations of the chromophore atoms. 10
S6 Titration curves for residues at the interface between the monomers, cal- culated using the structures of complete dimers. 11
S7 Titration curves for residues at the interface between the monomers, cal- culated using the structures of monomers. 12
S8 Probabilities of occurrence of different protonation forms of His260, Asp207 and His207. 13
S9 Statistical distributions of dihedral angles 1-3 of the chromophore for all proteins collected from molecular dynamics simulations. 14
S10 Statistical distributions of dihedral angles 4-6 of the chromophore for all proteins collected from molecular dynamics simulations. 15
S11 Statistical distributions of dihedral angles 1-3 of the chromophore for all proteins collected from molecular dynamics simulations. 16
S12 Statistical distributions of dihedral angles 4-6 of the chromophore for all proteins collected from molecular dynamics simulations. 17
S13 Superposition of the calculated geometries of the fully protonated and B- deprotonated chromophore. 27
S14 Energy profiles for rotations around the four dihedral angles of the chro- mophore 30

S15 Topology file for biliverdin deprotonated at pyrrole ring B. 31
S16 Parameter file for biliverdin deprotonated at pyrrole ring B. 35
S17 Statistical distributions of the six dihedral angles of the chromophore for all proteins collected from molecular dynamics simulations. 45

S18 Mobility of water molecules inside the chromophore binding pocket at $\mathrm{pH}=7$ and with the B-deprotonated chromophore.47

List of Tables

S1 Distributions of the six dihedral angles for the fully protonated chromophore at neutral pH 18
S2 Distributions of the six dihedral angles for the fully protonated chromophore at low pH 19
S3 Distributions of the six dihedral angles for the chromophore deprotonated at the B pyrrole ring 46
S4 Animations showing key events during the molecular dynamics simulations. 48

Figure S1: Sequence alignment between the chromophore-binding domain of the bacteriophytochrome from Deinococcus radiodurans $\operatorname{Dr} \mathrm{CBD}$ and infrared fluorescent proteins IFP1.0, IFP1.1, IFP1.2, IFP1.4 and IFP2.0. The alignment was performed via the ClustalW server ${ }^{1}$ and the figure was prepared with ESPript. ${ }^{2}$

Figure S2: Comparison between the chromophore environment in DrCBD (PDB entry code: 2O9C, dark grey) and IFP1.0 (PDB entry code: 3S7O, magenta). The figure was prepared with PyMOL. ${ }^{3}$

Figure S3: pH dependence of fluorescence for IFP1.1 (blue), IFP1.2 (green), IFP1.4 (cyan) and IFP2.0 (yellow). Fluorescence excitation was set at 640 nm and fluorescence emission was monitored between 660 and 800 nm .

Figure S4: Fully protonated biliverdin chromophore as seen in the binding pocket of $D r \mathrm{CBD}$. Important atoms discussed in the text are labeled. Hydrogens at titratable positions are labeled in blue. The other atoms are labeled in black. The dihedral angles discussed in the text are numbered in the counterclockwise direction starting from ring A: 1: N_C, C4C, CHD, C1D; 2: C4C, CHD, C1D, N_D; 3: N_D, C4D, CHA, C1A; 4: C4D, CHA, C1A, N_A; 5: N_A, C4A, CHB, C1B; 6: C4A, CHB, C1B, N_B;

Figure S5: Time evolution of the root-mean-square deviations of the chromophore atoms in different proteins with respect to the final geometry from the heating stage. Two situations are shown: a) neutral pH ; and b) low pH .

Figure S6: Titration curves of different protonation forms of titratable residues at the interface between the monomers (Arg100, His138, Arg141, Glu148, and Glu306). The calculations were performed on the structure of the complete dimer; only the curves for monomer A are shown. Solid and dashed lines represent the situations with the fully protonated and B-deprotonated chromophore, respectively.

Figure S7: Titration curves of different protonation forms of titratable residues at the interface between the monomers (Arg100, His138, Arg141, Glu148, and Glu306). The calculations were performed on the structure of the isolated monomer A; monomer B has been removed from the model. Solid and dashed lines represent the situations with the fully protonated and B-deprotonated chromophore, respectively.

Figure S8: Probabilities of occurrence, calculated as a function of pH , of different protonation forms of His260, Asp207 and His207. The plots of the fully deprotonated forms of the histidines were omitted for clarity, since their probabilities of occurrence were calculated to be always zero. Solid and dashed lines represent the situations with the chromophore fixed in its fully protonated and B-deprotonated form, respectively. If the chromophore is fully protonated, His260 remains ϵ-protonated. Otherwise, His260 shows an irregular protonation behavior, where two protonation forms dominate, ϵ - or fully protonated, depending on the pH and the particular protein. Asp207 displays a typical protonation behavior. His 207 has its midpoint $\mathrm{p} K_{\mathrm{a}}$ in the range of $4<\mathrm{pH}<6$, where the fluorescence is known to rapidly increase. The probability curves for Asp207 and His207 show only small displacements depending on the protonation state of the chromophore. The probability curves of IFP 1.1 and IFP 1.2 align closely, because these mutant proteins differ by only a single mutation in a region remote from the chromophore.

Figure S9: Statistical distributions of dihedral angles 1-3 of the chromophore for all proteins. The simulations were performed at neutral pH and with the chromophore in its fully protonated form. Three distributions are shown for each dihedral, calculated from the full ($0-10 \mathrm{~ns}$) simulation, and from the first ($0-5 \mathrm{~ns}$) and second ($5-10 \mathrm{~ns}$) halves. See Fig. 3 in the paper for the definitions of the dihedrals.

Figure S10: Statistical distributions of dihedral angles 4-6 of the chromophore for all proteins. The simulations were performed at neutral pH and with the chromophore in its fully protonated form. Three distributions are shown for each dihedral, calculated from the full ($0-10 \mathrm{~ns}$) simulation, and from the first ($0-5 \mathrm{~ns}$) and second ($5-10 \mathrm{~ns}$) halves. See Fig. 3 in the paper for the definitions of the dihedrals.

Figure S11: Statistical distributions of dihedral angles 1-3 of the chromophore for all proteins. The simulations were performed at low pH and with the chromophore in its fully protonated form. Three distributions are shown for each dihedral, calculated from the full ($0-10 \mathrm{~ns}$) simulation, and from the first ($0-5 \mathrm{~ns}$) and second ($5-10 \mathrm{~ns}$) halves. See Fig. 3 in the paper for the definitions of the dihedrals.

Figure S12: Statistical distributions of dihedral angles 4-6 of the chromophore for all proteins. The simulations were performed at low pH and with the chromophore in its fully protonated form. Three distributions are shown for each dihedral, calculated from the full ($0-10 \mathrm{~ns}$) simulation, and from the first ($0-5 \mathrm{~ns}$) and second ($5-10 \mathrm{~ns}$) halves. See Fig. 3 in the paper for the definitions of the dihedrals.
Table S1: Distributions of the six dihedral angles of the chromophore, collected from the molecular dynamics simulations over the time span of 10 ns . The simulations were done at neutral pH . There are three lines for each protein. These correspond to the full ($0-10 \mathrm{~ns}$), first half ($0-5 \mathrm{~ns}$), and second half ($5-10 \mathrm{~ns}$) of the simulations, respectively. The color codes to indicate which μ values are nearest planarity and which σ values are nearest zero, compared to the simulations at low pH , are green ($0-10 \mathrm{~ns}$), blue ($0-5 \mathrm{~ns}$), and red ($5-10 \mathrm{~ns}$), respectively. See the caption to Tab. 3 in the main text for further description and Fig. 3 for the numbering of the dihedrals.

Dihedral \rightarrow Protein \downarrow	1		2		3		4		5		6	
	μ	σ										
Dr CBD	14.6	8.5	13.1	9.0	2.7	8.3	6.6	8.2	15.3	9.5	-140.0	8.5
	17.1	7.3	13.0	8.6	1.2	8.6	6.1	8.0	15.3	9.2	-140.9	8.4
	12.0	8.9	13.1	9.4	4.1	7.7	7.1	8.3	15.2	9.7	-139.2	8.5
IFP1.0	10.4	8.5	9.0	9.2	1.3	8.2	5.8	8.0	9.1	9.5	-138.5	8.8
	9.6	8.8	8.5	9.4	1.0	8.2	5.8	8.1	9.3	9.5	-140.3	8.9
	11.1	8.2	9.6	9.0	1.7	8.2	5.9	8.0	9.0	9.5	-136.7	8.3
IFP1.1	11.1	7.5	11.7	8.4	7.3	7.9	3.8	7.9	8.2	8.9	-133.4	8.8
	11.2	7.6	10.4	8.5	6.0	8.2	4.7	8.1	8.3	9.1	-135.4	9.0
	11.1	7.3	13.0	8.1	8.6	7.5	3.0	7.7	8.2	8.8	-131.4	8.2
IFP1.2	11.6	7.3	11.8	8.4	7.6	7.7	4.5	8.0	7.6	9.0	-133.0	8.3
	11.7	7.3	10.1	7.9	7.4	7.9	5.5	8.0	7.5	9.1	-133.4	8.5
	11.4	7.3	13.5	8.5	7.8	7.5	3.4	7.8	7.7	8.8	-132.7	8.2
IFP1.4	8.3	7.7	4.2	8.6	1.2	8.9	4.8	8.8	11.0	9.1	-137.0	8.6
	9.8	7.5	5.3	8.5	0.5	9.2	3.5	9.2	11.3	9.1	-136.8	8.7
	6.8	7.7	3.1	8.5	1.8	8.5	6.2	8.2	10.7	9.0	-137.3	8.6
IFP2.0	7.5	7.5	2.2	8.3	5.3	9.1	9.6	8.1	13.8	9.0	-134.0	9.2
	7.4	7.6	2.3	8.3	3.6	9.1	9.7	8.2	14.0	8.9	-135.0	9.0
	7.7	7.5	2.0	8.2	7.1	8.8	9.6	8.0	13.6	9.0	-132.9	9.3

Table S2: Distributions of the six dihedral angles of the chromophore, collected from the molecular dynamics simulations over the time span of 10 ns . The simulations were done at low pH . There are three lines for each protein. These correspond to the full $(0-10 \mathrm{~ns})$, first half ($0-5 \mathrm{~ns}$), and second half ($5-10 \mathrm{~ns}$) of the simulation, respectively. The color codes to indicate which μ values are nearest planarity and which σ values are nearest zero, compared to the simulations at neutral pH , are green $(0-10 \mathrm{~ns})$, blue ($0-5 \mathrm{~ns}$), and red ($5-10 \mathrm{~ns}$), respectively. See the caption to Tab. 3 in the main text for further description and Fig. 3 for the numbering of the dihedrals.

S1 Statistical distribution of the important dihedral angles of the chromophore.

In the present section, we analyze in detail the intrinsic dynamics of the protein-bound biliverdin in different IFPs by focussing on the six dihedral angles of the chromophore located between the pyrrole rings defined in Fig. 3.

In the main text, Fig. 4 and Tab. 3 show the plotted distributions and fitted normal distribution parameters, μ and σ, for each of the proteins calculated from the last 5 ns of the 10 ns molecular dynamics simulations. By contrast, data from the complete simulations, together with separate analyses of the first and second halves, are given in Figs. S9-S12 and Tabs. S1 and S2.

Initially we consider briefly the differences between the dihedral distributions from the first and second halves of the molecular dynamics simulations. Overall, a perusal of Figs. S9-S12 and Tabs. S1 and S2 indicates that the distributions between the two halves are consistent, and that any trends that are present, such as for dihedral angles 1 and 2 (see below), are maintained. The principle exception to this observation is for the simulation of IFP 1.0 at low pH . At the start of the simulation, dihedral angles $\mathbf{1}$ and $\mathbf{3}$ are close to planarity, but they undergo a concerted shift to non-planarity in the second half of the simulation, adopting means of 15.9 and -8.1°, respectively.

In what follows we shall concentrate on the distributions from the last 5 ns of the molecular dynamics simulations, and we start with the simulations performed at neutral pH . As seen on Fig. 4a in the main text, the differences between the distributions for the two dihedral angles located between the chromophore rings A and B , labeled 1 and $\mathbf{2}$, are quite pronounced. Ring A is adjacent to the covalent binding site of the chromophore to Cys24. In DrCBD, dihedral 1 angle shows a mean value of 12.0°, indicating a noticeable distortion of planarity (see Tab. 3 for the comparison of the calculated statistical parameters of each dihedral in all proteins). In IFP1.0, which is only a weakly fluores-
cent protein, dihedral $\mathbf{1}$ is only slightly shifted towards planarity by 1.0° in comparison to the parent protein. In the most fluorescent proteins, the mean value of dihedral $\mathbf{1}$ is further reduced to 6.8° in IFP1.4 and 7.7° in IFP2.0, which indicates a dihedral about 40% more planar than in the parent protein. For the generated models of IFP1.1 and IFP1.2, the mean values were calculated to be 11.1° and 11.4°, respectively. While the mean parameter of dihedral $\mathbf{1}$ is shifted depending on the studied protein, the simulations show only small decreases in the variance parameter. For example, the flexibility of the chromophore region involving dihedral $\mathbf{1}$ was calculated to be 8.9 and 7.5 for $\operatorname{Dr} \mathrm{CBD}$ and IFP2.0, respectively. Thus, the flexibility of the chromophore fragment involving dihedral 1 seems to be comparable in all proteins. As indicated in the main manuscript, the observed differences in the planarity can be related to the migration of water molecules in the vicinity of the chromophore.

Dihedral angle $\mathbf{2}$ displays the most significant differences in planarity, depending on the protein. The mean parameter for dihedral 2 was calculated to be 13.1° in $\operatorname{Dr} \mathrm{CBD}$ and is already reduced to 9.6° in IFP1.0. Dihedral 2 shows a significant improvement of planarity in IFP1.4 and to a greater extent in IFP2.0. Namely, the μ parameter was calculated to be as low as 3.1° in IFP1.4 and 2.0° in IFP2.0. For IFP1.1 and IFP1.2, dihedral 2 has similar values to that of the parent protein ($\mu=13.0$ and 13.5°, repectively). However, the models for these proteins were generated by substitution of the relevant residues in $\operatorname{Dr} \mathrm{CBD}$, since the corresponding crystal structures were not available. Hence, one has to allow for a wider margin of uncertainty when considering these two proteins. Similarly to dihedral $\mathbf{1}$, the rigidity of this dihedral is only slightly reduced during the transition from the parent protein ($D r \mathrm{CBD}$) to the other IFPs. The variance parameter was calculated to be $\sigma=9.4$ in DrCBD and changes to only $\sigma=8.2$ in IFP2.0.

Compared to dihedrals 1 and $\mathbf{2}$, the dynamics of the other four dihedrals show lesser dependence on the protein. Dihedral 3, which is part of the link between rings B and C, has a mean value of 4.1° in DrCBD. The value is reduced to 1.7° in IFP1.0 and 1.8° in

IFP1.4, but eventually becomes 7.1° in IFP2.0. For the models of the intermediate proteins, dihedral 3 was calculated to be even less planar than in the other proteins ($\mu=8.6^{\circ}$ and $\mu=7.8^{\circ}$ for IFP1.1 and IFP1.2, respectively). Dihedral 4 shows a rather irregular dynamics and its out-of-plane character generally increases on going from Dr CBD to IFP2.0. A similar behavior is seen in the case of dihedral 5, where there is a considerable tilt between rings C and D . The μ parameter of dihedral 5 was calculated to be 15.2° in DrCBD and 13.6° in IFP2.0, despite some improvement of planarity in the intermediate proteins. Finally, dihedral 6 shows a similar behavior to dihedrals 4 and 5 as its planarity decreases from $\mu=-139.2^{\circ}$ in the parent protein to $\mu=-132.9^{\circ}$ in IFP2.0, whereas its rigidity again does not change much. A somewhat similar trend in the dynamics of dihedral 6 has been reported in the earlier study on phytochromes, where a greater tilt was observed for the mutant protein. ${ }^{4}$

From the simulations performed at neutral pH , we note that the flexibility of all dihedrals remains similar regardless of the protein. Namely, the σ parameter indicating the flexibility of the particular fragment of the chromophore was always calculated to be within the range of $\sigma=7.3$ to $\sigma=9.7$. Fragments of the chromophore involving dihedrals $\mathbf{3}$ to $\mathbf{6}$ are located closer to the center of the protein than the fragments involving dihedrals 1 and 2.

We next discuss the simulations performed at low pH . Protonation of different groups in the protein may disfavor the planar geometry of the chromophore, leading to the eventual loss of fluorescence. Similarly to the situation at neutral pH , dihedral $\mathbf{1}$ is significantly distorted in $\operatorname{Dr} \mathrm{CBD}\left(\mu=14.6^{\circ}\right)$. On going from the parent protein to the fluorescent mutants, the improvement of planarity is not as pronounced as at neutral pH . The two most fluorescent proteins show dihedral 1 more tilted ($\mu=6.9^{\circ}$ for IFP1.4 and $\mu=10.7^{\circ}$ for IFP2.0) than in the intermediate proteins (for example, μ was calculated to be 5.2° for IFP1.1).

Dihedral 2 has a considerable tilt of $\mu=15.9^{\circ}$ in $\operatorname{Dr} \mathrm{CBD}$ but this reduces markedly
to $\mu=8.2^{\circ}$ in IFP1.0. In contrast to the situation at neutral pH , the mean values of dihedral 2 for IFP1.1 and IFP1.2 are similar to those of IFP1.0, and were calculated to be 8.7° and 7.8°, respectively. In the most fluorescent proteins, the tilt is further slightly reduced to 6.0° for IFP1.4 and 4.3° in IFP2.0. The orientation of rings A and B of the chromophore seems more planar at neutral pH if one considers the parent protein and the most fluorescent proteins. However, the trend is reversed for the intermediate proteins, in which dihedral $\mathbf{2}$ is less tilted at low pH . For both dihedrals, there do not appear to be significant differences in flexibility between low and high pH .

At lower pH , the dynamic behavior of the remaining four dihedrals is again less systematic, reinforcing the idea that the planarity of dihedrals $\mathbf{1}$ and $\mathbf{2}$ is most critical in improving the fluorescence of the chromophore. The flexibility of dihedral $\mathbf{3}$ varies to some extent depending on the protein, but does not show the same clear trend that is visible for dihedrals $\mathbf{1}$ and 2. Interestingly, the overall flexibility of dihedral $\mathbf{3}$ is increased in the situation at lower pH , with the exception of $\operatorname{Dr} \mathrm{CBD}$ and IFP1.4, where the difference between neutral and lower pH is only slight. For example, the calculated variance parameter for IFP2.0 is $\sigma=8.8$ at neutral pH and $\sigma=12.5$ at low pH . The trend for dihedral 4 is somewhat mixed with it being more tilted at low pH for the parent protein, and for IFP1.1 and IFP1.4, and also more flexible in four out of six cases. Dihedral 5 shows a rather significant displacement from planarity, which is related to the orientation of ring D of the chromophore. The tilt is also greater now than in the situation at neutral pH , with the exception of IFP2.0. For DrCBD, the dihedral's mean was calculated to be 15.2° at neutral pH and 18.7° at low pH . For IFP2.0, this parameter is 13.6 and 10.9 for neutral and low pH , respectively. In both acidities, there is a visible trend towards planarity for dihedral 5 on going from the parent protein towards more fluorescent proteins. Finally, the dynamics of dihedral 6 is reversed compared to the case at $\mathrm{pH}=7$. With the exception of IFP1.1 and IFP1.4, dihedral 6 at lower pH was predicted to be closer to its planar conformation defined as -180°.

In summary, the performed simulations suggest that there is a connection between the introduced mutations and the dynamics of the chromophore. Dihedral angles 1 and $\mathbf{2}$ are shown to be generally the most distorted. Nevertheless, because of the additional mutations, the two dihedrals can be gradually planarized and restrained to some extent, especially in IFP1.4 and IFP2.0. Similar but less pronounced trends are visible for the other dihedrals. The mutations increasingly enforce the planarity of the chromophore and reduce motion around the conjugated bonds important for fluorescence. We note that not all mutations are beneficial for the improved planarity and rigidity of the chromophore. Some of the effects observed for IFP1.1 and IFP1.2 may result from the fact that the models representing these proteins were generated by modifying the structure of the parent protein and thus may not be fully reliable. Although the dynamics of the chromophore are somewhat altered after changing the pH from neutral to low, it is difficult to definitely pinpoint the factors responsible for the reported loss of fluorescence. Concerning the planarity of the chromophore, at low pH some of the dihedrals become more distorted compared to the situation at neutral pH , most importantly 1 and $\mathbf{2}$. Interestingly, in four out of the six cases the flexibility of the dihedrals is increased at low pH (Tab. 3), although the observable differences in comparison to the situation at neutral pH are rather small. The overall decrease of the chromophore's rigidity at low pH may probably lead to some reduction of fluorescence, but we are not convinced that this can explain the complete loss of the fluorescence properties, as seen from the measurements performed for IFP1.4 ${ }^{5}$ and the other proteins (Fig. S3). We propose that, in addition to the increased flexibility of the chromophore, as seen in our molecular dynamics simulations, another mechanism might be involved in the reduction of fluorescence at low pH , for example quenching upon chromophore deprotonation or denaturation of the protein.

S2 Calculations of different protonation forms of biliverdin in the gas phase.

The key difficulty in the computational treatment of nonstandard titratable groups, such as the biliverdin chromophore, is that the $\mathrm{p} K_{\mathrm{a}}$ values of these groups in aqueous solution are often not known. For a known $\mathrm{p} K_{\mathrm{a}}$ in aqueous solution, i.e. $\mathrm{p} K_{\mathrm{a}}^{\mathrm{aq}}$, one can calculate its shift while moving the protonatable group from the solvent phase to the protein. The calculation is usually done by using the Poisson-Boltzmann electrostatic model, like the one employed in the present study. ${ }^{6}$ These $\mathrm{p} K_{\mathrm{a}}^{\mathrm{aq}}$ values, if not available from experiment, can be estimated computationally by using a variety of methods. ${ }^{7,8}$ However, reliable calculations of $\mathrm{p} K_{\mathrm{a}}^{\mathrm{aq}}$ values represent a rather difficult task. In the present study, we took a different approach, in which we simply fixed the protonation state of the protein-bound biliverdin to its either fully protonated or B-deprotonated form during the electrostatic calculations.

The choice of the B-deprotonated form was based on the comparison of the vacuum energies of all deprotonated forms of the chromophore, calculated using the BP density functional theory method and the $\operatorname{TZV}(2 \mathrm{~d})$ basis sets (TZV (p) for hydrogens). The Bdeprotonated form was always the lowest in energy and the A-, C- and D-deprotonated forms were higher in energy by, respectively, 1.8, 5.9 and $29.1 \mathrm{kcal} / \mathrm{mol}$. Thus, ring B was assumed to be the most likely deprotonation site. From our vacuum calculations, we note that the conformation of the isolated chromophore is dependent on the protonation of its pyrrole rings (Fig. S13). The A-, B- and C-deprotonated forms display a relatively planar geometry compared to the D - deprotonated or fully protonated forms. Removal of a pyrrole proton from ring A, B or C reduces the mutual repulsion between the rings, which is due to the confined inner protons. It also introduces a hydrogen-bond acceptor, to which intramolecular hydrogen bonds can be formed, further stabilizing the planar structure of the chromophore. For example, removal of hydrogen B enables intramolecular hydrogen
bonds between the pyrrole nitrogen of ring B and the hydrogens from rings A and C. By contrast, the geometries of the D-deprotonated and fully protonated forms show three positively charged hydrogens on rings A, B and C in rather close contact. Thus, in the optimized geometry of the fully protonated chromophore, the closest distance, of $2.2 \AA$ is between the A and B pyrrole hydrogens, where the distances between hydrogens A-C and B-C are $2.5 \AA$ and $2.3 \AA$, respectively. Since fluorescence is due to the conjugated system of π-electrons, the chromophore should ideally have a planar and rigid structure to maximize its fluorescent properties. Therefore, it is conceivable that the B-deprotonated form of the chromophore should be more fluorescent than the fully protonated form. Indeed, the fluorescence of IFPs diminishes at low pH (Fig. S3), at which we presume the chromophore is fully protonated. Note that we excluded from our considerations the doubly, triply and fully deprotonated forms of the chromophore since they are energetically unfavorable and therefore unlikely to occur under biological conditions.

Figure S13: Superposition of the geometries of the fully protonated (shown in green) and B-deprotonated (shown in colors) forms of the free chromophore optimized at the $\mathrm{BP} / \mathrm{TZV}(\mathrm{p}) / \mathrm{TZV}(2 \mathrm{~d})$ level. Cysteine linker was modeled during the optimizations as a thiomethyl group. Carboxylic groups at rings B and C were neutralized by adding protons. Arrows indicate central bonds of the six important dihedral angles that define the planarity of the chromophore. Black and green labels indicate the values of the dihedrals for the B-deprotonated and fully protonated forms, respectively. The pyrrole rings A-B-C in the fully protonated form show an out-of-plane geometry because of the repulsion of the inner protons. The inclusion of the pyrrole water in the vacuum models does not change the overall picture.

S3 Derivation of parameters for the deprotonated chromophore.

We refer to the biliverdin chromophore deprotonated at the B pyrrole ring simply as the B-deprotonated chromophore. The missing molecular mechanics parameters for the Bdeprotonated chromophore were derived starting from the available parameters of the fully protonated chromophore. ${ }^{9,10}$ All quantum chemical calculations were done in ORCA ${ }^{11}$ using the BP density functional theory method and the $\operatorname{TZV}(\mathrm{p})$ and $\mathrm{TZV}(2 \mathrm{~d})$ basis sets for hydrogens and heavy atoms, respectively. In the first step, we prepared geometries of the isolated chromophore in its five protonation forms, namely the fully protonated form and the A-, B-, C-, and D-deprotonated form. The fully protonated form had a total charge of +1 and the other forms were neutral. The geometries of all forms were subsequently optimized in vacuum. Frequency analyses were performed on top of the optimized geometries of each form to ensure that the geometries were in their energy minima. In further calculations, only the fully protonated and the B-deprotonated forms were considered. The atomic charges for the isolated chromophore, both in its fully protonated and B-deprotonated form, were calculated using the CHELPG method. ${ }^{12}$ Differences in the CHELPG charges were calculated between the corresponding atoms of the two forms. These differences were subsequently added to the existing MM-charges of the fully protonated form to obtain the MM-charges charges for the B-deprotonated form. The missing force field parameters for the four dihedral angles between rings A, B and C were derived following a two-step procedure. First, the complete chromophore was truncated to two separate molecular fragments, one comprising the rings A and B , and the other one comprising the rings B and C. The carboxylic groups at rings B and C were removed from the fragments to prevent possible sterical clashes during the consecutive scans. Points of truncation were saturated with hydrogen atoms. A relaxed potential energy surface scan was performed in steps of 5° along the central bond of each of the four dihedrals.

The scans were done both for the fully protonated form and the B-deprotonated form of the chromophore, using both the QC- and MM-potentials. The QC- and MM-scans were done in ORCA and pDynamo, respectively. Second, the dihedral parameters for the B-deprotonated form were manually tuned and the MM-scans were redone as long as a satisfactory fitting of the MM- and QC-generated energy profiles was achieved. The obtained fits for the B-deprotonated form show good agreement between the QC-profiles and MM-profiles (see Fig. S14).

b) Chromophore deprotonated at ring B

a) Fully protonated chromophore

Figure S15: Topology file for the CHARMM force field to describe the biliverdin chromophore deprotonated at pyrrole ring B, based on the previous topology of the fully protonated chromophore. ${ }^{9,10}$

* B-deprotonated chromophore
*

31	1			
MASS	201	CPY1	12.011	C
MASS	202	CPY2	12.011	C
MASS	203	CPY3	12.011	C
MASS	204	CPY4	12.011	C
MASS	205	CPY5	12.011	C
MASS	206	CPY6	12.011	C
MASS	207	SE	32.060	S

AUTO ANGLE DIHE

RESI			-2.00
GROUP		methine	bridge
ATOM	CAC	CPM	-0.034
ATOM	HAC	HA	0.110
GROUP		RING A	
ATOM	C1C	C	0.267
ATOM	H2C	HA	0.045
ATOM	N_C	NR1	-0.381
ATOM	H_C	H	0.266
ATOM	C4C	CA	0.166
ATOM	C3C	CPY1	-0.140
ATOM	C2C	CT1	0.333
ATOM	O_C	0	-0.505
GROUP			
ATOM	CHD	CPY3	-0.441
ATOM	HHD	HA	0.185
GROUP		RING B	
ATOM	C1D	CPA	0.448
ATOM	N_D	NR1	-0.705
!			
ATOM	C4D	CPA	0.465
ATOM	C3D	CPB	-0.207
ATOM	C2D	CPB	-0.002
GROUP			
ATOM	CHA	CPM	-0.086

ATOM	HB1		HA	0.045				
ATOM	HB2		HA	0.069				
ATOM	HB3		HA	0.036				
GROUP		!	CH2_COO-	RING B		(Heme)		
ATOM	CBD		CT2	-0.28				
ATOM	H03		HA	0.09				
ATOM	H04		HA	0.09				
ATOM	CGD		CC	0.62				
ATOM	02D		OC	-0.76				
ATOM	01D		OC	-0.76				
GROUP		!	CH2 RING	B		(Heme)		
ATOM	CAD		CT2	-0.159				
ATOM	H07		HA	0.056				
ATOM	H08		HA	0.045				
GROUP		!	CH2_COO-	RING C		(Heme)		
ATOM	CBA		CT2	-0.28				
ATOM	H01		HA	0.09				
ATOM	H02		HA	0.09				
ATOM	CGA		CC	0.62				
ATOM	02A		OC	-0.76				
ATOM	01A		OC	-0.76				
GROUP		$!$	CH2 RING	C		(Heme)		
ATOM	CAA		CT2	-0.137				
ATOM	H05		HA	0.052				
ATOM	H06		HA	0.057				
!								
BOND	CHA	HHA	CHA	C1A	CHA	C4D	CGA	01A
BOND	N_A	H_A	N_A	C1A	N_A	A 4 A	N_B	C4B
BOND	C1A	C2A	C2A	C3A	C2A	CAA	C3B	C4B
BOND	C3A	C4A	C3A	CMA	C4A	CHB	CMB	HB3
BOND	CMA	HA1	CMA	HA2	CMA	HA3	CBB	HV2
BOND	CAA	H05	CAA	H06	CAA	CBA	CGA	02A
BOND	CBA	H01	CBA	H02	CBA	CGA	CMC	HE3
BOND	CHB	C1B	N_B	H_B	N_B	- C 1 B	CMC	HE2
BOND	C1B	C2B	C2B	C3B	C2B	CMB	CAC	CBC
BOND	C4B	O_B	CMB	HB1	CMB	HB2	C3B	CAB
BOND	CAB	HAB	CAB	CBB	CBB	HV1	CMD	HD3
BOND	N_C	H_C	N_C	C1C	N_C	C 4 C	CGD	01D
BOND	C1C	C2C	C1C	O_C	C2C	H2C	CGD	02D
BOND	C2C	C3C	C2C	CMC	CMC	HE1		
BOND	C3C	C4C	C3C	CAC	CAC	HAC		
BOND	CBC	HL1	CBC	HL2	CHB	HHB		
BOND	C4C	CHD	CHD	HHD	CHD	C1D		
BOND	N_D	C1D	N_D	C4D				
BOND	C1D	C2D	C2D	C3D	C3D	C4D		
BOND	C2D	CMD	CMD	HD1	CMD	HD2		

BOND	C3D	CAD	CAD	HO7	CAD	HO8							
BOND	CAD	CBD	CBD	HO3	CBD	HO4							
BOND	CBD	CGD											
$!$													
IMPH	HHA	C4D	C1A	CHA	C1A	CHA	N_A	C2A	C2A	C1A	C3A	CAA	
IMPH	C3A	C2A	C4A	CMA	C4A	C3A	N_A	CHB	C2B	N_B	C1B	CHB	
IMPH	CGA	O1A	O2A	CBA	CHB	C4A	C1B	HHB	C4B	N_B	C3B	O_B	
IMPH	C2B	C1B	C3B	CMB	C3B	CAB	C4B	C2B	C3C	N_C	C4C	CHD	
IMPH	CAB	CBB	C3B	HAB	CBB	CAB	HV1	HV2	C3D	C2D	C4D	CAD	
IMPH	C1C	N_C	C2C	O_C	CHD	C4C	C1D	HHD					
IMPH	C3C	C2C	C4C	CAC	C3C	CBC	CAC	HAC					
IMPH	C1D	C2D	N_D	CHD	C2D	C1D	C3D	CMD					
IMPH	C4D	C3D	N_D	CHA	CGD	O2D	O1D	CBD					

!
DONOR $\quad H_{-} C \quad$ N_C $\quad H_{-} A \quad$ N_A $\quad H_{-} B \quad$ N_B
ACCEPTOR O_C C1C O1D CGD 02D CGD 01A CGA 02A CGA O_B C4B

```
!========================================
! Patch to link BV to a cysteine residue
PRES ABV 0.00
GROUP
ATOM CB CT2 -0.11
ATOM HB1 HA 0.09
ATOM HB2 HA 0.09
ATOM SG SE -0.07
GROUP
ATOM C C 0.51
ATOM 0 O -0.51
DELETE ATOM 1HG1
!
BOND 2CBC 1SG
ANGLE 1CB 1SG 2CBC 1SG 2CBC 2CAC
!
ANGLE 2HL1 2CBC 1SG 2HL2 2CBC 1SG
!
DIHE 1CB 1SG 2CBC 2CAC 1HB1 1CB 1SG 2CBC 1HB2 1CB 1SG 2CBC
DIHE 1SG 2CBC 2CAC 2C3C 1SG 2CBC 2CAC 2HAC
DIHE 1CB 1SG 2CBC 2HL1 1CB 1SG 2CBC 2HL2
END
```

Figure S16: Parameter file for the CHARMM force field describing the biliverdin chromophore deprotonated at pyrrole ring B, based on the previous parameters for the fully protonated chromophore. ${ }^{9,10}$

* B-deprotonated chromophore			
*			
BONDS			
NR1	CPA	377.200	1.3817
NR1	C	260.000	1.4190
CT2	CPM	230.000	1.4830
NR1	CA	377.200	1.4117
SE	CT2	198.000	1.8180
CPY1	CA	305.000	1.4772
CT1	CPY1	230.000	1.4907
CPM	CPY1	360.000	1.3266
CPY2	CA	360.000	1.3800
HA	CPY2	367.600	1.0902
CPY2	CPA	360.000	1.4455
CPY3	CA	360.000	1.3676
HA	CPY3	367.600	1.0900
CPY3	CPA	360.000	1.4225
CPY4	CPA	299.800	1.4052
CPY4	CPB	340.700	1.4018
CT2	CPY4	230.000	1.4946
CPY5	CA	305.000	1.4620
CT3	CPY5	230.000	1.4850
CPY6	C	250.000	1.4711
CPY6	CE1	450.000	1.4290
CPY6	CPY5	305.000	1.3470

! $===================================$ ANGLES						
NR1	CPA	CPB	122.00	110.000		
CPA	NR1	CPA	139.30	116.300		
H	NR1	CPA	30.000	125.50	20.00	2.15000
CPM	CPA	NR1	88.000	131.800		
NR1	C	O	80.000	118.000		
C	NR1	H	34.000	123.000		
NR1	C	CT1	20.000	112.500		
HA	CT2	CPM	49.300	107.500		
HA	CPM	CT2	34.500	110.10	22.53	2.17900
C	NR1	CA	50.000	133.50		
H	NR1	CA	30.000	125.50	20.00	2.15000

CT2	SE	CT2	34.000	95.000
SE	CT2	CPM	58.000	112.500
SE	CT2	CT1	58.000	112.500
SE	CT2	HA	38.000	111.000
HA	CPM	CPY1	12.700	117.440
CT2	CPM	CPY1	45.800	117.490
NR1	CA	CPY1	122.00	115.000
CT1	CPY1	CPM	45.80	116.600
CT1	CPY1	CA	45.80	128.000
CPY1	CT1	C	52.00	113.700
HA	CT1	CPY1	49.30	107.500
CT3	CT1	CPY1	51.80	107.500
CPM	CPY1	CA	61.60	124.100
CPY2	CPA	NR1	88.00	112.390
CPY2	CPA	CPB	61.60	124.070
CPY2	CA	NR1	88.00	129.000
CA	CPY2	CPA	94.20	127.000
HA	CPY2	CPA	12.70	117.440
HA	CPY2	CA	12.70	117.440
CPY3	CA	NR1	88.00	124.390
CPY1	CA	CPY3	61.60	127.570
CA	CPY3	CPA	94.20	122.800
HA	CPY3	CPA	12.70	117.440
CPY3	CPA	NR1	88.00	124.390
CPY3	CPA	CPB	61.60	125.070
HA	CPY3	CA	12.70	117.440
CPM	CPA	CPY4	61.60	132.500
NR1	CPA	CPY4	122.00	111.540
CPB	CPY4	CPA	30.80	136.010
CT2	CPY4	CPB	65.00	126.750
CPY4	CPB	CPA	30.80	145.010
CT3	CPB	CPY4	65.00	126.750
CT2	CT2	CPY4	70.00	114.700
HA	CT2	CPY4	50.00	109.500
CT2	CPY4	CPA	65.00	126.740
NR1	CA	CPY5	122.00	112.400
CPY5	CA	CPY2	61.60	124.970
CT3	CPY5	CA	45.80	115.900
HA	CT3	CPY5	49.30	107.500
NR1	C	CPY6	20.00	109.500
CPY6	C	0	80.00	118.000
CT3	CPY5	CPY6	45.80	122.300
C	CPY6	CPY5	52.00	116.000
C	CPY6	CE1	70.00	114.490
CPY5	CPY6	CE1	70.00	126.740
HE1	CE1	CPY6	50.00	120.000

CE2	CE1	CPY6	40.00	117.600		
CA	CPY5	CPY6	40.00	116.500		
DIHEDRALS						
H	NR1	CPA	CPB	1.0000	2	180.00
H	NR1	CPA	CPM	1.0000	2	180.00
CPM	CPA	NR1	CPA	14.0000	2	180.00
CPA	NR1	CPA	CPB	14.0000	2	180.00
NR1	C	CT1	HA	0.1900	3	0.00
0	C	CT1	HA	0.0000	3	180.00
NR1	C	CT1	Ст3	0.0000	1	0.00
H	NR1	C	CT1	2.5000	2	180.00
HA	CT2	CPM	HA	0.1600	3	100.00
H	NR1	C	0	2.5000	2	180.00
CA	NR1	C	0	2.7500	2	180.00
CA	NR1	C	CT1	2.7500	2	180.00
HA	СТ3	CT1	C	0.0000	6	0.00
CPA	CPB	CPB	CT2	14.0000	2	180.00
CPA	CPB	CPB	СтЗ	14.0000	2	180.00
SE	CT2	CPM	CA	0.0000	6	0.00
CT1	CT2	SE	CT2	0.2400	1	180.00
HA	CT2	SE	CT2	0.2800	3	0.00
SE	CT2	CPM	HA	0.0100	3	0.00
HS	SE	CT2	CPM	0.2700	3	0.00
NR1	CA	CPY1	CPM	3.0000	2	180.00
CPM	CPY1	CT1	C	3.0000	3	0.00
HA	CT1	CPY1	CPM	0.0400	3	0.00
СТЗ	CT1	CPY1	CPM	3.1000	2	180.00
HA	CPM	CPY1	CT1	1.2000	2	180.00
C	NR1	CA	CPY1	0.0000	2	0.00
CA	CPY1	CT1	C	0.0400	3	0.00
HA	CT1	CPY1	CA	0.0400	3	0.00
NR1	C	CT1	CPY1	0.0000	1	0.00
NR1	CA	CPY1	CT1	0.1900	3	0.00
H	NR1	CA	CPY1	1.0000	2	180.00
СТ3	CT1	CPY1	CA	3.1000	2	180.00
HA	CT2	CPM	CPY1	0.0000	3	0.00
0	C	CT1	CPY1	1.4000	1	180.00
CT2	CPM	CPY1	CT1	3.1000	2	180.00
CT1	CPY1	CA	CPM	3.1000	2	180.00
HA	CPM	CPY1	CA	0.0000	2	0.00
HA	CPM	CA	CPY1	0.0000	2	0.00
CPY2	CPA	NR1	CPA	14.0000	2	180.00
NR1	CPA	CPY2	HA	1.9000	2	180.00
H	NR1	CPA	CPY2	0.0000	2	180.00

CPB	CPA	CPY2	HA	0.0000	2	180.00
CPA	CPY2	CA	NR1	3.0000	2	180.00
C	NR1	CA	CPY2	0.0000	2	0.00
NR1	CA	CPY2	HA	0.0000	2	0.00
H	NR1	CA	CPY2	1.0000	2	180.00
NR1	CPA	CPY2	CA	0.0000	2	180.00
CPY3	CPA	NR1	CPA	14.0000	2	180.00
NR1	CPA	CPY3	HA	0.1900	3	0.00
H	NR1	CPA	CPY3	1.0000	2	180.00
CPB	CPA	CPY3	HA	0.0000	2	0.00
CPA	CPY3	CA	NR1	3.0000	2	180.00
C	NR1	CA	CPY3	0.0000	2	0.00
NR1	CA	CPY3	HA	0.0000	2	0.00
H	NR1	CA	CPY3	1.0000	2	180.00
NR1	CPA	CPY3	CA	3.0000	2	180.00
CPM	CPY1	CA	CPY3	3.1000	2	180.00
CPY1	CA	CPY3	HA	3.1000	2	180.00
CT1	CPY1	CA	CPY3	3.1000	2	180.00
CPM	CPA	CPY4	CPB	0.0000	2	0.00
CPM	CPA	CPY4	CT2	0.0000	2	0.00
CPA	CPY4	CPB	CT3	0.0000	2	180.00
CPA	CPY4	CT2	CT2	0.0000	6	0.00
CPA	CPY4	CT2	HA	0.0000	6	0.00
NR1	CPA	CPY4	CPB	0.0000	2	0.00
NR1	CPA	CPY4	CT2	0.0000	2	0.00
H	NR1	CPA	CPY4	0.0000	2	0.00
CPY4	CPA	NR1	CPA	14.0000	2	180.00
CPB	CPY4	CT2	CT2	0.0000	6	0.00
CPB	CPY4	CT2	HA	0.0000	6	0.00
CPA	CPY4	CPB	CPA	14.0000	2	180.00
CPA	CPB	CPY4	CT2	1.0000	2	180.00
CT3	CPB	CPY4	CT2	0.0000	2	180.00
C	NR1	CA	CPY5	0.0000	2	0.00
CA	CPY5	CT3	HA	0.0000	3	0.00
CPY5	CA	CPY2	HA	0.0000	2	0.00
CPY2	CA	CPY5	CT3	3.1000	2	180.00
NR1	CA	CPY5	CT3	3.0000	2	180.00
H	NR1	CA	CPY5	1.0000	2	180.00
CE1	CA	CPY5	CA	3.1000	2	180.00
CA	CPY5	CPY6	C	0.0400	3	0.00
CT3	CPY5	CPY6	C	14.0000	3	0.00
C	CPY6	CE1	HE1	0.0000	2	180.00
C	CPY6	CE1	CE2	1.0000	2	180.00
NR1	C	CPY6	CPY5	0.0000	1	0.00
NR1	C	CPY6	CE1	0.0000	1	0.00
NR1	CA	CPY5	CPY6	3.0000	2	180.00

H	NR1	C	CPY6	2.5000	2	180.00
CA	NR1	C	CPY6	14.0000	2	180.00
CE1	CPY6	CPY5	CA	3.1000	2	180.00
0	C	CPY6	CPY5	0.4000	1	180.00
CPY5	CPY6	CE1	HE1	1.0000	2	180.00
CPY6	CPY5	CA	CPY2	1.1000	2	180.00
CPY6	CPY5	CT3	HA	0.0000	3	0.00
CPY6	CE1	CE2	HE2	5.2000	2	180.00
0	C	CPY6	CE1	1.4000	1	0.00
CE1	CPY6	CPY5	CT3	3.1000	2	180.00
!						
! multiple terms for dihedral optimization						
! VINYL						
CPY5	CPY6	CE1	CE2	0.90	1	0.00
CPY5	CPY6	CE1	CE2	2.35	2	180.00
CPY5	CPY6	CE1	CE2	0.50	3	0.00
!						
! DB pyrrol-pyrrolinone ring A-B						
CPY1	CA	CPY3	CPA	4.8	1	0.0
CPY1	CA	CPY3	CPA	16.0	2	178.0
CPY1	CA	CPY3	CPA	4.5	3	160.0
!						
! EB pyrrol-pyrrolinone ring A-B						
CA	CPY3	CPA	CPB	2.0	3	180.0
CA	CPY3	CPA	CPB	4.0	2	180.0
CA	CPY3	CPA	CPB	6.0	1	0.0
$!$ le						
! pyrrol-pyrrol 1						
CPY4	CPA	CPM	CPA	18.0	2	183.0
CPY4	CPA	CPM	CPA	4.5	1	2.0
CPY4	CPA	CPM	CPA	5.0	3	190.0
$!$ 退						
! pyrrol-pyrrol 2						
CPB	CPA	CPM	CPA	1.5	3	180.0
CPB	CPA	CPM	CPA	5.0	2	180.0
CPB	CPA	CPM	CPA	5.5	1	0.0
!						
! DB pyrrol-pyrrolinone ring C-D						
CPA	CPY2	CA	CPY5	11.8	1	0.0
CPA	CPY2	CA	CPY5	3.0	2	190.0
!						
! EB pyrrol-pyrrolinone ring C-D						
CPB	CPA	CPY2	CA	2.0	3	0.0
CPB	CPA	CPY2	CA	4.4	2	138.0
CPB	CPA	CPY2	CA	2.1	1	243.0
!						

l linking fragment											
CT2	SE	CT2	CPM	0.7	3	10.00					
CT2	SE	CT2	CPM	1.1	1	88.00					
SE	CT2	CPM	CPY1	1.4	2	45.00					
CT2	CPM	CPY1	CA	2.4	2	180.00					
CT2	CPM	CPY1	CA	16.4	1	4.00					

IMPROPER						
CPA	CPB	NR1	CPM	200.0000	0	0.0000
HE2	HE2	CE1	CE2	3.0000	0	0.0000
CD	OB	OH1	CT2	96.0000	0	0.0000
CPB	CPB	CPA	CT2	90.0000	0	0.0000
CPB	CPA	CPB	CT2	90.0000	0	0.0000
CPY1	CT1	CA	CPM	0.0000	0	0.0000
CPY1	CT2	CPM	HA	29.4000	0	180.000
CPA	CPB	NR1	CPY2	140.0000	0	0.0000
CPY2	CPA	CA	HA	29.4000	0	0.0000
CPA	CPB	NR1	CPY3	145.000	0	0.0000
HA	CPA	CA	CPY3	29.4000	0	0.0000
CPY1	NR1	CA	CPY3	140.0000	0	180.00
CPA	CPM	NR1	CPY4	61.0000	0	0.0000
CPY4	CPA	CPB	CT2	64.0000	0	0.0000
CPB	CPY4	CPA	CT3	90.0000	0	0.0000
CPY5	NR1	CA	CPY2	7.0000	0	180.000
CPY5	C	CA	CE1	90.0000	0	180.000
CPY5	X	X	CT3	0.0000	0	0.0000
CPY6	CE1	C	CPY5	180.0000	0	0.0000
HE1	X	X	CE1	3.0000	0	0.0000

S4 Chromophore dynamics and migration of water molecules in the situation at neutral pH and with the B-deprotonated chromophore.

In this section, we examine a physiologically less likely situation, when the chromophore is deprotonated at the B pyrrole ring at neutral pH (see Fig. 3 in the main text for the ring definitions). Although the chromophore is likely fully protonated in the whole spectrum of pH , as suggested by earlier experiments, the analysis of the B-deprotonated chromophore may still provide some insights into the dynamics of IFPs. As discussed in Section S2 (also see Fig. S13), the unbound biliverdin adopts a more planar geometry in its B-deprotonated form, which may favor the enhancement of fluorescence.

Similarly to the situation with the fully protonated chromophore, the most significant differences between the proteins are visible for dihedrals 1 and 2 (see Fig. S17). The planarity of dihedral angle $\mathbf{1}$ is calculated to be 12.6° in $\operatorname{Dr} \mathrm{CBD}$ and decreases to 4.1° in IFP2.0 (see Tab. S3). The rigidity of dihedral 2 does not show a clear trend, which is reminiscent of the simulation of the fully protonated chromophore. Interestingly, dihedral 1 is now consistently more planar and rigid in comparison to the case with the fully protonated chromophore (see Tab. 3 in the paper). Dihedral 2 shows a significant improvement of planarity on going from the parent protein $\left(\mu=17.9^{\circ}\right)$ to IFP2.0 $\left(\mu=-0.9^{\circ}\right)$, which is the most dramatic change in all simulations that we have performed. The fragments of the chromophore described by dihedral 2 display again a rather irregular rigidity depending on the protein. Nevertheless, these fragments appear most flexible in $\operatorname{Dr} \mathrm{CBD}(\sigma=12.4)$ and most rigid in IFP2.0 ($\sigma=8.4$). Compared to the previous situation, dihedral $\mathbf{2}$ in the B-deprotonated chromophore is initially more distorted ($\mu=13.1^{\circ}$ vs $\mu=17.9^{\circ}$), but shows a regular trend towards planarity with the increasing fluorescence. The rigidity of dihedral 2 appears comparable for both protonation states of biliverdin. The inner pyrrole
rings described by dihedral angles $\mathbf{3}$ and $\mathbf{4}$ show similar dynamics as before. Dihedral $\mathbf{3}$ is predicted to be slightly more planar and rigid with the B-deprotonated chromophore. Dihedral 5 connecting rings C and D is now more displaced out of planarity, in particular for the intermediate IFPs. For example, the mean value of dihedral 5 in IFP1.4 is calculated to be 11.0° and 16.1° for the fully protonated and B-deprotonated chromophore, respectively. The flexibility of dihedral 5 does not change much between different protonation forms of biliverdin. Lastly, dihedral $\mathbf{6}$ is slightly more displaced out of planarity with the B-deprotonated chromophore, whereas its flexibility remains similar.

We have also analyzed the mobility of water molecules in the neighborhood of the B-deprotonated chromophore (see Fig. S18). In DrCBD, the pyrrole water is promptly displaced from its crystallographic position and shows reasonable mobility inside the cavity. The water forms transient hydrogen bonds to the nitrogen atom of the deprotonated ring B of the chromophore, or to the carbonyl carbon atom at ring A. At the same time, it maintains contact with other water molecules from the bulk solvent through a chain of hydrogen bonds. The closest of these waters can push the pyrrole water further towards the region between the rings, thus causing ring A to move out of planarity. After about 3 ns of simulation, the pyrrole water is displaced from its position and replaced by another water. Water replacements in the cavity recur during the rest of the simulation.

Unlike in $\operatorname{Dr} \mathrm{CBD}$, the pyrrole water in IFP1.0 is isolated from the solvent because His207 hinders access of solvent to the chromophore. His207 is ϵ-protonated and forms a hydrogen bond to the carbonyl oxygen of the A pyrrole ring. This hydrogen bond remains in place throughout the simulation, although the His207 side-chain displays some flexibility. We do not observe any water exchange between the cavity of the chromophore and the outer solvent; the pyrrole water is permanently locked between the rings. After the first 0.5 ns of simulation, the pyrrole water establishes two hydrogen bonds, one to the δ-nitrogen of His260 and another to the carbonyl oxygen at ring A. These bonds remain intact until the end of the simulation.

In IFP1.4, the orientation of the His207 side-chain is different than in IFP1.0. Namely, the δ-hydrogen now forms a hydrogen bond to the carbonyl oxygen of the protein backbone. The carbonyl oxygen at ring A is coordinated both by the pyrrole water and by solvent waters from the outer side. Some limited contact is possible between these solvent waters and the pyrrole water. The contact is improved after 8.5 ns of simulation when the His207 side chain rotates outwards and more solvent waters approach the cavity occupied by the pyrrole water. However, the exchange of water molecules, which was seen in $\operatorname{Dr} \mathrm{CBD}$, does not generally occur here. The transient opening of the cavity is followed by a prompt return of His207 to its previous conformation.

IFP2.0 is exceptional in the sense that His260 is calculated to be doubly protonated with the B-deprotonated chromophore at neutral pH (Fig. S8). The pyrrole water is initially shifted towards the solvent. The shift is likely triggered by the electrostatic repulsion from the additional δ-proton of His260 or for sterical reasons. No direct contacts are visible between the pyrrole water and solvent waters, which may be due to the exposure of the hydrophobic part of the Thr207 side-chain towards the solvent and a different network of hydrogen bonds. However, the pyrrole water is promptly exchanged during the simulation by another water coming from the vicinity of ring A. This new water molecule remains locked between His260 and the pyrrole rings until the end of the simulation. Except for the initial replacement of the pyrrole water, no further exchange of water molecules is observed throughout the simulation. Overall, the mobility of water in IFP2.0 is predicted to be somewhat higher than in IFP1.0 and IFP1.4, but nevertheless noticeably lower than in $D r \mathrm{CBD}$ (see Fig. S18).

Comparison to the simulations with the fully protonated chromophore. We note that the overall picture of the simulations generally holds up regardless of the protonation state of the chromophore, with the exception of IFP2.0. The most intensive water exchange is observed in the case of $D r \mathrm{CBD}$ for both protonation states of biliverdin. In IFP1.0 and IFP1.4, the inner pyrrole water is always locked in the cavity of the chro-
mophore and its contact with the solvent is hindered by His207. In IFP2.0, we observe a rather intensive water migration when the chromophore is fully protonated (see the discussion in the paper). However, this migration does not seem to displace the chromophore out of planarity, because Thr207 interacts only weakly with the chromophore. When the chromophore is in its B-deprotonated form, His260 is calculated to be fully protonated at neutral pH (see Fig. S8). In this situation, the dynamics of IFP2.0 resembles that of the other IFPs and the pyrrole water remains isolated from the solvent.

Figure S17: Statistical distributions of the six dihedral angles of the chromophore for all proteins. The simulations were performed at neutral pH and with the chromophore in its B-deprotonated form. See Fig. 3 in the paper for the definitions of the dihedrals.
Table S3: Distributions of the six dihedral angles of the chromophore when the chromophore is deprotonated at the B pyrrole ring at neutral pH . See Tab. 3 in the main text for a detailed description and Fig. 3 for the numbering of the dihedrals.

Dihedral \rightarrow Protein \downarrow	1		2		3		4		5		6	
	μ	σ										
Neutral pH												
Dr CBD	12.6	6.9	17.9	12.4	-3.9	7.2	6.1	8.0	16.4	9.3	-142.8	8.7
IFP1.0	11.9	6.8	17.8	9.4	-4.0	7.0	7.7	7.9	15.9	8.9	-142.7	8.1
IFP1.1	3.5	7.0	13.2	13.3	-1.0	7.6	6.7	8.6	12.1	9.3	-137.8	9.3
IFP1.2	8.4	7.7	12.9	11.4	-0.4	7.4	8.6	8.2	13.7	8.9	-136.1	8.6
IFP1.4	4.0	6.4	3.5	9.5	-1.4	8.3	10.4	8.5	16.1	9.0	-134.6	8.6
IFP2.0	4.1	6.2	-0.9	8.4	5.0	7.2	12.1	8.1	14.0	8.6	-137.6	8.1

Figure S18: Mobility of water molecules inside the chromophore binding pocket in different proteins at $\mathrm{pH}=7$ and with the B-deprotonated chromophore. See Fig. 6 in the main text for details.

Table S4: A list of animations showing the observed key events during the molecular dynamics simulations. In the animations, the chromophore and water molecules are shown in a ball-and-stick representation, while the surrounding residues, His260, Tyr263, Asp/His/Thr207 are shown in a licorice representation. His260 and Tyr260 are colored in lime and brown, respectively. For clarity, only water molecules within a radius of $7.0 \AA$ from the center of the chromophore are shown. To obtain a smooth animation and eliminate minor thermal motion, the coordinates of the system for each simulation frame were averaged over 5 consecutive frames. The animations were generated for the simulations at neutral pH and with the fully protonated chromophore. Since IFP1.0 and IFP1.4 have a similar dynamic behavior, only an animation of the latter protein is included.

Animation file	Description
parent_wat_mobil.avi	Mobility of water in DrCBD
ifp14_lock_pyr_wat.avi	Locked pyrrole water, rotation of His207 in IFP1.4
ifp20_wat_rel.avi	Release of the pyrrole water in IFP2.0

References

[1] Larkin, M. A.; Blackshields, G.; Brown, N. P.; Chenna, R.; McGettigan, P. A.; McWilliam, H.; Valentin, F.; Wallace, I. M.; Wilm, A.; Lopez, R.; Thompson, J. D.; Gibson, T. J.; Higgins, D. G., Clustal W and Clustal X Version 2.0. Bioinformatics, 2007, 23, 2947-2948.
[2] Robert, X.; Gouet, P., Deciphering Key Features in Protein Structures with the New Endscript Server. Nucleic Acids Res., 2014, 42, 320-324.
[3] The PyMOL Molecular Graphics System, Version 1.3r1, Schrodinger, LLC. 2010.
[4] Velazquez Escobar, F.; Hildebrandt, T.; Utesch, T.; Schmitt, F. J.; Seuffert, I.; Michael, N.; Schulz, C.; Mroginski, M. A.; Friedrich, T.; Hildebrandt, P., Structural Parameters Controlling the Fluorescence Properties of Phytochromes. Biochemistry, 2014, 53, 20-29.
[5] Shu, X.; Royant, A.; Lin, M. Z.; Aguilera, T. A.; Lev-Ram, V.; Steinbach, P. A.; Tsien, R. Y., Mammalian Expression of Infrared Fluorescent Proteins Engineered From a Bacterial Phytochrome. Science, 2009, 324, 804-807.
[6] Ullmann, G. M.; Knapp, E. W., Electrostatic Models for Computing Protonation and Redox Equilibria in Proteins. Eur. Biophys. J., 1999, 28, 533-551.
[7] Liptak, M. D.; Shields, G. C., Accurate $\mathrm{p} K_{\mathrm{a}}$ Calculations for Carboxylic Acids Using Complete Basis Set and Gaussian-N Models Combined with CPCM Continuum Solvation Methods. J. Am. Chem. Soc., 2001, 123, 7314-7319.
[8] Muckerman, J. T.; Skone, J. H.; Ning, M.; Wasada-Tsutsui, Y., Toward the Accurate Calculation of $\mathrm{p} K_{\mathrm{a}}$ Values in Water and Acetonitrile. Biochim. Biophys. Acta, Bioenerg., 2013, 1827, 882-891.
[9] Kaminski, S.; Daminelli, G.; Mroginski, M. A., Molecular Dynamics Simulations of the Chromophore Binding Site of Deinococcus Radiodurans Bacteriophytochrome Using New Force Field Parameters for the Phytochromobilin Chromophore. J. Phys. Chem. B, 2009, 113, 945-958.
[10] Kaminski, S.; Mroginski, M., Molecular Dynamics of Phycocyanobilin Binding Bacteriophytochromes: A Detailed Study of Structural and Dynamic Properties. J. Phys. Chem. B, 2010, 114, 16677-16686.
[11] Neese, F., The ORCA Program System. Wiley Interdiscip. Rev.-Comput. Mol. Sci., 2012, 2, 73-78.
[12] Breneman, C. M.; Wiberg, K. B., Determining Atom-Centered Monopoles From Molecular Electrostatic Potentials. The Need for High Sampling Density in Formamide Conformational Analysis. J. Comput. Chem., 1990, 11, 361-373.

